AMMA
 Forecasts of Small Pressurized Balloon trajectories Computed at LMD

Contact : Claude Basdevant (basdevant@lmd.ens.fr)

Forecasts of Small Pressurized Balloon (SPB) trajectories are computed by means of the ten-day deterministic forecasts (240h) produced twice a day (at 0h UT and 12h UT) by the ECMWF. So, SPB trajectories are numerically computed twice a day and are available on the web site around 8 h 30 and 20 h 30 UT.

For each available ECMWF forecast, 15 sets of balloons are numerically launched, every 6 hours, at launching times from $\mathrm{D}+12 \mathrm{~h}$ to $\mathrm{D}+96 \mathrm{~h}(\mathrm{D}+4$ days). With these deterministic forecasts, each set consists in 50 aerostats distributed on a 50 km radius circle around Cotonou in Benin (longitude 2.3850 E ; latitude 6.3539 N).

Three density levels have been selected on which 15×50 balloons are advected. These densities are :

- density $\mathrm{d}=1.00 \mathrm{Kg} / \mathrm{m}^{3}$, around $840 \mathrm{hPa}, 1700 \mathrm{~m}$
- density $\mathrm{d}=1.03 \mathrm{Kg} / \mathrm{m}^{3}$, around $870 \mathrm{hPa}, 1400 \mathrm{~m}$
- density $\mathrm{d}=1.06 \mathrm{Kg} / \mathrm{m}^{3}$, around $900 \mathrm{hPa}, 1000 \mathrm{~m}$

On maps, SPBs positions are shown each 24 hours by means of different colors (positions at 0 h UT and 12h UT functions of the hour of meteorological forecast).

Description of numerical model.

ECMWF data (operational forecasting model ; spectral, troncation T511, 91 levels).

- Zonal wind et méridian wind obtained on 26 hybrid levels $\mathrm{N}^{\circ} 64$ à 89 of ECMWF model.
- Temperature on 26 hybrid levels $\mathrm{N}^{\circ} 64$ à 89 of ECMWF model.
- Surface Pressure (allows to obtain the pressure in model level).
- For a surface pressure equal to 1013.25 hPa , model levels are pressures equal to : 497,9584 ; 526,4620 ; 555,3989 ; 584,4855 ; 613,4989 ; 642,2899 ; 670,7310; 698,7032; 726,0656 ; 752,6718; 778,4036; 803,1575; 826,8141; 849,2512; 870,3798; 890,1340; 908,4403; 925,2226;940,4416; 954,$0914 ; 966,1707 ; 976,6735 ; 985,6311 ; 993,3027 ; 999,8373 ; 1005,1222 \mathrm{hPa}$
- Horizontal regular grid $0.5^{\circ} \mathrm{x} 0.5^{\circ}$.
- Computational domain $30^{\circ} \mathrm{O}-30^{\circ} \mathrm{E}, 10^{\circ} \mathrm{S}-30^{\circ} \mathrm{N}$ (121 x 81 points).
- Temporal sampling of 3 hours from 0 h to 72 h and each 6 hours until 240 h .

Model for advection

- Time interpolations with a knot-a-knot cubic spline interpolation on three values on each side of the time of interest.
- Horizontal interpolations with a knot-a-knot cubic spline interpolation on four points on each side of the point of interest in each direction.
- Vertical interpolation to the desired density level is done by means of a knot-aknot cubic spline interpolation in the density logarithm on all 26 hybrid levels.
- Temporal advection using a second order Runge-Kutta scheme with a 30 mn time step.
- As the lowest hybrid level follows the topography, a crash of a SPB can be detected.

