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.Lesson 4.
Principal Component Analysis




Reminders: regression and correlation



We want to minimize:

N
(v —ax,=b

i=1

(v, We take the derivative with respect to a and

b and we obtain the two conditions:

> a) Zx(.—ax—) 0

X
D) Z —ax;—b)=0
Condition b) gives:
N N
D) Zyl. —ale. —-Nb=0 =| b=y—ax
i=l1 i=1
Substituting b) into a) gives:
N N Hence
@ Xy -ax? ~Fx, —awx) = Xy - ax’) Zx,,
i=1 i=1
. s a= Regression
Where we have introduced the definitions : x’.2
X, =X+x,y,=y+Y. =l
b=y—ax




How good is the regression?

The regression is not perfect: y;=ax,+b#y,

Introducing the error  ¥; =¥, —Y; We can write y, =ax,+b+y,
And the variance of y becomes:

2 %2

a’x’>+y
;2 2,2 2 . . . .
Vi=ax"+y = =1 | Explained variance + unexplained variance = 1

,2

Y

Substituting the value of a found above we find:

2
2 /2 (x, ,) Iy 3/ . « .
axi M) _ > _ XY Isthe correlation coefficient
b
i xty” 0.0,

,»  Explained Variance » _ Unexplained Variance

Total Variance Total Variance




A geophysical map is a vector belonging to Y

How big is N??

Atmosphere: 104

Weather / Climate models: 10°-1




1D Analysing x(t)
il

0.41

You are now familiar with scalar time series
statistics. Mean, variance, correlation,
spectra, etc.

0.1

-4a =30  -20 -1a 0 0 +20 43 t40 —> X

What happens with vector time series?
2D

The mean is easy. Let’ s suppose X =0

But what takes the place of variance?

. . T
The covariance matrix; XX

3D




C gives the variance of the sample in any given direction in phase
space. So if € IS a unitary vector,

e’ Ce

is the variance in the direction €.
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Reminder: Euclidean spaces

Norms, scalar product, distance, bases....

~——

-~




You are familiar W|th the cartesian coordinate system in 3d.
Avector x € R’ can be represented by its components:

( )
X, \
X=| Xx, |= 2xiei
i=1
X
Ny
where
1 0 0 . . . . .
is the euclidean basis, or canonical basis (or
e=| 0 |,e,=| 1 |,e;=| O standard, or natural)
0 0 1

You also know what is the length of a vector:

|X| — \/xl2 + x22 T x32



Generalising to N dimensions

N
i=1

where:
/1\ /O\
0 1
e1: . 9e2: . ’ aeN:
.0 ) .0 )




EXAMPLE

A grid can be seen as a linear
basis of the vector space )tV

x(t)=Y.c.(t) e,
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Do you know any other basis?

Yes you do: The Fourier basis.
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In order to introduce a geometry, we need to have a concept of angles and
distances.

This is done by introducing a scalar product. The standard scalar product is

N
xey=(x,y)= Y x,y,=2xycosd

i=1

or, using a matrix notation:

( \
Vi
Y2 N
<XaY>:XTy:( o A% S O VA ’xN) : :2xnyn
Yn-1 "
L v



A scalar product induces a norm in a standard way, which generalizes the
idea of length:

N

x| = (x.x) = 2 x/

i=1

This in turn induces a definition of distance;

d(x,y) =[x —y| = \/Z(x,- -y’



Scalar products, norms and distances are in no way unique. There are several
possible choices, given that they satisfy the definition (ask your friends at the
math department, or see a geometry handbook for that....)

Exemples of other norms:

The “Manhattan” norm, which induces the “taxi’ distance:
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The general case: the p norm

N
Ixl, = 2|
i=1

1

p

The p = norm, or the sup or Chebyshev norm, which induces the
chessboard distance:

[, = suplx

2 squares

5 squares



A “statistically interesting” norm (Mahalanobis norm):

||X||2 = <X,C_1X>

If C is diagonal, the distance becomes:

Prashanta Mahalanobis

< (x, =)
dxy)=.|> 162 : (1893 —1972)
i=1 [

Which means that each component is normalized by its own variance. It is
useful in case of vectors of heterogeneous observations.



Given two norms, there is always a matrix, called Metric Matrix, that
transforms one norm into the other.



Spectral theorem

Ask your mathematician friends for all the nice hypotheses and symbols.
Here, just a special simple result is given.

All the matrices for which this is true:

(y.Lx) =(Ly.x)

have eigenvectors that define an orthonormal basis for the vector space.
In other words, all symmetric (self-adjoint) matrices ([, = L' ) have an
ortonormal complete set of eigenvectors.

In yet other words, for any symmetric matrix L (any self-adjoint operator),
there exist two orthogonal matrices and a diagonal matrix for which:

D=M'IM=M"LM

We’ Il encounter this later on...



A geophysical map is a vector belonging to Y

How big is N??

Atmosphere: 104

Weather / Climate models: 10°-1




Analysing x(t)

04 2
0.3
0.2

0.1

C

You are now familiar with scalar time series
statistics. Mean, variance, correlation,
spectra, eftc.

What happens with vector time series?

The mean is easy. Let’ s suppose X =0

But what takes the place of variance?

. . T
The covariance matrix; XX




C gives the variance of the sample in any given direction in phase
space. So if € IS a unitary vector,

e’ Ce

is the variance in the direction €.
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Principal Component Analysis



Problem: find the direction € that maximises the variance of a sample

of vectors.

It is a constrained

Maximization problem.
"o ) We want to find the

’ ° o o maximum:

: S : Max(e' Ce)

o 7o [\e o o %o o o Submitted to the
°o o o 7 constraint:

Lt le|* =e"e =1




The problem can be solved via the Lagrange multiplyer A.
The maximum to be found is:

Max [eTCe —Ae'e— 1)]

Differentiating with respect to €

ai[eTCe —Ae'e— 1)] =2Ce—-21e =0
e
Hence: Ce= Ae

The maximization problem is simply the eigenvalue problem for C.

In geophysical applications, these eigenvectors are usually called EOFs
(Empirical Orthogonal functions).



C is a symmetric matrix, consequently — by the spectral theorem - it
has a complete orthonormal set of eigenvectors. The EOFs are an
orthonormal basis for R" :

X(1) = icn(t)en,

where ¢, (1) =(x(t),e, )



EOF 1
° °
°
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°
° 0
o o
o
° ° ° ° °
o° ° o o
0 ° °
o ° °
0o ° °
° ? °

The first EOF is
the direction
along wich the
variance of the
sample is
maximum.

The second EOF
is the direction
along wich the
variance is
maximum, under
constraint of
orthogonality with
the first, and so
forth.



PROPERTIES

an important property is that for any given truncation 7<N:

x(t)= D¢ (H)e +R

the EOFs are the linear basis that minimises the residual R, given the chosen
norm.

This is very efficient for data compression.

What about the eigenvalues A ?

T . T .
e Ce =e Ae =4

So the n-th eigenvalue is the variance explained in the direction of the n-th EOF.



Since the total variance of X(?) is
N

Var(x(t))= Y A,
n=1

One can express the percent of variance explained by an EOF as




12 4
10 4

-

-
s s L A A ' 4 A A A A A
" 0 5 10 15 15 10 8 o B 0 15
y1 y?

A A A A " A " A
10 a8 & 4 ] 0 - 10
ye




Example 1:
Principal component
analysis of human faces

Digitalized photos of the
faces of students of the
university of Kent. Eigerface 1 Mean - 2
It allows to compute the
« mean face » and the
first EOFs of faces.

Credit; C.J. Solomon and J.P. Brooker,
Univ. of Kent:
/www.ukc.ac.uk/physical -sciences/aog/facereco




« Truncating a face »

Reconstruction of a vector by projection on the EOF
basis. The effect of the truncation.

Criginal 20 byte code 40 yte code

Google:

“faces principal
component analysis”

- A lot of fun stuff-




Figure |. Analysis of face components. From left
to right, the first three image components
resulting from a principal components analysis,
illustrated by subtracting (top row) and adding
(bottom row) the component to the average face
(although note that the sign of the change is
arbitrary). These early components are largely
dominated by lighting and hair effects, but note
that the latter strongly codes face gender.

Figure Il. Analysis of face shape. From left to
right, the first two and the ninth shape
components, illustrated by subtracting (top row)
and adding (bottom row) the component to the
shape of the average shape-free face. The first
codes head size, along with an element of face
gender (women in this set have smaller heads,
even after normalizing for pupil centres). The
ninth is included because it clearly captures
another aspect of sex differences.

Peter J.B. Hancock, Vicki Bruce, A.Mike Burton. Recognition of unfamiliar faces. Trends in Cognitive Sciences,
Volume 4, Issue 9, 1 September 2000, Pages 330-337



The problem of maximizing the variance is equivalent to the problem of finding
the direction € having the largest projection on the data sample. Or

alternatively, of finding the straight line of smallest distance (given a definition
of distance) from all the data sample.

In fact, we can write the mean square projection:

(e’ Mx)? =e” Mxx" Me = e’ MCMe

Which is equivalent to the variance definition of before for the canonic metric,
i.e. for M equal to the identity.

We can reformulate for a general metric the EOF formula. The maximization
problem becomes:

ai[eTMCMe ~Me"Me—-1)|=2MCMe—2AMe =0,
e



Hence: | CMe = Ae. | Generalized eigenvalue problem

M can be the metric matrix of the canonical norm, or any other norm.

The EOFs do depend on the choice of a norm.




Area-weighting norm

A useful norm is the area-weighting norm, used when the data analysed are
represented on a lat-lon regular grid.

[ — — m— m— m— m— m— — — ———
30 é\fJCW 80% 70% B0% SO% 40% 30°% 20% 10% 0° 10° 20°E 30°E



In this case, the scalar product is the the area integral of the product of two
fields. In the discrete approximation it becomes the following sum. It measures
« how much two fields are similar ».

2n I N

<x,y> = j J. Xy R* cos6O dOd ). = Rzzxnyn cosf =
0 —m n

=1

=x' My.

Where M is the metric defined as follows:

(COSQI 0 0 0 )
0 cos6, :
M=R? O cos 0,
' 0
. 0 ... 0 cosO )



Just a trick

There is a trick to solve the eigenvalue problem in the case of this norm:

We can make the variable change x’ =mx, where M=mm. This way, the
eigenvector of C'=x'x" are the eigenvector of CM, multiplied by m.

Proof:

C=x'x" =mx(mx)" =mxx'm' =mCm
Hence the eigenvalue problem to be solved is

mCm e = Ae
mCm mm'e = Je
CM m'le=2A m'e

Conclusion: first mutliply all your data by the square root of the cosine of
latitude, then compute the EOFs. After, divide them by the square root of
the cosine of latitude.




Statistical significance of EOFs.

It is complicated, but the standard error of the eigenvectors and of the
eigenvalues can be computed. See:

North et al, 1982: “Sampling Errors in the Estimation of Empirical Orthogonal
Functions®. Mon Wea Rev, 110, 699-706.

There is a « rule of thumb »:

N

AL,
Ae, =~ ——"—e,
A

Where ;Lj is the eigenvalue closest in value to 7Ll.



Example 2
Principal component analysis of 500 mb geopotential height maps

p
Geopotential height is defined by Z(p)= R J Tdlnp
§ Po

Intuitively, it can be seen at the height from the ground at which a pressure p is
found — more or less.

Mean geopotential height at 500mb
I

Remember that o= «W‘"" ""“d”\'l
by geostrophy it | /

IS: 2 : CO\I

fu=g2Z 0Z " I\%‘/ / 200" 30 |
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In this case the time series X(t) is a series of daily meteorological maps projected
on a lat-lon grid of 25x49 points. Hence one can say that x ER" and N=1225.

Example of X(?) for a given day

And subtracting the mean X(f) — X

geopotential heigh
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fraction of variance explained

0.25

02

°
&

o

0.05

And here are the EOFs

Eigenvalues spectrum, normalized by the total variance

99.3 %

5 10 15 20 25 30 35 40
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And the eigenvalues spectrum



Normalization of EOFs

EOFs are normalized, but sometimes one can visualize the amount of
variance explained in the direction of an EOF by multiplying it by the
correspondent eignevalue: e ' = ﬂ,nen

In this case, the Principal Components have variance 1

x(t)=Y.c (e



Truncating a map

13/01/2001 - 5 EOFs 13/01/2001 — 10 EOFs
B0°N [y — e — ) — BON . — — — —
7 { < . € < 7L o < /A
- . -

~100

Reconstruction of a
given vector of the time
series, or also of a given
map, on a truncated e i pseons
series of EOFs =Yz
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PCA has many names, according to application.

Depending on the field of application, it is also named the
discrete Karhunen-Loéve transform (KLT), the Hotelling
transform in multivariate quality control, proper
orthogonal decomposition (POD) in turbulence, singular
value decomposition (SVD) of X, eigenvalue
decomposition (EVD) of X"X in linear algebra, Factor
analysis in social sciences, Eckart-Young Theorem in
psychometrics, Schmidt-Mirsky theorem, Empirical
Orthogonal Functions (EOF) in meteorological science,
Empirical Eigenfunction Decomposition, Empirical
Component Analysis, Quasiharmonic Modes, Spectral
Decomposition in noise and vibration, and Empirical
Modal Analysis in structural dynamics.

[Wikipedia « Principal component analysis »]

Karl Pearson
(1857 — 1936)

Ed Lorenz
(1917 — 2008)



Physical Interpretation

The EOFs are a statistical construct, so they cannot a priori be linked to a
given physical mechanism. They are the signature of the dynamics of a

given physical system. The physical interpretation is done a posteriori by
the user. Sometimes it is evident, sometimes not.

In the following we will see two examples of physical phenomena, or better of
the EOF signatures of two physical phenomena:

1) The North Atlantic Oscillation (NAO)
2) The EI Nino Southern Oscillation (ENSO)



Example 1: MANOLO™S
The North Atlantic Oscillation = B —

The first EOF of geopotential height is
very well known to meteorologists. It is
the sign of a phenomenon so
important in the North Atlantic region,
that it was given a name: NAO.

It has a dipolar structure and represents an anticorrelation between the Greenland
ridge and the Acgores anticyclon.

EOF n. 1, the NAO
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IMPACTS
ASSOCIATED
WITHA

POSITIVE
NAO YEAR.

NORTHEASTERN US
Increased temperature
resalts in decroosed
namber of snow days

NORTH SEA I
Increased wave height
affects safety of oil rigs I
and their operators
l In the late 16th century, the missionary Hans Egede
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N , \\\ forth bety Scandinavia and Greenland,
2 R 7 Ps‘\\\‘_ ",‘- recorded in his journal:
I et oy
In Greenland, all winters are severe, yet
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As we now know, this east-west
temperature see-saw was dueto
changes in the north-south contrast
in sea level pressure over the North |

Atlantic Ocean, with low pressure in
the north near Iceland and high )
pressure in the south near the Azores.
The pressure contrast drives surface
winds and wintertime storms from
west to east across the North Atlantic.
Variations in the p gradient affect
the winds and storm tracks, thereby
Itering sea surface temp , air
p and precipitation. The

L4 L

impacts of this cli h ’

reach as far eastward as central Siberia

\

and the Medi thward to West Africa, westward to North America

and extend throughout the entire Arctic region. These ch in

.

and its associated impacts are known as the North Atlantic Oscilla

P P
tion (NAQ).

IMPACTS
ASSOCIATED
WITHA

NEGATIVE
NAO YEAR.

TROPICAL ATLANTIC/
GULF COAST
Warmer sea surface
temperatures couse
increases in number and
strength of hurricanes

I EASTERN LONG ISLAND
Decreased “brown tide™
events increase scallop

harvests

PORTUGAL & SPAIN
Increased grape and
olive barvests

TURKEY
Increased precipitation
and streamflow in the
Tigris-Euphrates
River Basin



THE The NAO is a large-scale see-saw in pheric mass b the subtropical
high located near the Azores and the sub-polar low near Iceland. An mdex can be

N 0 RTH derived that tracks the behavior of the NAD through time. The index shows both
high frequency and low frequency variability. In the later portion of the record

there is a positive trend, steadily increasing with time. The high and low frequency
OSCILLATION

variability of the NAO is believed to be related to natural variations in the

NAO §

ring the winte
ugh March)

NATURAL VARIABILITY
NAO & the Atlantic Ocean

The NAQ is the dominant mede of winter climate variability in the North Atlantic region. The corresponding index varies from
year to year, but also exhibits o tendency to remain in a positive or negative phase for intervals lasting several years (see red
and blue sections of the NAQ index above).

The characteristic time scale of atmospheric circulation anomalies are only on the order of weeks, However, the ocean, with
its large capacity to absorb heat, has significant long-term memory, and may set the pace for decadal variations in the NAQ.
Ocean currents have the ability to propogate temperature anomalies across the Atlantic, which may influence the dynamics
of the overlying atmosphere. As a result, some scientists believe that decadal variations in the NAQ are due to 'two-way'
communication between the acean and atmesphere. Other scientists have suggested that the oceanic variability is merely
the integrated response of the ocean to high frequency variability in the atmosphere. Another hypothesis is that the NAQ
might be influenced by variability in the tropical Atlantic Ocean. Once the interactions between the ocean, atmosphere, and
land are more clearly understood, it may be possible to forecast year-ta-year changes in the NAQ.

climate system, while the trend vntnened over the last 30 years may be euud by
anthropogenic impacts such as ozone d ion and i d €0, emi One
of the fundamental questions driving NAO related research is:

How do these two influences, natural climate variability and
global warming, interact?

Index

ANTHROPOGENIC CHANGE
NAO & Global Warming

Quver the past thirty years, the NAQ has steadily strengthened, rising from its low index state in the 1960s to a historic
maximum in the early 1990s. This trend accounts for a significant portion of Northern Hemisphere wintertime temperature
increase over Eurasia, a major component of the recent warming. Consegquently, the NAO has made its way into the
global warming debate.

Mare recently, scientists became aware of a connection between variations in temperature at the earth’s surface and the
strength of the stratospheric winter vartex, located about 60 km above the earth’s surface. Changes in stratospheric
circulation can be forced by several different mechanisms including ozone depletion, voleanic dust, and C0. Rising C0 2
concentrations cool and strengthen the stratospheric winter vortex which translates into stronger surface winds. £nhanced
surface westerly winds are consistent with a positive NAD index, These changes, which modulate the temperature over
narthern urasia and America, are sometimes referred to as the Arctic Oscillation.



Human Impacts

ENERGY
PRODUCTION
& CONSUMPTION

US HYDROPOWER PRODUCTION

In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces
more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million
cansumers. Hydropower accounts for over 90% of all electricity that comes from renewable
resources (such as solar, geothermal, wind and biomass).

A primary goal of reservoir operators at hydropower facilities is optimizing flood protection vs.
energy generation. If reservoir operators under-

estimate flood volume, the reservoir system NORWAY

will be unable to fully regulate flow. Asa Annual Haating Ol Consumption

~————Euphrates River Run

HYDROLOGY &
WATER RESOURCE
MANAGMENT

Freshwater constitutes only ~2.5% of the total volume of water on earth, and two-thirds of it is
trapped in glacial ice. Only 0.77% of freshwater is held in places more accessible to humans
such as aquifers, lakes, rivers, and the atmosphere. River runoff is the most accessible source
and accounts for much of the water used for irrigation agriculture, industry, and hydropower
generation. New dam construction has the potential to increase accessible runoff by ~10%
over the next 30 years, however population is projected to increase by more than 45% during
that period. As a result humans will became increasingly sensitive to natural variations in
precipitation and river runoff.

Perhaps the most sensitive of all regions is the
Middle East, where usable freshwater is already
scarce. With population increasing by 3.2% each

result, water must be spilled over inta spillways.

Environmental damage due to flooding and - _LI. _III_'l. =
financial loss due to decreased generating § L r -l L
capacity result. The link between a positive The NAQ Indkic

NAO and increased East Coast precipitation L

suggests that reservoir operators in this region
could gain from knowing more about the NAD,
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ENERGY CONSUMPTION AND
PRODUCTION IN NORWAY
AND THE NAO _{_.,,
The demand for heating oil in Norway clearly
shows human sensitivity to changes in the NAQ. ‘5 o 'l =~ "I
Cooler winters and a generally negative NAD
prevailed during the late 1970's resulting in a

iEE N

year and irrigation proctices consuming upwards
of 80% of available water supply, water is a key
variable affecting regional public health and
political stability. Much of the current focus in Middle
Eastern water policy has been the environmental and
socio-economic impaocts associated with increased
damming along the Tigris-Euphrates River system.

Turkey, because it has the good fortune of being
situated at the headwaters of the Tigris-Euphrates
River system, can literally turn off the supply of
water to its downstream neighbors and has
threatened to do so an accasion. For example, when
the Ataturk Dam was completed in 1990, Turkey

greater demand for heating oil. Things changed
in the early 1980's as the NAD index switched to
@ positive phase and Norway became warmer, resulting in decreased demand for heating oil.
These changes in demand vary by 10-15% of the average demand between 1970 - 1995,

Norway is the world's sixth largest hydropower producer, and the largest producer of hydropower in
Europe. Annual winter precipitation in Norway can be thought of as a surrogate for streamflow and
hence hydropower generation. Between 1980 ond 1993, a period of increasingly positive NAD years,
precipitation was higher than normal, resulting in increased water inflow for power generation.

stopped the flow of the Euphrates entirely for one
month, leaving Iraq and Syria in considerable distress.

JTFMAMIT JASONTD

However natural climate variability, which has no
political alliances, can be attributed ta variations in Turkish precipitation and Euphrates River
runoff and is linked to changes in the NAQ, Even the recent trend in the NAO index can be seen in
historical precipitation data; with droughts occurring in Turkey during the 1980s and the early
1990s ond wet conditions generally occurring during the 1960s and the late 1970s.
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Monthly averages for January 2015 strong and persistent Positive NAO
(credit: http://iridl.Ideo.columbia.edu/)
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Wirder NAD index, 1854-1995
T T

NAO variability

Analysing the time series X(1) we can
see that the NAO has many time scales
of variability. £
T30 1880 1900 1920 1940 1980 1980 2000
year
NAO index (Dec-Mar) 1864-1996
— I.ITD'..I spaclium
Its spectrum shows power at all T Secont

frequencies and is compatible with a red
noise process. It doesn’t really show
any signficant peaks (still debated).

000 010 020 030 040 050
freq (1/yr)



NAO and Water Resources in Turkey
and the Middle East

A “ ‘ Precipitation in Turkey is well
= -\ correlated with the NAO.

As a result spring stream flow
Euphrates River Runott in the Euphrates River varies
by about 50% with the NAO.

4000
[maaec]

An upward trend in the NAO
will lead to drought
conditions in the Middle
East.
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Example 2:

EOFs of Sea Surface Temperatures. Equatorial Pacific ocean.

Mutivariate ENSO index (MEI), source NOAA

EOF 1 (42. % Var)

30N »x e
25N RN g
20N , e

140E  160E 1280  160W  140W  120W  100W  80W

EOF 2 (11. % Var)

ON : , -
. | LIV

1985 1940 1995 2000
PC 1 (solid) and PC 2 (dashed)

140E  160E 180 160W 140W 120W 100W  SOW

[
r

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

NALO O aNw
OO LONOOLaUmOOaOn



Normal Conditions

- - * Convective Loop

- e -

Equator

Dynamical mechanisms of
ENSO (EI Nifio Southern

- Oscillation).

Te EOFs are often the sign
120°E sow of a physical mechanisms

creating the variability, but
it is not necessarily so.
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La Nina Conditions December 19398
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Normal Conditions December 1983

LA NINA CONDITIONS
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El Nino Conditions December 1997
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WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY
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Impacts of
1983 EIl Nino

1 Australia-Drought and bush fires

2 Indonesia, Philippines-Crops fail, starvation follows
3 India, Sri Lanka-Drought,fresh water shortages

4 Tahiti- tropical cyclones

5 South America-Fish industry devastated

6 Across the Pacific-Coral reefs die

7 Colorado River basin-Flooding, mud slides

8 Gulf states-Downpours cause death, property damage
9 Peru, Ecuador-Floods, landslides

10 Southern Africa-Drought, disease, malnutrition






EXERCISE

Get the daily 500hPa geopotential height data for the Euro-Atlantic region in winter
(December-January-February) from the course webpage and compute the EOFs
with area-weighting norm.

Roadmap:

1)Read data in (command Dataset of module netCDF4) (Test1: Plot the map of a
given date)

2)Compute the time mean of the data (Test2: plot the time mean on a map)
3)Subtract the mean to each data field (Test3: plot the anomaly map of the same
day as above)

4)Change the shape of data from grid to column vector (command reshape)
5)Define weight as cosine of latitude

6)Multiply data by weight

7)Compute covariance matrix

8) Diagonalize covariance matrix

9) Postprocess data (divide by weight, reshape)

10) Plot eigenvalue spectrum

11) Plot EOFs , save EOFs

Use the python function (cylmap.py) for tracing geophysical maps. You should put it
in the correct directory.



