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.Lesson 4.
Principal Component Analysis



Reminders: regression and correlation 
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a) xi yi − axi − b( )∑ = 0

b) yi − axi − b( )∑ = 0
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∑ − Nb
i=1
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∑ = 0 ⇒ b = y − ax 

We take the derivative with respect to a and 
b and we obtain the two conditions: 

Condition b) gives:
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a) yixi − axi
2 − y xi − ax xi( )

i=1
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∑ = ′ y i ′ x i − a ′ x i
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i=1
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Substituting b) into a) gives:

Where we have introduced the definitions :

� 

xi = x + ′ x , yi = y + ′ y .

Hence
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a =
′ x i ′ y i

i=1

N

∑

′ x i
2

i=1
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∑
b = y − ax 

Regression



How good is the regression?

Introducing the error

� 

yi
* = yi − ˆ y i We can write

� 

yi = axi + b + yi
*

And the variance of y becomes:

� 

′ y 2 = a2 ′ x 2 + y*2 ⇒
a2 ′ x 2 + y*2

′ y 2
=1 Explained variance + unexplained variance = 1

The regression is not perfect:

� 

ˆ y i = axi + b ≠ yi

Substituting the value of a found above we find:

� 

a2 ′ x i
2

′ y i
2

=
′ x ′ y ( )2
′ x 2 ′ y 2

= r2, r = ′ x ′ y 
σxσy

Is the correlation coefficient

� 

r2 =
Explained Variance

Total Variance
; 1− r2 =

Unexplained Variance
Total Variance



A geophysical map is a vector belonging to Nℜ

How big is N??

Atmosphere: 1045

Weather / Climate models: 109-10



Analysing x(t)

You are now familiar with scalar time series 
statistics. Mean, variance, correlation, 
spectra, etc.

What happens with vector time series?

The mean is easy. Let’s suppose 

But what takes the place of variance?

The covariance matrix: � 

x = 0

� 

xxT

1D

3D

2D



C gives the variance of the sample in any given direction in phase 
space. So if e is a unitary vector,

eTCe

is the variance in the direction e.



−10
−8

−6
−4

−2
0

2
4

6
8

10

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

� 

σ2(e) = eTCe
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Reminder: Euclidean spaces

Norms, scalar product, distance, bases….

€ 

ℜ3



You are familiar with the cartesian coordinate system in 3d. 
A vector                can be represented by its components:
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is the euclidean basis, or canonical basis (or 
standard, or natural)

You also know what is the length of a vector:

x = x1
2 + x2

2 + x3
2



Generalising to N dimensions
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EXAMPLE

A grid can be seen as a linear 
basis of the vector space Nℜ
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x(t) = ci(t)  e i
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∑
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x∈ℜN ,  N = 20
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Etc…



Do you know any other basis?

Yes you do: The Fourier basis.

1D

2D



In order to introduce a geometry, we need to have a concept of angles and 
distances.

This is done by introducing a scalar product. The standard scalar product is

 

x• y = x,y = xiyi
i=1

N

∑ = 2xycosϑ

or, using a matrix notation:

x,y = xTy = x1 x2 ! xN−1 xN( )
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A scalar product induces a norm in a standard way, which generalizes the 
idea of length:

� 

x 2 = x,x = xi
2

i=1

N

∑

This in turn induces a definition of distance:

� 

d(x,y) = x − y = (xi − yi)
2

i=1

N

∑



Scalar products, norms and distances are in no way unique. There are several 
possible choices, given that they satisfy the definition (ask your friends at the 
math department, or see a geometry handbook for that….)

Exemples of other norms:

� 

x = xi
i=1

N

∑

d(x,y) = xi − yi
i=1

N

∑

The “Manhattan” norm, which induces the “taxi” distance:
24/10/10 15:54manhattan - Google Maps

Pagina 1 di 1http://maps.google.com/maps?f=q&source=s_q&hl=it&geocode=&q…York&ll=40.76122,-73.969874&spn=0.010499,0.015299&z=16&pw=2

 Stampa

Indirizzo Manhattan

New York

Note



� 

x p = xi
p

i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
p

The general case: the p norm

The           norm, or the sup or Chebyshev norm, which induces the 
chessboard distance: 

p = ∞

x ∞ = sup xi



A “statistically interesting” norm (Mahalanobis norm):

If C is diagonal, the distance becomes:

Which means that each component is normalized by its own variance. It is 

useful in case of vectors of heterogeneous observations.

� 

x 2 = x,C−1x

� 

d(x,y) =
(xi − yi)

2

σi
2

i=1

N

∑
Prashanta Mahalanobis

(1893 –1972)



� 

x a
2 = x,x a

x b
2 = x,x b

x,x b = x,Mbx a

Given two norms, there is always a matrix, called Metric Matrix, that 
transforms one norm into the other.



Spectral theorem

Ask your mathematician friends for all the nice hypotheses and symbols. 
Here, just a special simple result is given.

All the matrices for which this is true:

have eigenvectors that define an orthonormal basis for the vector space.
In other words, all symmetric (self-adjoint) matrices (            ) have an 
ortonormal complete set of eigenvectors.

In yet other words, for any symmetric matrix L (any self-adjoint operator), 
there exist two orthogonal matrices and a diagonal matrix for which:

We’ll encounter this later on…

� 

y,Lx = Ly,x

L = LT

� 

D = M −1LM = MTLM



A geophysical map is a vector belonging to Nℜ

How big is N??

Atmosphere: 1045

Weather / Climate models: 109-10



Analysing x(t)

You  are now familiar with scalar time series 
statistics. Mean, variance, correlation, 
spectra, etc.

What happens with vector time series?

The mean is easy. Let’s suppose 

But what takes the place of variance?

The covariance matrix: � 

x = 0

� 

xxT



C gives the variance of the sample in any given direction in phase 
space. So if e is a unitary vector,

� 

eTCe

is the variance in the direction e.
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Principal Component Analysis



Problem: find the direction e that maximises the variance of a sample 
of vectors.

It is a constrained
Maximization problem.
We want to find the 
maximum:

Submitted to the 
constraint:

Max(eTCe)

� 

e 2 = eTe =1



The problem can be solved via the Lagrange multiplyer λ. 
The maximum to be found is:

� 

Max eTCe − λ(eTe −1)[ ]
Differentiating with respect to e

� 

∂
∂e
eTCe − λ(eTe −1)[ ] = 2Ce − 2λe = 0

Hence: Ce = λe
The maximization problem is simply the eigenvalue problem for C.

In geophysical applications, these eigenvectors are usually called EOFs 
(Empirical Orthogonal functions).



C is a symmetric matrix, consequently – by the spectral theorem - it 
has a complete orthonormal set of eigenvectors. The EOFs are an 
orthonormal basis for 

x(t) = cn (t)en
n=1

N

∑ ,

where cn (t) = x(t),en

:Nℜ



The first EOF is 
the direction 
along wich the 
variance of the 
sample is 
maximum. 
The second EOF 
is the direction 
along wich the 
variance is 
maximum, under 
constraint of 
orthogonality with 
the first, and so 
forth.



PROPERTIES

an important property is that for any given truncation T<N:

the EOFs are the linear basis that minimises the residual R, given the chosen 
norm.

This is very efficient for data compression.

What about the eigenvalues     ?

� 

x(t) = cn (t)en
n=1

T

∑ + R

nλ

� 

en
TCen = en

Tλnen = λn
So the n-th eigenvalue is the variance explained in the direction of the n-th EOF.



Since the total variance of            is : x(t)

Var(x(t)) = λn
n=1

N

∑

One can express the percent of variance explained by an EOF as 
λi

λn
n=1

N

∑



y3

y2

y1



Example 1:
Principal  component 
analysis of human faces

Credit:  C.J. Solomon and J.P. Brooker, 
Univ. of Kent:
/www.ukc.ac.uk/physical -sciences/aog/facereco

Digitalized photos of the 
faces of students of the 
university of Kent. 
It allows to compute the 
« mean face » and the 
first EOFs of faces.

Mean

1

2

Mean – E1 Mean + E1

Mean - E2 Mean + E2

E1 - E2 E1 + E2



« Truncating a face »

Reconstruction of a vector by projection on the EOF 
basis. The effect of the truncation.

Google: 

“faces principal 
component analysis” 

- A lot of fun stuff-



Figure I. Analysis of face components. From left 
to right, the first three image components 
resulting from a principal components analysis, 
illustrated by subtracting (top row) and adding 
(bottom row) the component to the average face 
(although note that the sign of the change is 
arbitrary). These early components are largely 
dominated by lighting and hair effects, but note 
that the latter strongly codes face gender.

Figure II. Analysis of face shape. From left to 
right, the first two and the ninth shape 
components, illustrated by subtracting (top row) 
and adding (bottom row) the component to the 
shape of the average shape-free face. The first 
codes head size, along with an element of face 
gender (women in this set have smaller heads, 
even after normalizing for pupil centres). The 
ninth is included because it clearly captures 
another aspect of sex differences.

Peter J.B. Hancock, Vicki Bruce, A.Mike Burton. Recognition of unfamiliar faces. Trends in Cognitive Sciences, 
Volume 4, Issue 9, 1 September 2000, Pages 330–337



the direction e having the largest projection on the data sample. Or 
alternatively, of finding the straight line of smallest distance (given a definition 
of distance) from all the data sample.

In fact, we can write the mean square projection:

� 

(eT Mx)2 = eT MxxT Me = eT MCMe

Which is equivalent to the variance definition of before for the canonic metric, 
i.e. for  M equal to the identity.
We can reformulate for a general metric the EOF formula. The maximization 
problem becomes:

� 

∂
∂e
eT MCM e − λ(eT M e −1)[ ] = 2MCM e − 2λM e = 0,

The problem of maximizing the variance is equivalent to the problem of finding



� 

CMe = λe.Hence:

M can be the metric matrix of the canonical norm, or any other norm. 

The EOFs do depend on the choice of a norm.

Generalized eigenvalue problem



A useful norm is the area-weighting norm, used when the data analysed are 
represented on a lat-lon regular grid. 

Area-weighting norm



  

� 

M = R2

cosθ1 0 0 … 0
0 cosθ2 !
0 cosθ3 !
! " 0
0 … … 0 cosθN
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⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

x, y = xy R2

−π

π

∫
0

2π

∫ cosθ dθdλ = R2 xnyn cosθn
n=1

N

∑ =

= xTMy.

Where M is the metric defined as follows:

In this case, the scalar product is the the area integral of the product of two 
fields. In the discrete approximation it becomes the following sum. It measures 
« how much two fields are similar ».



Just a trick

There is a trick to solve the eigenvalue problem in the case of this norm: 

We can make the variable change x’=mx, where M=mm. This way, the 
eigenvector of               are the eigenvector of CM, multiplied by m.

Proof:

€ 

C'= x'x'T =mx(mx)T =mxxTmT =mCm€ 

C'= x'x'T

€ 

mCm e = λe
mCm  mm−1e = λe
CM  m−1e = λ  m−1e

Hence the eigenvalue problem to be solved is

Conclusion: first mutliply all your data by the square root of the cosine of 
latitude, then compute the EOFs. After, divide them by the square root of 
the cosine of latitude. 



Statistical significance of EOFs.

It is complicated, but the standard error of the eigenvectors and of the 

eigenvalues can be computed. See: 

North et al, 1982: “Sampling Errors in the Estimation of Empirical Orthogonal 

Functions“. Mon Wea Rev, 110, 699–706.

There is a « rule of thumb »:

Δλi ≈
2
N
λi

Δei ≈
Δλi

λi − λ j

e j

Where        is the  eigenvalue closest in value to λ j λi



Example 2
Principal component analysis of 500 mb geopotential height maps

Geopotential height is defined by Z(p) = R
g

T d ln p
p0

p

∫
Intuitively, it can be seen at the height from the ground at which a pressure p is 
found – more or less. 

Remember that 
by geostrophy it 
is:

� 

fu = g
∂Z
∂y

fv = −g
∂Z
∂x



In this case the time series x(t) is a series of daily meteorological maps projected 
on a lat-lon grid of 25x49 points. Hence one can say that               and N=1225.  

Example of x(t) for a given day

And subtracting the mean 

� 

x(t) − x 

€ 

x∈ℜN



And here are the EOFs

And the eigenvalues spectrum



EOFs are normalized, but sometimes one can visualize the amount of 
variance explained in the direction of an EOF by multiplying it by the 
correspondent eignevalue: 

In this case, the Principal Components have variance 1

Normalization of EOFs

en ' = λnen

� 

x(t) = cn '(t)en
n=1

N

∑ '



Truncating a map

Reconstruction of a 
given vector of the time 
series, or also of a given 
map, on a truncated 
series of EOFs



PCA has many names, according to application.

Depending on the field of application, it is also named the 
discrete Karhunen–Loève transform (KLT), the Hotelling 
transform in multivariate quality control, proper 
orthogonal decomposition (POD) in turbulence, singular 
value decomposition (SVD) of X, eigenvalue 
decomposition (EVD) of XTX in linear algebra, Factor 
analysis in social sciences, Eckart-Young Theorem in 
psychometrics, Schmidt-Mirsky theorem, Empirical 
Orthogonal Functions (EOF) in meteorological science, 
Empirical Eigenfunction Decomposition, Empirical 
Component Analysis, Quasiharmonic Modes, Spectral 
Decomposition in noise and vibration, and Empirical 
Modal Analysis in structural dynamics.

[Wikipedia « Principal component analysis »]

Karl Pearson 
(1857 – 1936)

Ed Lorenz 
(1917 – 2008)



Physical Interpretation

The EOFs are a statistical construct, so they cannot a priori be linked to a 
given physical mechanism. They are the signature of the dynamics of a 
given physical system. The physical interpretation is done a posteriori by 
the user. Sometimes it is evident, sometimes not.

In the following we will see two examples of physical phenomena, or better of 
the EOF signatures of two physical phenomena:

1) The North Atlantic Oscillation (NAO)
2) The El Niño Southern Oscillation (ENSO)



The first EOF of geopotential height is 
very well known to meteorologists. It is 
the sign of a phenomenon so 
important in the North Atlantic region, 
that it was given a name: NAO.

Example 1: 
The North Atlantic Oscillation

It has a dipolar structure and represents an anticorrelation between the Greenland 
ridge and the Açores anticyclon.













Monthly averages for January 2015 strong and persistent Positive NAO
(credit: http://iridl.ldeo.columbia.edu/)
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NAO variability

Analysing the time series x(t) we can 
see that the NAO has many time scales 
of variability.

Its spectrum shows power at all 
frequencies and is compatible with a red 
noise process. It doesn’t really show 
any signficant peaks (still debated).  





Example 2:

EOFs of Sea Surface Temperatures. Equatorial Pacific ocean.
Mutivariate ENSO index (MEI), source NOAA



Dynamical mechanisms of 
ENSO (El Niño Southern 
Oscillation).

Te EOFs are often the sign 
of a physical mechanisms 
creating the variability, but 
it is not necessarily so.



TAO data

Reynolds SSTdata

NORMAL CONDITIONS



TAO data

Reynolds SSTdata

LA NIÑA CONDITIONS



Reynolds SSTdata

TAO data

EL NIÑO CONDITIONS





1 Australia-Drought and bush fires
2 Indonesia, Philippines-Crops fail, starvation follows
3 India, Sri Lanka-Drought,fresh water shortages
4 Tahiti- tropical cyclones
5 South America-Fish industry devastated
6 Across the Pacific-Coral reefs die
7 Colorado River basin-Flooding, mud slides
8 Gulf states-Downpours cause death, property damage
9 Peru, Ecuador-Floods, landslides
10 Southern Africa-Drought, disease, malnutrition

Impacts of 
1983 El Niño 





EXERCISE

Get the daily 500hPa geopotential height data for the Euro-Atlantic region in winter 
(December-January-February) from the course webpage and compute the EOFs 
with area-weighting norm.

Roadmap:
1) Read data in (command Dataset of module netCDF4) (Test1: Plot the map of a 
given date)
2) Compute the time mean of the data (Test2: plot the time mean on a map)
3) Subtract the mean to each data field (Test3: plot the anomaly map of the same 
day as above)
4) Change the shape of data from grid to column vector (command reshape)
5) Define weight as cosine of latitude
6) Multiply data by square root of weight
7) Compute covariance matrix
8) Diagonalize covariance matrix
9) Postprocess data (divide by sqrt of weight, reshape)
10) Plot eigenvalue spectrum
11) Plot EOFs , save EOFs

Use the python function (cylmap.py) for tracing geophysical maps. You should put it 
in the correct directory.


