Fabio D’Andrea
LMD — 4¢ étage
0144322231

dandrea@Imd.ens.fr

http://www.Imd.ens.fr/dandrea/TEACH




Program

18/1Elementary statistics — 1
25/1 Elementary statistics - 2
8/2 Exercises — Computer room

15/2 Fourier Analysis -1

22/2Fourier Analysis -2, stochastic processes
1/3 Exercises — Computer room

8/3 Exercises — Computer room

22/3 Principal component analysis -1
29/3Principal component analysis -2

5/4 Exercises — Computer room
12/4 Exercises — Computer room

19/4 Cluster analysis
2644 Exercises—GComputerroom

10/5 Exercises — Computer room
17/5 Principal component analysis: Complements
7/6 Exam



1) Maximum Covariance Analysis:
application of the PCA to the case of two vector time series. In the same way as the EOF
generalized the concept of variance to the case of a vector data, this generalizes the

concept of covariance of two timeseries.

2) Rotation of EOF.
Interpretation of the EOF patterns

3) PCA in the time domain: SSA and Extended EOFs.



Are two timeseries correlated?

Darwin SLP NINO3 SST 1882 - 1996
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Scaled Values

In geophysics, sometimes one
wonders whether two timeseries are
linked.

North Atlantic Subpolar Gyre SST and Hurricane ACE
(1-2-3-2-1 Smoothing)
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NAQindex
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Temperature in Engalnd and NAO
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One way to put it is to estimate if one series
can be obtained by linear transformation from
the other: y,=ax,+b

(yj_axj_b)
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Substituting b) into a) gives:

We want to minimize:

N
S0y -

=1

We take the derivative with respect to a and
b and we obtain the two conditions:

Condition b) gives:

N N

D) Eyi—azxi—Nb=0= b=y-ax

i=1 i=1

S (v v ar? = e — e = S g N
a) ;(yl'xi ax; = yx, axxl) E(y’x’ ax’) Exiyi

i=1

Where we have introduced the definitions :

— ! — !
X, =X+x,y,=Y+Yy.

Regression




How good is the regression?

The regression is not perfect: yi=ax;+b=y,

Introducing the error ¥, =¥, ~Y; We can write y, =ax,+b+y,
And the variance of y becomes:

2

2 12 *

2 12 * . . . .
y =ax +Yy = — =1 Explalned variance + unexplalned variance =1

Y

Substituting the value of a found above we find:

2
2.2 (x’y’) 7 ) o
ax;, _ = 2 = ~Y _Isthe correlation coefficient
b

— T~
\z x'7y 0.0,

22 Explained Variance

-2 Unexplained Variance

Total Variance Total Variance




In PCA one looks for the structure, or vector, that, projected on the data
defined a time series with maximum variance.

For generic norm defined by the metric matrix M we maximized:

(e’ Mx)* = e’ Mxx" Me = e’ MCMe.

This is the variance of the scalar time series eTMX,if X is the vector timeseries

of data, expressed as an array, i.e. an array whose columns are the vectors of
the timeseries at different times.

And remember that the variance of it was exactly equal to A, the higher

xXx'

eigenvalueof — \f

N



We will now generalize the PCA approach.

Suppose we have two timeseries, X and Y, of the measurements of two different

physical variables. The two timeseries don’t need to have the same spatial location
(the grid) but they do have one dimension in common, time. |.e. the measurements
are synchronous.

We want to find the two unit vectors that, each one projected on a timeseries,
maximize the covariance between the two resulting scalar series. Using the canonic
norm, that gives the following constrained maximization problem:

ma X;\; f—Ae'e—1)—uf'f-1)

That uses the lagrange multipliers lambda and mu.

Maximum Covariance Analysis (MCA)



Taking the derivative with respect to e and f one gets

Ped
—f-22e=0
) N

Y)(T

Te—Zuf ZO,OI‘

.

C.f-21e=0

T . . .
C, e—2uf =0,calling C,, the cross-covariance matrix of the two
timeseries.

The two equations can be decoupled by substitution, which gives:
( T _
C,.C. e—4ule=0
T —
C, C f—4uif=0.

Thus, the vectors that we are looking are the eigenvectors of two matrices
that are one the transpose of the other, and share the same eigenvalues.



At this point one can solve the two eigenvalues problems and get the vectors.

But there is a more confortable way to get the solution, by Singular Value
Decomposition

Any rectangular matrix can be decomposed in this way:

A=UxV"

If Aismxn,J ismxmandVisnxn.Y Ismxn, and has non-zero elements only
on its diagonal.

Furthermore, it is:
AA'U =UY?
ATAV =VX?



So e and f are given by the SVD decomposition of ny :
_ T
C.,=ESF

Where E and F’ are the matrices whose columns are all the e and f,

respectively.

What is the meaning of £? What is the covariance cov(e’ X,f'Y) 2

Xy’
U’ Tv =U'UzvV'v =%

> contains the values of the covariances between corresponding projection
timeseries.

0 o,




Two generalizations and a by-product

1)Weighting by the variance: (Canonical Correlation Analysis)
2)Extension to any norm (the ‘weight matrix’)

3) Computing EOFs by SVD.



1) Canonical Correlation Analysis

In CCA we want to find the two vectors that maximixe the projection timeseries
correlation. In this case the maximization problem to solve is:

e'C, f
\/eTCxe f'Cf

max

It can be shown that its solutions are:

[ 1 Ay T

C, C,C, C, e-4ule=0
-1 T -1

C, C, C, nyf—4ulf:O.

It can also be showed that the same result is obtained applying MCA to data that have
been previously projected on the first EOFs, and the PCs are normalized to have
variance 1.



2) Computing MCA under a generic norm.

As in the case of PCA we can write the general problem using the metric matrix M.

Max|e" M .C M £ —Ae' M e—1)—ut" M -1

And the solutions are:

( T

MXnyMnyy e —4,LM£ =0
T

\Mnyy Mxnyf—4,LL7Lf =0.

Note that the result for CCA above is the same as this here, if one takes

1 _
M_=C_ and My = Cy ' In other words, CCA is MCA using the Mahalanobis
norm in the vector spaces of X and Y.



It can also be shown that for diagonal norms the trick of computing the weights by the
change of variable X’ =m,X and y’ =m,y and then applying the inverse of this to the
eigenvectors is still valid.



3) Computing the EOFs by SVD

From the property of the SVD decomposition stated above, we can see that if X is the
array containing the data, the SVD gives:

T
X =EXF".
E are the eigenvectors of XX7, i.e. the EOFs, and 2 contains the square roots of the
eigenvalues of the covariance matrix of X, multiplied by &V, the number of data.

The rows of F' simply contains the PCs.

So to get the eigenvalues of XX7 :




Example 1

Canonical Correlation Analysis of
winter-mean sea level pressure in
the North Atlantic and the winter-
mean precipitations in the Iberian
Peninsula.

Von Storch et al (1993) J. Clim.
The Canonical correlation is 0.75
The modes represent 65% of the

total variance of SLP and 40 of the
variance of the precipitations.

Figure 14.4: First pair of canonical correlation
patterns of the North Atlantic winter mean sea-
level pressure Y and a vector X of seasonal means
of precipitation at a number of Iberian locations

[403].



Example 2

Canonical Correlation Analysis of
winter-mean sea level pressure and
temperature in the North Atlantic
and a few local climatic variables in
Bern.

Gyalistras et al (1994) Clim. Res.

Figure 14.1: First pair of canonical correlation
patterns of Y = (DJF mean SLP, DJF mean
temperature) and a vector X of DJF statistics of
local weather elements at Bern (Switzerland).
Top: The SLP part of the first canonical correlation
pattern for Y.

Middle: The near-surface temperature part of the
first canonical correlation pattern for Y.

Bottom: The canonical correlation pattern for the
local variable X.

Note that the correlation between the correspond-
ing pattern coefficients is negative.

From Gyalistras et al. [152].
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EXAMPLE 3

MCA analysis of the 500mb
geopotential height monthly means
in the Euro-Atlanctic region and the
Sea Surface Temperatures of the
Atlantic.
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Rotation of EOFs

The EOFs are a statistical construct, so they cannot a priori be linked to a
given physical mechanism. They are the signature of the dynamics of a given
physical system. The physical interpretation is done a posteriori by the user.
Sometimes it is evident, sometimes not.

Rotation is a way to:

» alleviate the strong constraints of EOFs, namely orthogonality/uncorrelation
of EOFs/PCs, domain dependence of EOF patterns

* obtain simple structures,

 be able to physically interpret the patterns.



Here one looks for a rotation matrix O to construct the rotated EOFs U
according to:

U=EQ

Where E = [e,, e,, . . . e, ] is the matrix of the leading m EOFs.

The criterion for choosing the m x m rotation matrix Q is what constitutes the
rotation algorithm, which is generally expressed by a minimization or

maximization problem:
max [ (EQ)

With the constraint, for an orthogonal rotation, that Q 1s orthogonal:
T T
Q0 =0 0=1

over all choices of rotation matrices Q. The functional f represents the rotation
criterion.



An example, the VARIMAX criterion:

m

PATINEE DI
PLiUy — U i

k=1 j=1 j=1

(
max|
b -/

Where U=[u, u,, ... u,].
This criterion tends to maximize the spatial variance of each mode, i.e. the
values of the EOFs on the gridpoints tend to approach zero or £1.



Exmaple of VARIMAX rotation.

DJFSLP EOF1 (21%)

EOFs of surface
pressure for DJF in the
Northern Hemisphere.
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VARIMAX rotated EOFs

REOF2 (m=10)

hbhbpao=NWwaNO N0 S

hbbpao—=npwsno~No0S

REOF1(m=20)

~

/

R, N
hbbpio—=pwsno~No0s
NbLRASO=NW RO N DO S

Credits: Abdel Hannachi (http://www.met.rdg.ac.uk/~han/Monitor/eofprimer.pdf)



PCA in the time domain: Singular Spectrum Analysis.

SSA is a method to extract periodicities from very noisy timeseries, or to detect intermittent
spells of periodicities.

Suppose you have a scalar timeseries X , SSA consists in performing Principal Component
Analysis on the vector timeseries Y defined like this.

T
Y, = (Xi—k’Xi—k+1"“’Xi"”’Xi+k—1’Xi+k)
Yis called the “delay” timeseries, with window 2k+1.

The covariance matrix— Y'Y ’(the Toeplitz matrix) is hence diagonalized to obtain time-

EOFs.
The time-EOFs can be seen as typical chunks of time evolutions of length 2k+1.

The delay timeseries Y can be reconstructed by expansion on a few time-EOFs in the usual

way:
T

y;, = Zan £, where the a 's are given by a scalar product in the delay coordinates:
n=1

_ T
an,i _ yn ei



SSA analysis of SOl timeseries

Time series
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(a) EOF1 of DJF SSTA (39.3%)
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Seasonal EOF modes of SST (4 fields per year)
Credit: Wang and An 2005 GRL.






