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ProgramProgram 17/1 Elementary statistics – 1
23/1  Elementary statistics - 2 
14/2  Exercises – Computer room

14/2  Fourier Analysis -1 
3/3 Fourier Analysis -2, stochastic processes 
6/3 Exercises – Computer room
13/3 Exercises – Computer room

13/3 Principal component analysis -1
20/3 Principal component analysis -2
27/3 Exercises – Computer room
3/4 Exercises – Computer room

17/4 Cluster analysis – Machine learning
24/4 Exercises – Computer room

15/5 Principal component analysis: Complements 

22/5Exam



1) Maximum Covariance Analysis: 
application of the PCA to the case of two vector time series. In the same way as the EOF    

generalized the concept of variance to the case of a vector data, this generalizes the  
concept of covariance of two timeseries.

2) Rotation of EOF.
Interpretation of the EOF patterns

3) PCA in the time domain: SSA and Extended EOFs.



In geophysics, sometimes one 
wonders whether two timeseries are 
linked. 

Are two timeseries correlated?



One way to put it is to estimate if one series 
can be obtained by linear transformation from 
the other: 
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We want to minimize:
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We take the derivative with respect to a and 
b and we obtain the two conditions: 

Condition b) gives:
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Substituting b) into a) gives:

Where we have introduced the definitions :
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xi = x + " x , yi = y + " y .

Hence

€ 

a =

" x i " y i
i=1

N

∑

" x i
2

i=1

N

∑

b = y − ax 

Regression



How good is the regression?

Introducing the error
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yi
* = yi − ˆ y i We can write
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yi = axi + b + yi
*

And the variance of y becomes:
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" y 2 = a2 " x 2 + y*2 ⇒
a2 " x 2 + y*2

" y 2
=1 Explained variance + unexplained variance = 1

The regression is not perfect:
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ˆ y i = axi + b ≠ yi

Substituting the value of a found above we find:

€ 

a2 " x i
2

" y i
2

=
" x " y ( )

2

" x 2 " y 2
= r2, r =

" x " y 
σ xσ y

Is the correlation coefficient
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In PCA one looks for the structure, or vector, that, projected on the data  defined 
a time series with maximum variance.

For  generic norm defined by the metric matrix M we maximized:

This is the variance of the scalar time series                 if      is the vector 
timeseries of data, expressed as an array, i.e. an array whose columns are the 
vectors of the timeseries at different times.

And remember that the variance of it was exactly equal to λ, the higher

eigenvalue of 
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We will now generalize the PCA approach. 

Suppose we have two timeseries,      and     , of the measurements of two different 
physical variables. The two timeseries don’t need to have the same spatial location 
(the grid) but they do have one dimension in common, time. I.e. the measurements 
are synchronous.

We want to find the two unit vectors that, each one projected on a timeseries, 
maximize the covariance between the two resulting scalar series. Using the canonic 
norm, that gives the following constrained maximization problem:

That uses the lagrange multipliers lambda and mu.

Maximum Covariance Analysis (MCA)
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Taking the derivative with respect to e and f one gets

or

calling         the cross-covariance matrix of the two
timeseries.

The two equations can be decoupled by substitution, which gives:

Thus, the vectors that we are looking for are the eigenvectors of two matrices 
that are one the transpose of the other, and share the same eigenvalues.
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At this point one can solve the two eigenvalues problems and get the vectors.
But there is a more confortable way to get the solution, by Singular Value 
Decomposition

Any rectangular matrix can be decomposed in this way:

If       is m x n,      is m x m and     is n x n.      Is m x n, and has non-zero elements only 
on its diagonal.

Furthermore, it is:� 
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So e and f are given by the SVD decomposition of :

Where E and F are the matrices whose columns are all the e and f, 
respectively.

What is the meaning of Σ? What is the covariance                             ? 

Σ contains the values of the covariances between corresponding projection 
timeseries. 
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Two generalizations and a by-product

1)Weighting by the variance: (Canonical Correlation Analysis)
2)Extension to any norm (the ‘weight matrix’)

3) Computing EOFs by SVD.



1) Canonical Correlation Analysis

In CCA we want to find the two vectors that maximixe the projection timeseries 
correlation. In this case the maximization problem to solve is:

It can be shown that its solutions are:

It can also be showed that the same result is obtained applying MCA to data that have 
been previously projected on the first EOFs, and the PCs are normalized to have 
variance 1.
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2) Computing MCA under a generic norm.

As in the case of PCA we can write the general problem using the metric matrix M.

And the solutions are: 

Note that the result for CCA above is the same as this here, if one takes 

and                           In other words, CCA is MCA using the Mahalanobis
norm in the vector spaces of X and Y.
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It can also be shown that for diagonal norms the trick of computing the weights by the 
change of variable x’=mxx and y’=myy and then applying the inverse of this to the 
eigenvectors is still valid.



3) Computing the EOFs by SVD

From the property of the SVD decomposition stated above, we can see that if X is the 
array containing the data, the SVD gives:

E are the eigenvectors of XXT , i.e. the EOFs, and Σ contains the square roots of the 
eigenvalues of the covariance matrix of X, multiplied by N, the number of data.

The rows of F simply contains the PCs.

So to get the eigenvalues of XXT  :
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X = EΣFT .
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Example 1

Canonical Correlation Analysis of 
winter-mean sea level pressure in 
the North Atlantic and the winter-
mean precipitations in the Iberian 
Peninsula.

Von Storch et al (1993) J. Clim.

The Canonical correlation is 0.75

The modes represent 65% of the 
total variance of SLP and 40 of the 
variance of the precipitations. 



Example 2

Canonical Correlation Analysis of 
winter-mean sea level pressure and 
temperature in the North Atlantic 
and a few local climatic variables in 
Bern.

Gyalistras et al (1994) Clim. Res.



EXAMPLE 3

MCA analysis of the 500mb 
geopotential height monthly means 
in the Euro-Atlanctic region and the 
Sea Surface Temperatures of the 
Atlantic.

Z500

SST



Czaja and Frankignoul 2001, J. of Climate.



Rotation of EOFs

The EOFs are a statistical construct, so they cannot a priori be linked to a 
given physical mechanism. They are the signature of the dynamics of a given 
physical system. The physical interpretation is done a posteriori by the user. 
Sometimes it is evident, sometimes not. 

Rotation is a way to:
• alleviate the strong constraints of EOFs, namely orthogonality/uncorrelation 
of EOFs/PCs, domain dependence of EOF patterns 
• obtain simple structures,
• be able to physically interpret the patterns.



Here one looks for a rotation matrix Q to construct the rotated EOFs U 
according to:

Where E = [e1, e2, . . . em] is the matrix of the leading m EOFs. 
The criterion for choosing the m x m rotation matrix Q is what constitutes the 
rotation algorithm, which is generally expressed by a minimization or 
maximization problem:

With the constraint, for an orthogonal rotation, that  Q is orthogonal:

over all choices of rotation matrices Q. The functional f represents the rotation 
criterion.
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An example, the VARIMAX criterion:

Where U = [u1, u2, . . . um] .
This criterion tends to maximize the spatial variance of each mode, i.e. the 
values of the EOFs on the gridpoints tend to approach zero or ±1.
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Exmaple of VARIMAX rotation.

EOFs of surface 
pressure for DJF in the 
Northern Hemisphere.



VARIMAX rotated EOFs

Credits: Abdel Hannachi (http://www.met.rdg.ac.uk/~han/Monitor/eofprimer.pdf)



PCA in the time domain: Singular Spectrum Analysis.

SSA is a method to extract periodicities from very noisy timeseries, or to detect intermittent 

spells of periodicities.

Suppose you have a scalar timeseries     , SSA consists in performing Principal Component 

Analysis on the vector timeseries      defined like this.

is called the “delay” timeseries, with window 2k+1.

The covariance matrix               (the Toeplitz matrix) is hence diagonalized to obtain time-

EOFs.

The time-EOFs can be seen as typical chunks of time evolutions of length 2k+1.

The delay timeseries      can be reconstructed by expansion on a few time-EOFs in the usual

way:

,      where the a’s are given by a scalar product in the delay coordinates:
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SSA analysis of SOI timeseries





PCA in the space-time domain

E-EOF (Extended EOFs)

Seasonal EOF modes of SST (4 fields per year)

Credit: Wang and An 2005 GRL.




