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Motivation

1. Climatic time series have typically broad peaks on top of a continuous,
       “warm-colored” background  Method

2. Connections to nonlinear dynamics   Theory

3.  Need for stringent statistical significance tests   Toolkit

4. Applications to analysis and prediction   Examples

Joint work with: M. R. Allen, M. D. Dettinger, K. Ide, N. Jiang, C. L. Keppene, D. Kondrashov, M. Kimoto, 
M. E. Mann, J. D. Neelin, M. C. Penland, G. Plaut, A. W. Robertson, A. Saunders, D. Sornette, 
S. Speich, C. M. Strong, C. Taricco, Y.-d. Tian, Y. S. Unal, R. Vautard, & P. Yiou (on 3 continents).

http://www.atmos.ucla.edu/tcd
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Motivation & Outline
1..Data sets in the geosciences are often short and contain errors:: t
    this is both an obstacle and an incentive.

2. Phenomena in the geosciences often have both regular (“cycles”) 
    and irregular (“noise”) aspects.

3. Different spatial and temporal scales: 
   one person’s noise is another person’s signal..

4. Need both deterministic and stochastic modeling. 

5. Regularities include (quasi-)periodicity  spectral analysis via “classical” 
    methods (see SSA-MTM Toolkit).

 6. Irregularities include scaling and (multi-)fractality   “spectral analysis” 
 via Hurst exponents, dimensions, etc. (see Multi-Trend Analysis, MTA)

 7. Does some combination of the two, + deterministic and stochastic modeling, 
provide a pathway to prediction?

For details and publications, please visit these two Web sites:

TCD — http://www.atmos.ucla.edu/tcd/ (key person – Dmitri Kondrashov! 

E2-C2 — http://www.ipsl.jussieu.fr/~ypsce/py_E2C2.html 
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Climatic Trends & Variability

Standard view    Binary thinking, dichotomy: 

Trend  Predictable (completely), deterministic, reassuring, good;  

Variability  Unpredictable (totally), stochastic, disconcerting, bad. 

In fact, these two are but extremes of a spectrum of, more or less predictable, 
types of climatic behavior, between the totally boring & the utterly surprising. 

(Linear) Trend = Stationary > 

Periodic > Quasi-periodic > 

Deterministically aperiodic >  

Random Noise

Here “>” means “better, more predictable”, & 

Variability = Periodic + Quasi-periodic + 

               Aperiodic + Random
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Time Series in Nonlinear Dynamics

The 1980s  decade of greed & fast results 

                (LBOs, junk bonds, fractal dimension). 

Packard et al. (1980), Roux et al. (1980); 

Mañe (1981), Ruelle (1981), Takens (1981); 

Method of delays:

Differentiation ill-posed ⇒ use differences instead!

1st Problem  smoothness: 

 Whitney embedding lemma doesn’t apply to most attractors (e.g.,Lorenz)
2nd Problem  noise;
3rd Problem  sampling: long recurrence times.

Some rigorous results on convergence: 
Smith (1988, Phys. Lett. A), Hunt (1990, SIAM J. Appl. Math.)

ẍ = F (x, ẋ)⇒
{

ẋ = y,
ẏ = F (x, y)

ẍi = fi(x1, ....., xn)⇔ x(n) = F (x(n−1), ....., x)
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Spectral Density (Math)/Power Spectrum (Science & Engng.)

Wiener-Khinchin (Bochner) Theorem        Blackman-Tukey Method

i.e., the lag-autocorrelation function & the spectral density 

are Fourier transforms of each other. 

Continuous background 
+ peaks 

R(s) = lim
L→∞

1
2L

L∫

−L

x(t)x(t + s)dt

S(f) =
1
2π

∞∫

−∞

R(s)e−ifsds ≡ R̂(s)

S(f)

f
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Power Law for Spectrum

            S(f) ~ f – p + poles

i.e. linear in log-log coordinates

For a 1st-order Markov process or “red noise” p = 2

“Pink” noise, p = 1 (1/f , flicker noise) 

“White” noise, p = 0 

Low-order dynamical (deterministic ) systems 

have exponential decay of S(f) (linear in log-linear coordinates)

e.g. for Smale horseshoe  ∀k   ∃2k  unstable orbits of period k

N.B. Bhattacharaya, Ghil & Vulis (1982, J. Atmos. Sci.) showed a 
spectrum  S ~ f – 2 for a nonlinear PDE with delay (doubly infinite-
dimensional)  
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Power Law for Spectrum (cont’d)

Hypothesis: “Poles” correspond to the least unstable periodic orbits

Major clue to the physics    

                            that underlies the dynamics

N.B. Limit cycle not necessarily elliptic, i.e. not

(a)“unstable limit cycles” “Poincaré section”

(x, y) = (afsin(ft), bfcos(ft))
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Singular

Spectrum

Analysis
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Singular Spectrum Analysis (SSA)

Spatial EOFs SSA

x – space s – lag 

k

λ

Statistical dimension

Pairs  oscillations
(nonlinear) sine + cosine pair

Colebrook (1978); Weare & Nasstrom (1982);
Broomhead & King (1986: BK); Fraedrich (1986)

Vautard & Ghil (1989: VG) 
Physica, 35D, 395-424 

BK+VG: Analogy between Mañe-Takens embedding
              and the Wiener-Khinchin theorem 

Cφ(x,y)=Eφ(x,ω)φ(y,ω)

=
1
T

Z T

o
φ(x, t)φ(y, t)dt

CX(s)=EX(t + s,ω)φ(s,ω)

=
1
T

Z T

o
X(t)X(t + s)dt
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Power Spectra & Reconstruction

A. Transform pair: 

                               The ek’’s are adaptive filters, 

                               the ak’’s are filtered time series.

B. Power spectra

C. Partial reconstruction

in particular:  

ak(t) =
M∑

s=1

X(t + s)ek(s), ak(t)− PC

X(t + s) =
M∑

k=1

ak(t)ek(s), ek(s)− EOF

SX(f) =
M∑

k=1

Sk(f); Sk(f) = Rk(s); Rk(s) ≈ 1
T

∫ T

0
ak(t)ak(t + s)dt

XK(t) =
1
M

∑

k∈K

M∑

s=1

ak(t− s)ek(s);
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Singular Spectrum Analysis (SSA)

SSA decomposes (geophysical & other) 
time series into 

Temporal EOFs (T-EOFs) and 
Temporal Principal Components (T-PCs), 
based on the series’ lag-covariance matrix

Selected parts of the series can be 
reconstructed, via 

Reconstructed Components (RCs)

Time series

RCs

T-EOFs

Selected References:
 Vautard & Ghil (1989, Physica D); 
 Ghil et al. (2002, Rev. Geophys.)

• SSA is good at isolating oscillatory behavior via paired eigenelements.
• SSA tends to lump signals that are longer-term than the window into 

– one or two trend components.

•
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Singular Spectrum Analysis (SSA) and M-SSA (cont’d)

• Break in slope of SSA spectrum distinguishes “significant” from “noise” EOFs
• Formal Monte-Carlo test (Allen and Smith, 1994) identifies 4-yr and 2-yr ENSO oscillatory modes. 

A window size of M = 60 is enough to “resolve” these modes in a monthly SOI time series

•
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SSA (prefilter) + (low-order) MEM

“Stack” spectrum

In good agreement with MTM peaks  of Ghil & Vautard (1991, Nature) for the Jones et al. 
(1986) temperatures & stack spectra of Vautard et al. (1992, Physica D) for the IPCC 
“consensus” record (both global), to wit 26.3, 14.5, 9.6, 7.5 and 5.2 years.

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc.                                                       
Plaut, Ghil & Vautard (1995, Science) 
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•Ported to Sun, Dec, SGI, PC Linux, and Mac OS X
•Graphics support for IDL and Grace 
•Precompiled binaries are available at www.atmos.ucla.edu/ tcd/ssa 
•Includes Blackman-Tukey FFT, Maximum Entropy Method, Multi-
Taper Method (MTM), SSA and M-SSA. 

•Spectral estimation, decomposition, reconstruction & prediction.
•Significance tests of “oscillatory modes” vs. “noise.”  
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• Free!!!
• Data management with named vectors & matrices.

• Default values button.
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kSpectra Toolkit for Mac OS X

• $$ ... but: Project files, Automator WorkFlows, Spotlight and more!

• www.spectraworks.com
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The Nile River Records Revisited:
How good were Joseph's predictions?

Michael Ghil, ENS & UCLA
Yizhak Feliks, IIBR & UCLA,

Dmitri Kondrashov, UCLA
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Why are there data missing?

Hard Work

• Byzantine-period mosaic from Zippori, the capital of Galilee (1st century 
B.C. to 4th century A.D.); photo by Yigal Feliks, with permission from the 
Israel Nature and Parks Protection Authority )
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What to do about gaps?

Most of the advanced filling-in methods are different flavors of Optimal 
Interpolation (OI: Reynolds & Smith, 1994; Kaplan 1998).

Drawbacks: they either (i) require error statistics to be specified a priori; or 
(ii) derive it only from the interval of dense data coverage.

 

We propose filling in gaps by applying iterative SSA (or M-SSA): 

Utilize both spatial and temporal correlations of data => can be used for 
highly gappy data sets;  simple and easy to implement!

EOF Reconstruction (Beckers & Rixen, 2003): (i) iteratively compute 
spatial-covariance matrix using all the data; (ii) determine via cross-
validation “signal” EOFs and use them to fill in the missing data; accuracy 
is similar to or better than OI (Alvera-Azcarate et al. 2004). 

Drawbacks: uses only spatial correlations => cannot be applied to very 
gappy data. 
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Historical records are full of “gaps”....

Annual maxima and minima of the water level at the nilometer on Rodah Island, Cairo.
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SSA (M-SSA) Gap Filling

Main idea: utilize both spatial and temporal correlations to iteratively compute self-
consistent lag-covariance matrix; M-SSA with M = 1 is the same as the EOF 
reconstruction method  of Beckers & Rixen (2003)  

Goal: keep “signal” and truncate “noise” — usually a few leading EOFs correspond 
to the dominant oscillatory modes, while the rest is noise. 

 (1) for a given window width M: center the original data by computing the unbiased 
value of the mean and set the missing-data values to zero. 

(2)  start iteration with the first EOF, and replace the missing points with the 
reconstructed component (RC) of that EOF; repeat the SSA algorithm on the new 
time series, until convergence is achieved. 

(3) repeat steps (1) and (2) with two leading EOFs, and so on. 

(4) apply cross-validation to optimize the value of M and the number of dominant 
SSA (M-SSA) modes K to fill the gaps: a portion of available data (selected at 
random) is flagged as missing and the RMS error in the reconstruction is computed. 
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Synthetic I: Gaps in Oscillatory Signal 

• Very good gap filling for smooth modulation; OK for sudden modulation.
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Synthetic II: Gaps in Oscillatory Signal + Noise
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 Nile River Records

• High level

• Low level        
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MC-SSA of Filled-in Records

Periods Low High High-Low

40-100yr 64(9.3%) 64(6.9%) 64(6.6%)

20-40yr [32]

10-20yr 12.2 (5.1%), 
18.3 (6.7%)

12.2 
(4.7%), 
18.3 (5.0%)

5-10yr  6.2 (4.3%) 7.2 (4.4%) 7.3 (4.4%)

0-5yr 3.0 (2.9%), 
2.2 (2.3%)

3.6 (3.6%),
2.9 (3.4%), 
2.3 (3.1%)

2.9 (4.2%), 
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12.2 
(4.7%), 
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5-10yr  6.2 (4.3%) 7.2 (4.4%) 7.3 (4.4%)

0-5yr 3.0 (2.9%), 
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 SSA results  for the extended Nile River records; 
arrows mark highly significant peaks (at 95%), in both SSA  and MTM.  25/28



Periods Low High High-Low

40–100yr 64 (13%) 85 (8.6%) 64 (8.2%)

20–40yr 23.2 (4.3%)

10–20yr [12], 19.7 (5.9%) 12.2 (4.3%), 
18.3 (4.2%)

5–10yr [6.2] 7.3 (4.0%) 7.3 (4.1%)

0–5yr 3.0 (4%), 
2.2 (3.3%)

4.2 (3.3%),
2.9 (3.3%), 
2.2 (2.9%)

[4.2], 
2.9 (3.6%), 
2.2 (2.6%)

 Table 1a: Significant oscillatory modes in short records (A.D. 622–1470)

 Table 1b: Significant oscillatory modes in extended records (A.D. 622–1922)

Periods Low High High-Low
40–100yr 64 (9.3%) 64 (6.9%) 64 (6.6%)

20–40yr       [32]

10–20yr 12.2 (5.1%), 
18.0 (6.7%)

12.2 (4.7%), 
18.3 (5.0%)

5–10yr  6.2 (4.3%) 7.2 (4.4%) 7.3 (4.4%)

0–5yr 3.0 (2.9%), 
2.2 (2.3%)

3.6 (3.6%),
2.9 (3.4%), 
2.3 (3.1%)

2.9 (4.2%), 
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Significant Oscillatory Modes

SSA reconstruction of the 7.2-yr mode in the 
extended Nile River records: 

(a) high-water, and (b) difference.
Normalized amplitude; reconstruction in the 

large gaps in red.

Instantaneous frequencies of the oscillatory
pairs in the low-frequency range (40–100 yr).

The plots are based on multi-scale SSA 
[Yiou et al., 2000]; local SSA performed in each

window of width W = 3M, with M = 85 yr.
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How good were Joseph's predictions?

Pretty good!
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The Nile River Basin initiative

will greatly modify the flow

along the longest & best-

documented river system in

the world …




