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Motivation

1. Climatic time series have typically broad peaks on top of a continuous,
“‘warm-colored” background =» Method

2. Connections to nonlinear dynamics =» Theory
3. Need for stringent statistical significance tests =» Toolkit

4.  Applications to analysis and prediction = Examples
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Motivation & Outline

1. Data sets in the geosciences are often short and contain errors:
this is both an obstacle and an incentive.

2. Phenomena in the geosciences often have both regular (“cycles”)
and irregular (“noise”) aspects.

3. Different spatial and temporal scales:
one person’s noise is another person’s signal.

4. Need both deterministic and stochastic modeling.

5. Regularities include (quasi-)periodicity =» spectral analysis via “classical”
methods (see SSA-MTM Toolkit).

6. Irregularities include scaling and (multi-)fractality = “spectral analysis”
via Hurst exponents, dimensions, etc. (see Multi-Trend Analysis, MTA)

7. Does some combination of the two, + deterministic and stochastic modeling,
provide a pathway to prediction?

For details and publications, please visit these two Web sites:
TCD  http://www.atmos.ucla.edu/tcd/ =» key person — Dmitri Kondrashov!
E2-C2 http://www.ipsl.jussieu.fr/~ypsce/py E2C2.html
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Climatic Trends & Variability
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o Standard view — Binary thinking, dichotomy:
Trend — Predictable (completely), deterministic, reassuring, good;
Variability — Unpredictable (totally), stochastic, disconcerting, bad.

o In fact, these two are but extremes of a spectrum of, more or less predictable,
types of climatic behavior, between the totally boring & the utterly surprising.

o (Linear) Trend = Stationary >
Periodic > Quasi-periodic >
Deterministically aperiodic >
Random Noise
o Here “>” means “better, more predictable”, &

Variability = Periodic + Quasi-periodic +

Aperiodic + Random
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Time Series in Nonlinear Dynamics
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The 1980s — decade of greed & fast results

(LBOs, junk bonds, fractal dimension).
Packard et al. (1980), Roux et al. (1980);
Mane (1981), Ruelle (1981), Takens (1981);

o Method of delays:  Zi = fi(T1, ...y Tn) & 'T(T%) — F(m(n—l)’ ----- , )
r =1,
r=F(x,r) = :
(, %) { y = F(x,y)

Differentiation ill-posed = use differences instead!

1st Problem — smoothness:

Whitney embedding lemma doesn’t apply to most attractors (e.g.,Lorenz)
2nd Problem — noise;
3rd Problem — sampling: long recurrence times.
o Some rigorous results on convergence:

Smith (1988, Phys. Lett. A), Hunt (1990, SIAM J. Appl. Math.) 128



Spectral Density (Math)/Power Spectrum (Science & Engng.)
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Continuous background
+ peaks

*f

o Wiener-Khinchin (Bochner) Theorellzn Blackman-Tukey Method

R(s) = Lli_)n;O % /x(t)x(t + s)dt
S(f) = % / R(s)e~3ds = R(s)

l.e., the lag-autocorrelation function & the spectral density

are Fourier transforms of each other. 528



Power Law for Spectrum
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S(f) ~f~P + poles
l.e. linear in log-log coordinates
For a 1st-order Markov process or “red noise” p = 2
“Pink” noise, p =1 (1/f, flicker noise)
“White” noise, p=0
Low-order dynamical (deterministic ) systems
have exponential decay of S(f) (linear in log-linear coordinates)

e.g. for Smale horseshoe Vk 2k unstable orbits of period k

N.B. Bhattacharaya, Ghil & Vulis (1982, J. Atmos. Sci.) showed a

spectrum S ~ f ~2 for a nonlinear PDE with delay (doubly infinite-

dimensional)
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Power Law for Spectrum (cont’d)
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o Hypothesis: “Poles” correspond to the least unstable periodic orbits

“unstable limit cycles” “Poincaré section”

o Major clue to the physics
that underlies the dynamics

o N.B. Limit cycle not necessarily elliptic, i.e. not
(z,y) = (aysin(ft),bycos(ft))
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Singular

Spectrum

Analysis
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Singular Spectrum Analysis (SSA)

Spatial EOFs

X -- space

O(x,0) =Y a, (e, (x)

Co(x,y)=Ed(x,0)0(y, )
——/<l>xt O(y,1)

C(j)ek (x) = }\‘kek (.X)

Colebrook (1978); Weare & Nasstrom (1982);
Broomhead & King (1986: BK); Fraedrich (1986)

BK+VG: Analogy between Mane-Takens embedding
and the Wiener-Khinchin theorem

SSA
s --lag

Cx(s)=EX(t+s5,0)d(s,®)
:—/X X(t+s)dt

Cye(s) =Me(s)

Pairs =» oscillations
(nonlinear) sine + cosine pair

Vautard & Ghil (1989: )
Physica, 35D, 395-424



Power Spectra & Reconstruction
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o A. Transform pair:

X(t+ s) Z ay(t)ex(s (s) — EOF
The ex’s are A?daptlve filters,
=Y X(t+ s)ex(s), ar(t) — PC
the ax’s are f_iltered time series.

B. Power spectra

ZSk ) = R (s); Rk(S)%%/O ar(t)ag(t + s)dt

C. Partial reconstruction

XK = 7 30D ault — s)ex(s):
ke K s=1

in particular: K = {1,2,......,.5} or K ={k} or K={l,l+1; )\~ X1}
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Singular Spectrum Analysis (SSA)

Time series
o 2or 1 Nifio-3
% oor 1 SST anomalies
SSA decomposes (geophysical & other) o e o e o an
time series into T-EOFs

Temporal EOFs (T-EOFs) and
Temporal Principal Components (T-PCs),
based on the series’ lag-covariance matrix

o Leading pair:
7 48-month period]

TEOFs1&2

Lag (vears)
RCs
Selected parts of the series can be Sl ]
reconstructed, via % 00 /\/\/\/\/\/\/\/\/\/V\f/ {1 Leading pair
Reconstructed Components (RCs) &l *

« SSAis good at isolating oscillatory behavior via paired eigenelements.
« SSA tends to lump signals that are longer-term than the window into
— one or two trend components.
Selected References:

Vautard & Ghil (1989, Physica D);
Ghil et al. (2002, Rev. Geophys.)  12/28



Singular Spectrum Analysis (SSA) and M-SSA (cont’d)

SOl index 1 SOl spectrum
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» Break in slope of SSA spectrum distinguishes “significant” from “noise” EOFs

» Formal Monte-Carlo test (Allen and Smith, 1994) identifies 4-yr and 2-yr ENSO oscillatory modes.

A window size of M = 60 is enough to “resolve” these modes in a monthly SOI time series 1328



SSA (prefilter) + (low-order) MEM
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o “Stack” spectrum

Power spectra

2.0 1

1.5 —

Interdecadal = e Total Power
le—] —_ '(EherrPodh%IirAe m%de
— Coupled O-A mode
25.0years .. Wind-driven mode
l Interannual
14.2 years Mid-latitude
l 7.7 yeal‘S L-F ENSO
Y l mode
5.5 years

Frequency (year-1)

In good agreement with MTM peaks of Ghil & Vautard (1991, Nature) for the Jones et al.
(1986) temperatures & stack spectra of Vautard et al. (1992, Physica D) for the IPCC
“consensus” record (both global), to wit 26.3, 14.5, 9.6, 7.5 and 5.2 years.

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc.
Plaut, Ghil & Vautard (1995, Science)
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File/Data Analysis Tools Plot LogFile Credits

SSA-MTH Toolkit, Version 4.3

{for more things than you could care)

Exit Help

*Ported to Sun, Dec, SGI, PC Linux, and Mac OS X

*Graphics support for IDL and Grace

*Precompiled binaries are available at www.atmos.ucla.edu/ tcd/ssa
*Includes Blackman-Tukey FFT, Maximum Entropy Method, Multi-
Taper Method (MTM), SSA and M-SSA.

*Spectral estimation, decomposition, reconstruction & prediction.
*Significance tests of “oscillatory modes” vs. “noise.”
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e6o

X SSA

Test Options Plot Options

Reconstruction Log file Help

Data wector I [data ID

Sampl ing Interwval W

Hindow Length

Significance Tests

SSA Settings

169

SSA Components |$

Error Bars _Jl Covariance Burg

-

Get Default Values

Store Results

Eigenspectrum vector ||issaecig

T-EOFs matrix

T-PCs matrix

'ssateofmat

‘ssapcmat

v [V [V

Compute

Plot Close

Progress/Hessage F

Free!l!

Data management with named vectors & matrices.

Default values button.
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kSpectra Toolkit for Mac OS X

:m *|5ﬁ i 5 T “-w.;ﬂ:ﬂhﬁ S e B R e e *‘Mfﬁf*‘“’hh S e
1 ft %
x10 : :
0.30 SSA reconstr suup - Tools R
'é ! SSA  MEM  FFT MTM MSSA  Datal/O  Utlities Log Basis {Data  '+]
¥ same Fregn Confid 95
0.15 ‘4 Singular Spectrum Analysis = i AerEe-(X):
| | | l l EStrong FFT No. Surrogates:  1gpg
l ' J ||| |-1 I . Window 60
0.00 | I WYY = o = ITrend Test  Included EOFS:
| | | | l . L.- l Data | soi -) Covariance V&G = J frend Tes neluce
{
I | \ Reconstruction/Prediction
i N s f ‘1 - =
0.15 Sampling 1 Significance X2 - Number Rank/Frequency Wariance
= = = 1 0.024000 8.458617
00O Graph Control
e Components 8 2 0.021000 8.251140
X=: 1969.1638; Y=: -0.054426. 3 0.035000 7.300287
[ Line  Symbols Bars Axes Text - 4 0.036000 €.914764
5 0.000000 6.283867
J\E 6 0.046000 3.344027 L
— SSE—— s
Color: Iil S E Spectrum  ssa ™9 7 0.052000 2.353405 P
i = = 8 0.060000 1.492561 1
I % y oL
e e e e e e e e - v
Ticks: 6 Max: 1999.497€ teac: |0 RC: ssarc —
————p = m ( Default :ll: Advanced ) l: Compute )( Plot ) AR order:
argin: in: .0833 [P [P
( Plot EQFs | | Compute RCs )
X= 0.083329¢ *X + 1942
= S — = (7) ( PlotPCs ) ( PlotRCs )
( Print ) ( SavePDF | [ SaveEPS ) o

* $3 ... but: Project files, Automator WorkFlows, Spotlight and more!

* www.spectraworks.com
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The Nile River Records Revisited:
How good were Joseph's predictions?

Michael Ghil, ENS & UCLA

Yizhak Feliks, IIBR & UCLA,
Dmitri Kondrashov, UCLA
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Why are there data missing?

Hard Work

« Byzantine-period mosaic from Zippori, the capital of Galilee (1st century
B.C. to 4th century A.D.); photo by Yigal Feliks, with permission from the
Israel Nature and Parks Protection Authority )
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What to do about gaps?
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o Most of the advanced filling-in methods are different flavors of Optimal
Interpolation (Ol: Reynolds & Smith, 1994; Kaplan 1998).

Drawbacks: they either (i) require error statistics to be specified a priori; or
(ii) derive it only from the interval of dense data coverage.

EOF Reconstruction (Beckers & Rixen, 2003): (i) iteratively compute
spatial-covariance matrix using all the data; (ii) determine via cross-
validation “signal” EOFs and use them to fill in the missing data; accuracy
is similar to or better than Ol (Alvera-Azcarate et al. 2004).

Drawbacks: uses only spatial correlations => cannot be applied to very
gappy data.
We propose filling in gaps by applying iterative SSA (or M-SSA):

Utilize both spatial and temporal correlations of data => can be used for

highly gappy data sets; simple and easy to implement!
19/28



Historical records are full of “gaps”....

Nile River Flood Records
5 T T T I

800 1000 1200 1400 1600 1800
Year (AD)

Annual maxima and minima of the water level at the nilometer on Rodah Island, Cairo.
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SSA (M-SSA) Gap Filling
T R e PRSP S P SR e
Main idea: utilize both spatial and temporal correlations to iteratively compute self-

consistent lag-covariance matrix; M-SSA with M = 1 is the same as the EOF
reconstruction method of Beckers & Rixen (2003)

Goal: keep “signal” and truncate “noise” — usually a few leading EOFs correspond
to the dominant oscillatory modes, while the rest is noise.

(1) for a given window width M: center the original data by computing the unbiased
value of the mean and set the missing-data values to zero.

(2) start iteration with the first EOF, and replace the missing points with the
reconstructed component (RC) of that EOF; repeat the SSA algorithm on the new
time series, until convergence is achieved.

(3) repeat steps (1) and (2) with two leading EOFs, and so on.

(4) apply cross-validation to optimize the value of M and the number of dominant
SSA (M-SSA) modes K to fill the gaps: a portion of available data (selected at
random) is flagged as missing and the RMS error in the reconstruction is computed.
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Synthetic I: Gaps in Oscillatory Signal
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a)SSA gap filling in [20:40] range

b)SSA gap filling in [120:140] range
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* Very good gap filling for smooth modulation; OK for sudden modulation2.2/28



Synthetic ll: Gaps in Oscillatory Signal + Noise
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CVL Error

SSA filling of [80 120] gap
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23/28



Nile River Records
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)Original records
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MC-SSA of Filled-in Records
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10

10

10

High—water 622-1922, SSA M=75 years

High—-Low Water Difference, 622-1922, SSA M=75 years
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10
01 o0z 03 oa  os 0 01 o0z 03  oa o5
Freq (cyclel/year) Freq (year/cycle)
SSA results for the extended Nile River records;
arrows mark highly significant peaks (at 95%), in both SSA and MTM. 5,52

=



Table 1a: Significant oscillatory modes in short records (A.D. 622-1470)

Periods Low High High-Low
40—100yr 64 (9.3%) 64 (6.9%) 64 (6.6%)
20-40yr 132]

i 12.2 (5.1%), 12.2 (4.7%),
1020y | 18°0 (6.7%) 18.3 (5.0%)
5-10yr | 6.2 (4.3%) 7.2 (4.4%) 7.3 (4.4%)

0
3.0 (2.9%), 3.6 (3.6%), 2.9 (4.2%),
05yt |55 (230 2.9 (3.4%),
= (2 2.3 (3.1%)

Table 1b: Significant oscillatory modes in extended records (A.D. 622—-1922)

Periods Low High High-Low
40-100yr 64 (13%) 85 (8.6%) 64 (8.2%)
20-40yr 23.2 (4.3%)
12.2 (4.3%)
_ 0 s
10-20yr | [12], 19.7 (5.9%) 18.3 (4.2%)
5-10yr | [6.2] 7.3 (4.0%) 7.3 (4.1%)
4.2 (3.3%), [4.2],
0
0-syr |39 g‘ g’z/) 2.9 (3.3%). 2.9 (3.6%),
PRS0 2.2 (2.9%) 2.2 (2.6%)
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Significant Oscillatory Modes

a)7.2yr cycle in high water
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b)7.2yr cycle in high—low
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SSA reconstruction of the 7.2-yr mode in the

extended Nile River records:
(a) high-water, and (b) difference.

Normalized amplitude; reconstruction in the

large gaps in red.

Instantaneous frequencies of the oscillatory
pairs in the low-frequency range (40—100 yr).

The plots are based on multi-scale SSA

[Yiou et al., 2000]; local SSA performed in each

window of width W = 3M, with M = 85 yr.
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How good were Joseph's predictions?

Pretty good!

28/28



The Nile River Basin initiative i
will greatly modify the flow ol uluE]
along the longest & best-

’4

Mediterranean Se

documented river system in [&d S t

Barrage'

the World " .mm e to w i Mm Asym:—nag":i;ma}l\

Esna Barrageg

Aswan High Dam

LakeNasser:

ToshkaValley

-
=y

SUDAN

converted to hydropower prodc
mmummmwwwmsuwmnm
MMWWMS‘J wcll also put acres

jbar Dam

Al

The Nile is already

"dotted with dams. New'
projects could helpspmad
the river's wealth of watel,
butenvironmentalists ~ A4
fear ecological disaster

Existing dam or
barrage

&= Dam project proposed
= or under construction

@ Gravity-fed
power station

. Proposed canal
"~ project

thara

River &

of agricultural land underwater, displace some 50,000 Khartoum x
t Jebel A lia hashm' El
people, ﬂoadamm‘mmmylmamhctsgm, il g f

environmentalists fear, change the local ecosystem forever.
Amuwaametm&ambmngnuun r.*.
=5

SOUTH

mdmﬂmﬁnwm&ﬂm meWhItoNIndis- Roseires Dam

mmmmamooosq-ummp—u\em

in the world. More than half the White Nile's water s lost White Nile

or by being absorbed into thick aguatic
ajoint Sudan-

¢

g extended

mmmmrmaasomwmwm
generates less due bottienecks ¢
mmm i DEMOCRATIC
tum al the turbines. Owen Falls will be Joined in the REPUBLIC
next decade by a dam at Bujagali Falls, a few OF CONGO
Kilometers down river. Costing around $300 million,
Bujagall will provide 200 MW of power, but vill also Bujagali
force the relocation of illagers and flood the Bujogali
Falls, a popular tourist site. Ugandan officials also
have plans for a 180-MW dam at Karuma, a5 well as
ather sites along the Nile.

— (0 06

— 300 kilometers
GDP SOURCE: WORLD BANK

ba Dam

."\Tekeze Dam ~

Sennaer

LakeTana

Dek Islands)alue Nile Falls

Tis Abay

Blue

I
1
1
1
)

Jonglei Canal
\‘
1
1

S
>

UGANDA

ue Nile * Addis Ababa
ETHIOPIA

ﬂqnmﬁpmmlormudw
ofcmmsmmeagnsbanwilsoonadd
| 300 MW more. But it's what comes next that

change

| Biue Nike alone has the potential to generate
;g,booMWMpmerfoﬂhenwm and
have identified more than 100 sites for
le hydropower development schemes

and the country’s other rivers,
bwill help power the country, but it

cut the flow of water that reaches

n and Egypt, block sediment transfer, and






