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Cluster analysis

Principal component analysis: Complements
catch-up, we will see

Exam
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Cluster analysis or clustering is the assignment of a set of observations into
subsets (the clusters) so that observations in the same cluster are similar in
some sense.

Robert Tryon

Found online:
Pang-Ning Tan, Michael Steinbach, Vipin Kumar Addison-Wesley Introduction to Data
Mining, 2005. ISBN : 0321321367.

http://www-users.cs.umn.edu/~kumar/dmbook/index.php - FREE!!




Data Mining. - What is it?

It is the computational process of analysing large amount of data in order to
discover patterns, and summarizing it into useful information for further use.

It uses methods at the intersection of statistics, computer science, artificial
intelligence.

Applications: Business and marketing, Science and engineering (genetics,
electric network, traffic), Medical sciences and policy, GIS, Visual data
analysis, security/surveillance, ....

With the development of data gathering and storage techniques, the limiting
factor is using information, not obtaining it.
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Figure 8.1. Different ways of clustering the same set of points.
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Examples




First step is the choice of a distance function in the space of the observations

N
Euclidean distance c/(x,y) = Z(xl.—}/l.)2
=1

Other distances:

N

Taxi distance c/(x,y) = Z‘Xz'_yi

=1

Cosine similarity J/(X, y) =1- COS(X, Y)

Reminder: the distance follows the choice of a norm in the vector space of
observations:

QI(X9Y):||X_J/H



10 Bakeries in a city map. Which one is the nearest?

10 shops in a flat city and their Voronoi cell (Euclidean The same 10 shops, now under the Manhattan Distance. This
Distance) shows that the Voronoi cells depend significantly on the metric
used.



A “statistically interesting” norm (Mahalanobis norm):

||x||:<x,CHx>

If Cis diagonal, the distance becomes:

Ax.y)= Z (xl;g/l)

/

Which means that each component is normalized by its own variance. It is useful in
case of vectors of heterogeneous observations.



Cluster Analysis

There are two main kind of clustering algorithms:
Hierarchical and Non-Hierarchical.

We will see one algorithm per type, with examples.



Hierarchical clustering

1. Compute the distance of each point to each point (proximity matrix)
2. Let each data point be a cluster

3. Repeat

4, Merge the two closest clusters

5 Update the proximity matrix

6. Until only a single cluster remains

0.15f

0.1F

0.05F




Cluster Dendrogram
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The Eurovision Song Contest
Is Voting Political or Cultural?'

Victor Ginsburgh
ECARES, Université Libre de Bruxelles and
Center for Operations Research and Econometrics, Louvain-la-Neuve

Abdul Noury
ECARES, Université Libre de Bruxelles

November 2004
Revised October 2006

Abstract

We analyze the voting behavior and ratings of judges in a popular
song contest held every year in Europe since 1956. The dataset makes
it possible to analyze the determinants of success, and gives a rare
opportunity to run a direct test of vote trading. Though the votes
cast may appear as resulting from such trading, we show that they are
rather driven by quality of the participants as well as by linguistic and
cultural proximities between singers and voting countries. Therefore,
and contrary to what was recently suggested, there seems to be no
reason to take the result of the Contest as mimicking the political
conflicts (and friendships).

Ginsburgh and Noury,: The
Eurovision Song Contest. Is voting
political or cultural? European
Journal of Political Economy. 2008,
p.41-52



Example: Remote
sensing of vegetal
species by airborne
lidar:

Control plot
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Fig. 4. Scatter plot of ALS measured intensities and
including shrub and ground layers. Colors represent assignment to different clusters
based on a supervised classification of the point cloud using four seedpoints. All laser
echos, including those classified as ground return, have been used for this analysis.

LIDAR Intgnsity [DN]
vegetation heig

Morsdorf et al. “Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using
height and intensity information derived from airborne laser scanning”. Remote Sensing of Environment, 2010

hts, for control plot



Another example: MULTIPLE FORECAST ENSEMBLE

T=Truth
clustering of the a0
ensemble prediction \
members forecasts.
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Deterministic predictions

Verification

Ensemble forecast of Lothar (surface pressure)

Start date 24 December 1999 : Forecast time T+42 hours

Forecast 3

Forecast 5

L A

Forecast 6

Forecast 7

Forecast 8

Forecast 9

Forecast 11

Forecast 15

Forecast 21

d

Forecast 27

Forecast 28

Forecast 30

Forecast 31

4

Forecast 32

Forecast 33

Forecast 36

Forecast 37

Forecast 38

Forecast 39

Forecast 40

Forecast 41

Forecast 43

Forecast 46

Forecast 49

Forecast 50
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ECMWF Ensemble
Forecast Clusters

Wednesday 7 October 2009 12UTC
1000hPa Geopotential

Exp 0001

Operational Forecast
in cluster 2

Control Forecast
in cluster 3

Cluster 1: 23 Forecast(s)
Cluster 2: 16 Forecast(s)
Cluster 3 : 12 Forecast(s)
Cluster 4: 0 Forecast(s)
Cluster 5: 0 Forecast(s)
Cluster 6 : 0 Forecast(s)
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Wednesday 7 October 2009 12UTC ECMWF EPS Cluster Mean Forecast t+168 VT: Wednesday 14 October 2009 12UTC
1000hPa Geopotential - Cluster Number 1 (23 members) of 3
Reference step t+120-168, Domain 75/340/30/45, Op FC in clus 2, Ctrl FC in clus 3

Wednesday 7 October 2009 12UTC ECMWF EPS Cluster Mean Forecast 14168 VT: Wednesday 14 October 2009 12UTC
1000hPa Geopotential - Cluster Number 2 (16 members) of 3
Reference step 14120-168, Domain 75/340/30/45, Op FC in clus 2, Cirl FCin clus 3

Wednesday 7 October 2009 12UTC ECMWF EPS Cluster Mean Forecast t+168 VT: Wednesday 14 October 2009 12UTC
1000hPa Geopotential - Cluster Number 3 (12 members) of 3
Reference step t+120-168, Domain 75/340/30/45, Op FC in clus 2, Ctrl FCin clus 3




Non-hierarchical clustering: The K-Means algorithm

1: Select K points as initial centroids.

2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4. Recompute the centroid of each cluster.

5: until Centroids do not change.

(a) Iteration 1.

(b) Iteration 2.

(c) Iteration 3.

- O 8%8

%0 o

(d) Iteration 4.



Warning: the results of the algorithm depend on the initial random choice of
centroids.



Image elaboration examples:
K-means analysis on the color vectors [r,g,b]

Original image Four cluster membership




Attributing the mean color of the
cluster to each member

16 clusters .,

Original

400 p

1000

200 400 s800 800 10001
N Fegure L

200

Compressed, with 16 colors.
SN ~ : L ]

1000

1200 MR,
200 400 60O S00 1000 1200

3 clusters



Second Principal Cormponent
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The Heroic Age
A Journal of Early Medieval Northwestern Europe
12 (May 2009) | Issue Editors: Larry Swain
Founded 1998 | ISSN 1526-1867

King Alfred's Scholarly Writings and the Authorship of the
First Fifty Prose Psalms

Michael Treschow, Department of Critical Studies, UBC Okanagan,
Paramyjit Gill, Mathematics, Statistics and Physics, UBC Okanagan, &
Tim B. Swartz, Department of Statistics and Actuarial Science, Simon
Fraser University

© 2009 by Michael Treschow, Paramjit Gill, & Tim B. Swartz. All rights reserved. This edition
copyright © 2009 by The Heroic Age. All rights reserved.

Abstract: A great part of King Alfred's renown comes from his translations of Latin writings into
Old English. The group of translations that he gets credit for, however, has changed over the years.
Presently four translations are attributed to him: the Pastoral Care, the Boethius, the Soliloquies,
and the first fifty Prose Psalms. The first three works openly name Alfred as translator and provide
strong internal evidence that they are Alfred's work. The Prose Psalms, however, lack Alfred's
name. Although now widely endorsed as Alfred's on the basis of studies by Janet Bately and
Patrick O'Neil, the Prose Psalms do not allow the same confidence in Alfred's authorship as with
the three named translations. Bately's and O'Neill's arguments exhibit several weaknesses. Their
conclusion, moreover, breaks down when stylometric analysis is applied to the translations
associated with Alfred. The statistical methods employed in this study indicate that Alfred should
not be regarded as the translator of the Prose Psalms after all.

Alfred the Scholar-King

Alfred he was in enkelonde a king;
wel swipe strong 7 lufsum ping.
He was king 7 cleric;

ful wel he louede godis werc.

He was wis on his word;

7 war on his werke.

He was pe wiseste mon;



Example: Euro-Atlantic weather regimes

Michelangeli, P.-A., R. Vautard and B. Legras, 1995: Weather Regimes: recurrence and
quasi-stationarity. J. Atmos. Sci., 52, 8, 1237-1256.

Looking for persistent and recurrent states in the large scale atmospheric circulation.

1)Truncate the data on the first few EOFs

T
Z(t) = Zci (t)e., where ¢, = <z,ei>
i=1
2)Apply K-Means algorithm to truncated data c;

3)Devise a statistical test to i) find the optimal number of cluster and ii) test the
significance of the results

4) Filter back the cluster centroids onto the physical space and plot.



4) Filter back the cluster centroids onto the physical space and plot.
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FiG. 4. Composites of the 700-hPa geopotential heights for the four clusters found over the ATL sector. Contour interval is 50 m. Dark
shaded areas show arcas where the anomaly of the composite with respect to the wintertime average is larger than 50 m. Light shaded
areas correspond to anomalies lower than —50 m. Clusters are sorted by their consistency: (a) cluster 1; (b) cluster 2; (¢) cluster 3; (d)
cluster 4.



Weather Regimes
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FiG. 4. Composites of the 700-hPa geopotential heights for the four clusters found over the ATL sector. Contour interval is 50 m. Dark
FiG. 7. Same as Fig. 4 for the three clusters of the PAC domain: shaded areas show areas where the anomaly of the composite with respect to the wintertime average is larger than 50 m. Light shaded

(a) cluster 1; (b) cluster 2; (c) cluster 3. areas correspond to anomalies lower than —50 m. Clusters are sorted by their consistency: (a) cluster 1; (b) cluster 2; (c) cluster 3; (d)
cluster 4.
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Les régimes dans |’ espace des EOFs

16.I2911
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December-january 2012. Circulation and
classification into regimes

Reload

NAO-  Blocking Atl. Ridge

Courtesy of Christophe Cassou (CERFACS, Toulouse)



Exercise : compute weather regimes by k-means clustering on the same data as last
week

Greenland ridge

X/

80  e0°w 40w 20w n° 20°E 80w  60%W  40%W 200w n° 20°E

60%w  40%  20%w




Compare the clusters with the
EOFs:

The data were projected on the 8 first
EOFs.



Validity of Clustering.

How do we estimate how good is the clustering, or rather how well the data can
be described as a group of clusters? What is the optimal number of clusters K, or,
where to cut a dendrogram? Are the clusters statistically significant?
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(a) Original points. (c) Three clusters found by K-means.



Measures of cohesion and separation:

SSE=) Y (x—¢,)

i XxeC;

(¢c,—¢)

SSB=Y|C,

It can be shown that SSE+SSB is constant for a given sample, so
optimizing one is like optimizing the other.



The Silhouette coefficient

For an individual point, x;
— Com pute a; = average distance of x; to the points in its cluster

Zd(x,,w

il yeC;

— Compute b; = min (average distance of x; to points in another cluster)

Y d(x,.y)

yeC;

b, =min,
\C

— The silhouette coefficient for a point is then given by

1—% (orl—z if a.2b,)

i i



SSE

Example
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The example of Michelangeli et al 1995.

1) Define the classifiability of data.

2) Test the null hypothesis that the data are “as classifiable as a random
process”



1) Classifiability

The idea is that data can be classifiable into clusters or not. If they are, the K-Means
algorithm should give always the same partition into the same clusters,
independently of the initial random choice of centroids.

They defined an index of classifiability:

1(K)=— ( T 2 c¢(P,(K),P,.(K))

That states that any two partitions are very similar if the data are very classifiable.

What is the similarity of two partitions. ¢ ?

c(P,(K),P(K)= Y <c".,c" >

i=1,K

It is the sum of the scalar products of corresponding cluster centroids.



Classifiability Index

2) Test the null hypothesis.
What is the probability distribution of the null hypothesis?

To estimate the probability distribution of the null hypothesis they used a
“Montecarlo” method. They computed the classifiability of 100 random
samples and they compared the value of the classfiability index obtained from
them to the one of the data.

Number of Clusters k

= Noise Confidence
w—(bserved PAC
0.9 - VN @ e Half-data Confidence

m Noise Confidence
= Observed ATL
------- Half-data Confidence

0.9 %
-
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0.8 > 0.8
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0.7 = 074 e

b g ..........
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Number of Clusters k Number of Clusters k

Fi1G. 2. The classifiability index as a function of the number of
clusters k (heavy solid). Shaded area represents the 10%-90%
bounds of the classifiability index distribution calculated from the
first-order Markov process (noise model). Dotted lines represent the
same bounds for random halves of the atmospheric data: (a) Atlantic
sector; (b) Pacific sector.



NEURAL
NETWORKS

Warren McCulloch Walter Pitts Jerome Lettvin
1898- 1969 1923 -1969 1920-2011

N Frank Rosenblatt
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X This thing can compute any Boolean

operation.
& Proof/example, the NAND operator.

wy==2, w,==-2, H=73
3

X X y=o(wx+wr,+54) int(y)
X, i P

1 1 0.2689 0

1 0 0.7311 1
xK

0 1 0.7311 1

Y
ﬁ 0| O 0.9526 1
1

0.5
¢(2)=1
Ok, it can compute anything, then !
L 1 o 1 1 ] Z







Example: handwriting recognition S 0'.-{ / q ﬂ

hidden layer

(nn = 15 neurons)

output layer

S =5

input laver

How do we chose
the weights?

T84 neurons)

S LEARNING

http://neuralnetworksanddeeplearning.com/index. I

Lo

~I



Use a training dataset to define a cost function
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A variational approach. Use a gradient

descent method to find the minimum of
C(w,b)

oC(w,b)=V C-0w+V,C-0b=V (05

s—>s'=s—nVC

1 )
C(w,b>552||y(x)-an




Then the main problem becomes finding the gradient of the cost function.

Active area of research.

Back-propagation algorithms.

We are in the course of a technological
revolution: deep machine learning.
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Geophysical applications

1) Bias correction: comparison between products of different instruments

2) Proxy evaluation: inferring the value of an observable from another with a complex
relation.

3) Codes accelleration. Substitute physically based schemes (Ex. The radiative scheme,
the parameterization of convection in climate models)



Geophysical applications

1)Bias correction: comparison between products of different instruments

Absohte Dilferance betwesn TOMS 8 MODIS NN NDVI for AVHRR snd MODIS NDVY
cs

Absolte DFerence between AVHRR NDVI and MODIS NDVI

Latitude

o e oz
w0 — - - - " 4
m o o
E &
208 06
-
06 2000 2005 2001 2015 2 M5 20 20005 2006

2000 20008 2000 0015 2002 20025 X008 20035 2004 2045 20 e 26 200
( ) Year ( b ) Year
a

AVHRR NDVI 01/2001

NDVI from AVHR (panel a), MODIS (panel b)

http://www.intechopen.com/books/aerospace-technologies-advancements/artificial-intelligence-in-aerospace



Geophysical applications

2)Proxy evaluation: inferring the value of an observable from another with a complex
relation.

N.O (v.m.r.)

3
S
0 1 ,g’
- g5 ? h‘(
| ,‘f
. ;é?f
oiE]
WE  g(x)=1/(1+exp(-2x))
z' ‘ |28
' | = , 10 1% Correlation coefficient 0.99955
Chebyshev Polysomal Order 20 || 8
05 1 15 2 25 05 1 15 2 25
CH‘ (v.m.r.) « 10 CH.: (v.m.r.) X 10

global N,O-CH, relation

Lary et al. Atmos. Chem. Phys., 4, 143-146, 2004



