E2C2-GIACS Advanced School on 'Extreme Events: Nonlinear Dynamics and Time Series Analysis'

Smooth Time Series - Applications

Dmitri Kondrashov

University of California, Los Angeles

Joint work with M. Ghil, and many others

http://www.atmos.ucla.edu/tcd

Spectral Analysis

$S(f) \sim f^{-p} + poles$

i.e. linear in log-log coordinates

For a 1st-order Markov process or "red noise" p = 2

"Pink" noise, p = 1 (1/f, flicker noise)

"White" noise, p = 0

Main challenge for *short and noisy* geophysical time series to distinguish between **poles** and (**red**) **noise**.

$$\ddot{x} = -\omega^2 x \ vs. \ \dot{x} = -\lambda x$$

Tradeoff for spectral methods: resolution (smoothing, windowing) vs. spurious peaks & power leakage.

Synthetic example (Task & Prize!!!)

You want to the state of the st

Q: Is there a periodicity and what is its period?

A: What is the underlying noise "null hypothesis"?

Classical Spectral Methods

States and a lot onset m

Advanced Spectral Methods

- Singular spectrum analysis (SSA)and Multi-taper method (MTM).

- detection of periodic signals: phase and amplitude modulation;

- use data-adaptive orthogonal basis in frequency domain (MTM) and time domain (SSA).₁₀-0

- significance tests for spectral peaks.

Right answer!

March Lart Was

SSA Power Spectra & Reconstruction

Second States and States

• A. Transform pair:

States & Tor white Some security and the security

$$X(t+s) = \sum_{k=1}^{M} a_k(t)e_k(s), e_k(s) - EOF$$

For given window M, e_k 's are **adaptive filters** (empirical orthogonal functions)

$$a_k(t) = \sum_{s=1}^{m} X(t+s)e_k(s), a_k(t) - PC$$

the a_k 's are filtered time series, principal components in time domain.

B. Power spectra

$$S_X(f) = \sum_{k=1}^M S_k(f); \quad S_k(f) = \hat{R}_k(s); \quad R_k(s) \approx \frac{1}{T} \int_0^T a_k(t) a_k(t+s) dt$$

C. Reconstruction

$$X^{K}(t) = \frac{1}{M} \sum_{k \in K} \sum_{s=1}^{M} a_{k}(t-s)e_{k}(s);$$

in particular: $K = \{1, 2, ..., S\}$ or $K = \{k\}$ or $K = \{l, l+1; \lambda_l \approx \lambda_{l+1}\}$

SSA of Southern Oscillation Index (ENSO)

- Powerful noise filter: Break in slope of SSA spectrum distinguishes "significant" from "noise" EOFs
- Formal Monte-Carlo test identifies 4-yr and 2-yr ENSO oscillatory modes (SSA pairs). A window size of M = 60 is enough to "resolve" these modes in a monthly SOI time series.

SSA Forecast (ENSO)

- Filter "signal" and forecast with AR(M) model.
- Cross-validation to find optimum number of "signal" components and error bars of the forecast.
- Correlations are both advantage and limitations of empirical models.

Real-time Plume of Climate Forecasts (ENSO)

IRI Multi-model forecast of Nino-34 index

256 4 6 Tax was 5 5 mm

 UCLA-TCD: Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil (2005), A hierarchy of data-based ENSO models, J. Climate, 18, 4425–4444. 495

Missing

Historical records are full of "gaps"....

Annual maxima and minima of the water level at the nilometer on Rodah Island, Cairo.

... nowdays on Earth...

(a)

- SST (AMSR-E), daily 2x2, June
 2002 – February
 2007: 38.2% of missing points
- Wind (QuikSCAT), (b) daily 2x2, July 1999 -- February 2007:17.2% of missing points
- Snapshot of SST 40° S 60° S 160[°] E 160[°] W 120[°] W 120[°] E 80° W 40° W 0° 40[°] E 80° E 5 10 15 20 25 0

• Gaps: satellite coverage, precipitation and clouds.

SSA gap-filling

1. Choose window M and set K=1. Flag fraction of dataset X(t)(t=1:N) as "missing" for cross-validation.

2. Update mean and covariance, find leading *K* EOFs

$$\mathbf{D} = \begin{pmatrix} X(1) & X(2) & \cdot & \cdot & X(M) \\ X(2) & X(3) & \cdot & \cdot & X(M+1) \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ X(N'-1) & \cdot & \cdot & \cdot & X(N-1) \\ X(N') & X(N'+1) & \cdot & X(N) \end{pmatrix}$$
$$\mathbf{C}_X = \frac{1}{N'} \mathbf{D}^{\mathsf{t}} \mathbf{D}; \mathbf{C}_X E_k = \lambda_k E_k$$

3. Reconstruct missing points using **K** EOFs $A_k(t) = \sum_{j=1}^{M} X(t+j-1)E_k(j)$ $R_{\mathcal{K}}(t) = \frac{1}{M_t} \sum_{k \in \mathcal{K}} \sum_{j=L_t}^{U_t} A_k(t-j+1)E_k(j);$

4. If convergence for missing points, K = K+1. Check cross-validation error, and Go to Step 2 if necessary. Utilize (spatio) temporal correlations to iteratively compute self-consistent lag-covariance matrix => can be applied to very gappy data.

Follows expectation maximization (EM) procedure for finding maximum likelihood estimates of mean and covariance matrix.

A few *K* leading EOFs correspond to the "smooth" modes, while the rest is noise.

Provides both spectral analysis and estimates of missing data.

 D. Kondrashov and M. Ghil, 2006: Spatio-temporal filling of missing points in geophysical data sets, Nonl. Proc. Geophys., 13, 151-159.

Synthetic I: Gaps in Oscillatory Signal

 Very good gap filling for smooth modulation; OK for sudden modulation.

Synthetic II: Gaps in Oscillatory Signal + Noise

 $x(t) = \sin(\frac{2\pi}{300}t) * \cos(\frac{2\pi}{40}t + \frac{\pi}{2}\sin\frac{2\pi}{120}t)$

Synthetic III: Synthetic gaps in SST data

• 1950-2004 IRI monthly SST dataset (10°x10°, 660x237 grid points)

- see improvement with *MSSA*; *"random"* pattern favors small *M*!
- Error is smaller in CE Pacific Sector where "signal" (ENSO) mode is dominant!

Synthetic IV: multivariate example (Prize!!!)

Filled-in Southern Ocean data

SSA-MTM Toolkit

- •Freeware ported to Sun, Dec, SGI, Linux, and Mac OS X: self-contained binary (~2-5Mb) depending on the Unix platform.
- http://www.atmos.ucla.edu/tcd/ssa/
- •Needs external graphics package: Grace (free, default) is a part of standard Linux installation, may need compiling for other OS; <u>IDL</u> (\$\$)
- Includes Blackman-Tukey FFT, Maximum Entropy Method, Multi-Taper Method (MTM), SSA and M-SSA.
- Spectral estimation, decomposition, reconstruction, gap-filling
- Significance tests of "oscillatory modes" vs. "noise."

SSA-MTM Toolkit (cont'd)

● ⊖ ⊖	X SSA		
Test Options Plot Option	ons Reconstruction	Log file Help	
Data vector	[data		
Sampling Interval	1		
SSA Settings			
Window Length 69 SSA Components 8			
Significance Tests Error Bars 🗆 Covariance Burg 🗖			
Get Default Values			
Store Results			
Eigenspectrum vector ssaeig			
T-EOFs matrix	ateofmat 🕨 🕨		
T-PCs matrix	apcmat		
Compute	Plot	Close	
Progress/Message			

- Data management with *named vectors & matrices.*
- Default values.

Mac OS X: kSpectra Toolkit

StartUp Tools		Test Options
SSA MEM FFT MTM M	ISSA Data I/O Utilities Log	Basis Data 🛊
Singular Spe	ctrum Analysis	✓ Same Freqn Confidence (%): 95 ✓ Strong FFT No. Surrogates: 1000
Data soi	Window 60 Covariance Burg 🛟	Trend Test Included EOFS: SSA Components
Sampling 1	Significance Monte-Carlo 🛟	Plot PCs Plot EOFs No. ▲ Freqn. Power % Variance 1 0.024 8.458617 12.25
	Components 20	2 0.021 8.25114 12.04 3 0.035 7.399287 10.99 4 0.036 6.914764 10.31
Spectrum ssa		5 0 6.283867 9.21 6 0.046 3.344027 4.87 7 0.052 2.353405 3.42 8 0.06 1.492561 2.15
Default Advanced	Compute Plot	CVL Error err Compute Plot CVL Compute
1 0.30 x10 SSA reconst:	ruction of ENSO mode	: ssarc Plot
	Reconstruct	tion $X_{=}: 1986.6019: Y_{=}: -0.646612$
0.15	i kultur k	Line 1 Line 2/Symbols Bars Axes Text
0.00 -0.15	MMMM	Color: Size:
-0.30-		None :
-01942.1 1953.6 1965	.0 1976.5 1988.0	1999.5 Print Save PDF Save EF

- Project files
- SSA Forecasts
- Automated tasks
- Built-in plots
- Animations (QuickTime)
- Automation (Automator)
- <u>www.spectraworks.com</u>

END

- Ghil M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou, 2002: "Advanced spectral methods for climatic time series," Rev. Geophys., 40(1), pp. 3.1-3.41, 10.1029/2000RG000092.
- D. Kondrashov and M. Ghil, 2006: Spatio-temporal filling of missing points in geophysical data sets, Nonl. Proc. Geophys., 13, 151-159.
- more at <u>http://www.atmos.ucla.edu/tcd/ssa.</u>

• Computer Lab: SOI (ENSO), "small signal", gap-filling, multivariate example (time permitting)