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Program	



	
1) 	Maximum	Covariance	Analysis:		
	applicaLon	of	the	PCA	to	the	case	of	two	vector	Lme	series.	In	the	same	way	as	the	EOF				
generalized	the	concept	of	variance	to	the	case	of	a	vector	data,	this	generalizes	the		
concept	of	covariance	of	two	Lmeseries.	
	
2)	RotaLon	of	EOF.	
InterpretaLon	of	the	EOF	pa:erns	
	
3)	PCA	in	the	Lme	domain:	SSA	and	Extended	EOFs.	
	
	
	
	



In	geophysics,	someLmes	one	
wonders	whether	two	Lmeseries	are	
linked.		
	

Are	two	0meseries	correlated?	



One	way	to	put	it	is	to	esLmate	if	one	series	
can	be	obtained	by	linear	transformaLon	from	
the	other:		
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We	want	to	minimize:	
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We	take	the	derivaLve	with	respect	to	a	and	
b	and	we	obtain	the	two	condiLons:		

CondiLon	b)	gives:	
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SubsLtuLng	b)	into	a)	gives:	

Where	we	have	introduced	the	definiLons	:	
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xi = x + " x , yi = y + " y .

Hence	
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Regression	



How	good	is	the	regression?	

Introducing	the	error	

€ 

yi
* = yi − ˆ y i We	can	write	
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yi = axi + b + yi
*

And	the	variance	of	y	becomes:	
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" y 2 = a2 " x 2 + y*2 ⇒
a2 " x 2 + y*2

" y 2
=1 Explained	variance	+	unexplained	variance	=	1	

The	regression	is	not	perfect:	
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ˆ y i = axi + b ≠ yi

SubsLtuLng	the	value	of	a	found	above	we	find:	
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Is	the	correlaLon	coefficient	
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r2 =
Explained Variance

Total Variance
; 1− r2 =

Unexplained Variance
Total Variance



In	PCA	one	looks	for	the	structure,	or	vector,	that,	projected	on	the	data		
defined	a	Lme	series	with	maximum	variance.	
	
For		generic	norm	defined	by	the	metric	matrix	M	we	maximized:	
	
	
	
	
This	is	the	variance	of	the	scalar	Lme	series																	if						is	the	vector	Lmeseries	
of	data,	expressed	as	an	array,	i.e.	an	array	whose	columns	are	the	vectors	of	
the	Lmeseries	at	different	Lmes.	
	
And	remember	that	the	variance	of	it	was	exactly	equal	to	λ,	the	higher	
	
	eigenvalue	of		
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We	will	now	generalize	the	PCA	approach.		
	
Suppose	we	have	two	Lmeseries,						and					,	of	the	measurements	of	two	different	
physical	variables.	The	two	Lmeseries	don’t	need	to	have	the	same	spaLal	locaLon	
(the	grid)	but	they	do	have	one	dimension	in	common,	Lme.	I.e.	the	measurements	
are	synchronous.	
	
We	want	to	find	the	two	unit	vectors	that,	each	one	projected	on	a	Lmeseries,	
maximize	the	covariance	between	the	two	resulLng	scalar	series.	Using	the	canonic	
norm,	that	gives	the	following	constrained	maximizaLon	problem:	
	
	
	
	
That	uses	the	lagrange	mulLpliers	lambda	and	mu.	
	
Maximum	Covariance	Analysis	(MCA)	
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Taking	the	derivaLve	with	respect	to	e	and	f one	gets  
 
 
 
 
                                  or 
 
 
 
 
                                 calling         the cross-covariance matrix of the two 
 timeseries. 
 
The two equations can be decoupled by substitution, which gives: 
 
 
 
 
 
Thus, the vectors that we are looking are the eigenvectors of two matrices 
that are one the transpose of the other, and share the same eigenvalues. 
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At	this	point	one	can	solve	the	two	eigenvalues	problems	and	get	the	vectors.	
But	there	is	a	more	confortable	way	to	get	the	soluLon,	by	Singular	Value	
Decomposi0on	
	
Any	rectangular	matrix	can	be	decomposed	in	this	way:	
	
	
	
If							is	m	x	n,						is	m	x	m	and					is	n	x	n.						Is	m	x	n,	and	has	non-zero	elements	only	
on	its	diagonal.	
	
Furthermore,	it	is:	
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So	e	and	f are	given	by	the	SVD	decomposiLon	of         : 
 
 
Where E	and	F are	the	matrices	whose	columns	are	all	the	e	and	f, 
respecLvely.	
	
What	is	the	meaning	of	Σ? What is the covariance                             ? 	
	
		
 
Σ contains the values of the covariances between corresponding projection 
timeseries. 	
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Two	generaliza0ons	and	a	by-product	
	
1) WeighLng	by	the	variance:	(Canonical	CorrelaLon	Analysis)	
2) Extension	to	any	norm	(the	‘weight	matrix’)	
	
3)	CompuLng	EOFs	by	SVD.	



1)  Canonical	Correla0on	Analysis	

In	CCA	we	want	to	find	the	two	vectors	that	maximixe	the	projecLon	Lmeseries	
correlaLon.	In	this	case	the	maximizaLon	problem	to	solve	is:	

	
	
	
	
	
	
It	can	be	shown	that	its	soluLons	are:	
	
	
	
	
	
	
It	can	also	be	showed	that	the	same	result	is	obtained	applying	MCA	to	data	that	have	

been	previously	projected	on	the	first	EOFs,	and	the	PCs	are	normalized	to	have	
variance	1.	
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2)	Compu0ng	MCA	under	a	generic	norm.	
	
As	in	the	case	of	PCA	we	can	write	the	general	problem	using	the	metric	matrix	M. 
 
 
 
 
And	the	soluLons	are:		
	
	
	
	
	
	
Note	that	the	result	for	CCA	above	is	the	same	as	this	here,	if	one	takes		
		
																							and																											In	other	words,	CCA	is	MCA	using	the	Mahalanobis	
norm	in	the	vector	spaces	of	X	and	Y.													
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It	can	also	be	shown	that	for	diagonal	norms	the	trick	of	compuLng	the	weights	by	the	
change	of	variable	x’=mxx and y’=myy and	then	applying	the	inverse	of	this	to	the	
eigenvectors	is	sLll	valid.	
	
	
	
	



3)	Compu0ng	the	EOFs	by	SVD	
	
From	the	property	of	the	SVD	decomposiLon	stated	above,	we	can	see	that	if	X is	the	
array	containing	the	data,	the	SVD	gives:	
 
 
E are	the	eigenvectors	of	XXT , i.e.	the	EOFs,	and	Σ contains	the	square	roots	of	the	
eigenvalues	of	the	covariance	matrix	of	X, mulLplied	by	N, the	number	of	data. 
 
The	rows	of	F simply	contains	the	PCs.	
	
So	to	get	the	eigenvalues	of	XXT  : 
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Example	1	
	
Canonical	CorrelaLon	Analysis	of	
winter-mean	sea	level	pressure	in	
the	North	AtlanLc	and	the	winter-
mean	precipitaLons	in	the	Iberian	
Peninsula.	
	
Von	Storch	et	al	(1993)	J.	Clim.	
	
The	Canonical	correlaLon	is	0.75	
	
The	modes	represent	65%	of	the	
total	variance	of	SLP	and	40	of	the	
variance	of	the	precipitaLons.		



Example	2	
	
Canonical	CorrelaLon	Analysis	of	
winter-mean	sea	level	pressure	and	
temperature	in	the	North	AtlanLc	
and	a	few	local	climaLc	variables	in	
Bern.	
	
Gyalistras	et	al	(1994)	Clim.	Res.	



EXAMPLE	3	
	
MCA	analysis	of	the	500mb	
geopotenLal	height	monthly	means	
in	the	Euro-AtlancLc	region	and	the	
Sea	Surface	Temperatures	of	the	
AtlanLc.	

Z500	

SST	



Czaja	and	Frankignoul	2001,	J.	of	Climate.	



Rotation of EOFs 
 
The EOFs are a statistical construct, so they cannot a priori be linked to a 
given physical mechanism. They are the signature of the dynamics of a given 
physical system. The physical interpretation is done a posteriori by the user. 
Sometimes it is evident, sometimes not.  
 
Rotation is a way to: 
• alleviate the strong constraints of EOFs, namely orthogonality/uncorrelation 
of EOFs/PCs, domain dependence of EOF patterns  
• obtain simple structures, 
• be able to physically interpret the patterns. 
 
 
 



Here one looks for a rotation matrix Q to construct the rotated EOFs U 
according to: 
 
 
Where E = [e1, e2, . . . em] is the matrix of the leading m EOFs.  
The criterion for choosing the m x m rotation matrix Q is what constitutes the 
rotation algorithm, which is generally expressed by a minimization or 
maximization problem: 
 
 
With the constraint, for an orthogonal rotation, that  Q is orthogonal: 
 
 
 
 
 
over all choices of rotation matrices Q. The functional f represents the rotation 
criterion. 
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QQT = QTQ = I



An example, the VARIMAX criterion: 
 
 
 
 
 
 
 
 
Where U = [u1, u2, . . . um] . 
This criterion tends to maximize the spatial variance of each mode, i.e. the 
values of the EOFs on the gridpoints tend to approach zero or ±1. 
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Exmaple of VARIMAX rotation. 

EOFs of surface 
pressure for DJF in the 
Northern Hemisphere. 



VARIMAX rotated EOFs 

Credits: Abdel Hannachi (http://www.met.rdg.ac.uk/~han/Monitor/eofprimer.pdf)  



PCA	in	the	0me	domain:	Singular	Spectrum	Analysis.	
	
SSA	is	a	method	to	extract	periodiciLes	from	very	noisy	Lmeseries,	or	to	detect	intermi:ent	
spells	of	periodiciLes.	
	
Suppose	you	have	a	scalar	Lmeseries					,	SSA	consists	in	performing	Principal	Component	
Analysis	on	the	vector	Lmeseries						defined	like	this.	
	
	
	
				is	called	the	“delay”	Lmeseries,	with	window	2k+1.	
	
The	covariance	matrix															(the	Toeplitz	matrix)	is	hence	diagonalized	to	obtain	Lme-
EOFs.	
The	Lme-EOFs	can	be	seen	as	typical	chunks	of	Lme	evoluLons	of	length	2k+1.	
	
The	delay	Lmeseries						can	be	reconstructed	by	expansion	on	a	few	Lme-EOFs	in	the	usual	
way:	
	
																								,						where	the	a’s are	given	by	a	scalar	product	in	the	delay	coordinates: 
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SSA	analysis	of	SOI	Lmeseries	





PCA in the space-time domain 
 
E-EOF (Extended EOFs) 

Seasonal EOF modes of SST (4 fields per year) 
Credit: Wang and An 2005 GRL. 




