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.	Lesson	3.	
Cluster	Analysis	



Cluster	analysis	or	clustering	is	the	assignment	of	a	set	of	observa=ons	into	
subsets	(the	clusters)	so	that	observa=ons	in	the	same	cluster	are	similar	in	
some	sense.	

Found	online:		
Pang-Ning	Tan,	Michael	Steinbach,	Vipin	Kumar	Addison-Wesley	IntroducTon	to	Data	
Mining,	2005.	ISBN	:	0321321367.		
h:p://www-users.cs.umn.edu/~kumar/dmbook/index.php	-	FREE!!	

Robert Tryon 



Data Mining. - What is it?  

It is the computational process of analysing large amount of data in order to 
discover patterns, and summarizing it into useful information for further use. 

It uses methods at the intersection of statistics, computer science, artificial 
intelligence. 

Applications: Business and marketing,  Science and engineering (genetics, 
electric network, traffic, , Medical sciences and policy, GIS, Visual data 
analysis, security/surveillance,  …. 

With the deveopment of data gathering and storing techniques, the limiting 
factor is using information, not obtaining it. 





Examples 



First	step	is	the	choice	of	a	distance	funcTon	in	the	space	of	the	observaTons	

Euclidean	distance	 d(x,y) = (xi − yi )
2

i=1

N

∑
Other	distances:	

Taxi	distance	

Cosine	similarity		

d(x,y) = xi − yi
i=1

N

∑

Reminder:	the	distance	follows	the	choice	of	a	norm	in	the	vector	space	of	
observaTons:	

d(x,y) = x − y

d(x,y) = 1− cos(x,y)



10 shops in a flat city and their Voronoi cell (Euclidean 
Distance) 

The same 10 shops, now under the Manhattan Distance. This 
shows that the Voronoi cells depend significantly on the metric 
used. 

10 Bakeries in a city map. Which one is the nearest? 



A	“staTsTcally	interesTng”	norm	(Mahalanobis	norm):	

If	C	is	diagonal,	the	distance	becomes:	

Which	means	that	each	component	is	normalized	by	its	own	variance.	It	is	useful	in	
case	of	vectors	of	heterogeneous	observaTons.	

x =< x,C−1x >

d(x,y) = (xi − yi )
2

σ i
2

i=1

N

∑



There	are	two	main	kind	of	clustering	algorithms:	
Hierarchical	and	Non-Hierarchical.	

We	will	see	one	algorithm	per	type,	with	examples.	

Cluster Analysis 



Hierarchical	clustering	

1.	Compute	the	distance	of	each	point	to	each	point	(proximity	matrix)	
2.	Let	each	data	point	be	a	cluster	
3.	Repeat	
4.	 	 	Merge	the	two	closest	clusters	
5.	 	 	Update	the	proximity	matrix	
6.	Un=l	only	a	single	cluster	remains	



Example	1	
Judges	voTng	at	the	“Eurovision”	

h:p://www.admin.ox.ac.uk/po/Eurovision.shtml	



Ginsburgh	and	Noury,:	The	
Eurovision	Song	Contest.	Is	voTng	
poliTcal	or	cultural?	European	
Journal	of	PoliTcal	Economy.	2008,	
p.41-52	



Fig. 4. Scatter plot of ALS measured intensities and vegetation heights, for control plot 
including shrub and ground layers. Colors represent assignment to different clusters 
based on a supervised classification of the point cloud using four seedpoints. All laser 
echos, including those classified as ground return, have been used for this analysis. 

Morsdorf et al. “Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using 
height and intensity information derived from airborne laser scanning”. Remote Sensing of Environment, 2010 

Example: Remote 
sensing of vegetal 
species by airborne 
lidar: 



Another	example:	

clustering	of	the	
ensemble	predic=on	
members	forecasts.	











Non-hierarchical	clustering:			The	K-Means	algorithm	

1:	Select	K	points	as	iniTal	centroids.		
2:	repeat		
3:	 	 	Form	K	clusters	by	assigning	each	point	to	its	closest	centroid.		
4:	 	 	Recompute	the	centroid	of	each	cluster.		
5:	un=l	Centroids	do	not	change.		



Warning:	the	results	of	the	algorithm	depend	on	the	iniTal	random	choice		of	
centroids.	



Image elaboration examples:  
K-means analysis on the color vectors [r,g,b] 

Original image Four cluster membership 



16 clusters 

3 clusters 

Attributing the mean color of the 
cluster to each member  



Example:	Euro-Atlan=c	weather	regimes	

Michelangeli,	P.-A.,	R.	Vautard	and	B.	Legras,	1995:		Weather	Regimes:	recurrence	and	
quasi-staTonarity.	J.	Atmos.	Sci.,	52,	8,	1237-1256.		

Looking	for	persistent	and	recurrent	states	in	the	large	scale	atmospheric	circulaTon.		

1) Truncate	the	data	on	the	first	few	EOFs	

2) Apply	K-Means	algorithm	to	truncated	data	ci	

3) Devise	a	staTsTcal	test	to	i)	find	the	opTmal	number	of	cluster	and	ii)	test	the	
significance	of	the	results	

4)		Filter	back	the	cluster	centroids	onto	the	physical	space	and	plot.	



4)		Filter	back	the	cluster	centroids	onto	the	physical	space	and	plot.	



Weather	Regimes	



Anomalies 
moyennes 

Source: Réanalyses NCEP + ECA stations 

Lien Régimes / Températures / Précipitation : la moyenne 

NAO+  

Blocage 

Atl. Ridge 

NAO - 



Les régimes dans l’espace des EOFs 

1pt=1days 

1pt= 1 régime 

4 centroides : 4 populations 

NAO+  Blocage Atl. Ridge NAO - 



NAO+  

Blocage 

Atl. Ridge 

NAO - 

Courtesy of Christophe Cassou (CERFACS, Toulouse) 

December-january 2012. Circulation and 
classification into regimes 



Exercise	:	compute	weather	regimes	by	k-means	clustering	on	the	same	data	as	last	
week	

Greenland	ridge	

Zonal	regime	Blocking	

AtlanTc	ridge	



The	data	were	projected	on	the	8	first	
EOFs.		

Compare	the	clusters	with	the	
EOFs:	



Validity	of	Clustering.	

How	do	we	esTmate	how	good	is	the	clustering,	or	rather	how	well	the	data		can	
be	described	as	a	group	of	clusters?	What	is	the	opTmal	number	of	clusters	K,	or,	
where	to	cut	a	dendrogram?	Are	the	clusters	staTsTcally	significant?	



Measures	of	cohesion	and	separaTon:	

SSE = (x − ci )
2

x∈Ci
∑

i
∑

SSB = Ci (ci − c)
2

i
∑

It	can	be	shown	that	SSE+SSB	is	constant	for	a	given	sample,	so	
opTmizing	one	is	like	opTmizing	the	other.	



The	SilhoueNe	coefficient	

For	an	individual	point,	xi	
–	Compute	ai	=	average	distance	of	xi	to	the	points	in	its	cluster	

–	Compute	bi	=	min	(average	distance	of	xi	to	points	in	another	cluster)	

–	The	silhoue:e	coefficient	for	a	point	is	then	given	by	

ai =
1
Ci

d(xi , y)
y∈Ci
∑

bi = min j
1
Cj

d(xi , y)
y∈Cj

∑

1− ai
bi

      (or 1− bi
ai

  if   ai ≥ bi )



Example	



The	example	of	Michelangeli	et	al	1995.	

1) 	Define	the	classifiability	of	data.	
2) 	Test	the	null	hypothesis	that	the	data	are	“as	classifiable	as	a	random	
process”	



1)  Classifiability	

The	idea	is	that	data	can	be	classifiable	into	clusters	or	not.	If	they	are,	the	K-Means	
algorithm	should	give	always	the	same	parTTon	into	the	same	clusters,	
independently	of	the	iniTal	random	choice	of	centroids.	

They	defined	an	index	of	classifiability:	

That	states	that	any	two	parTTons	are	very	similar	if	the	data	are	very	classifiable.	

What	is	the	similarity	of	two	parTTons.	c	?	

It	is	the	sum	of	the	scalar	products	of	corresponding	cluster	centroids.	

I(K ) = 1
N(N −1)

c(
m≠m '
∑ Pm (K ),Pm ' (K ))

c(Pm (K ),Pn (K )) = < cni ,
i=1,K
∑  cmi >



2)	Test	the	null	hypothesis.	

What	is	the	probability	distribuTon	of	the	null	hypothesis?	

To	esTmate	the	probability	distribuTon	of	the	null	hypothesis	they	used	a	
“Montecarlo”	method.	They	computed	the	classifiability	of	100	random	
samples	and	they	compared	the	value	of	the	classfiability	index	obtained	from	
them	to	the	one	of	the	data.	



Frank	Rosenbla:		
						1928-1971	

Warren	McCulloch	
						1898-	1969	

Walter	Pi:s	
1923	–1969	

Jerome	Le:vin	
				1920-2011	

NEURAL	
NETWORKS	



x1

x4

x3

x2

xK

y =ϕ wkxk + b
k=1

K

∑⎛⎝⎜
⎞
⎠⎟

 !

y

ϕ z( ) = 1
1+ e− z

This	thing	can	compute	any	Boolean	
operaTon.		

Proof/example,	the	NAND	operator.	

w1 = −2, w2 = −2, b = 3

y =ϕ w1x1 +w2x2 + b( ) int(y)x2x1

1	 1	 0.2689	 0	

1	 0	 0.7311	 1	

0	 1	 0.7311	 1	

0	 0	 0.9526	 1	

Ok,	it	can	compute	anything,	then	!	





Example:	handwriTng	recogniTon	

How	do	we	chose	
	the	weights?	

LEARNING	

5	

h:p://neuralnetworksanddeeplearning.com/index.html	



Use	a	training	dataset	to	define	a	cost	funcTon	

 
C(w,b) ≡ 1

2n x
∑ ! y(x) - a !2

A	variaTonal	approach.	Use	a	gradient	
descent	method	to	find	the	minimum	of	
C(w,b) 

δC(w,b) = ∇wC ⋅δw +∇bC ⋅δb = ∇C ⋅δ s

s→ s ' = s −η∇C s2
s1



Then the main problem becomes finding the gradient of the cost function. 

Active area of research.  

Back-propagation algorithms. 

We are at the eve of a technological  
revolution: deep machine learning. 



Geophysical	applicaTons	

1)  Bias	correcTon:	comparison	between	products	of	different	instruments	
2)  Proxy	evaluaTon:	inferring	the	value	of	an	observable	from	another	with	a	complex	

relaTon.		
3)  Codes	accelleraTon.	SubsTtute	physically	based	schemes	(Ex.	The	radiaTve	scheme)	



Geophysical	applicaTons	

1)  Bias	correcTon:	comparison	between	products	of	different	instruments	
2)  Proxy	evaluaTon:	inferring	the	value	of	an	observable	from	another	with	a	complex	

relaTon.		
3)  Codes	accelleraTon.	SubsTtute	physically	based	schemes	(Ex.	The	radiaTve	scheme)	

NDVI from AVHR (panel a), MODIS (panel b) 
http://www.intechopen.com/books/aerospace-technologies-advancements/artificial-intelligence-in-aerospace 



Geophysical	applicaTons	

1)  Bias	correcTon:	comparison	between	products	of	different	instruments	
2)  Proxy	evaluaTon:	inferring	the	value	of	an	observable	from	another	with	a	complex	

relaTon.		
3)  Codes	accelleraTon.	SubsTtute	physically	based	schemes	(Ex.	The	radiaTve	scheme)	

global N2O-CH4 relation  

 Lary et al. Atmos. Chem. Phys., 4, 143–146, 2004 


