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. Lesson 2.

Frequency domain methods.



Fourier transform. A reminder.

For any “well behaved” function x(t), the Fourier
transform will be written:

F(x(0)=x(s) = J._(: x(t)e 7™ dt

Important theorems: Joseph Fourier
1768 - 1830

) if fxg= J:, f(Hg(t—t)dt then F(f*g)= ]A‘(S) -2(s) (Convolution)
2) if feg= J: f(Hg(t+1)dt then F(feg)= ]A”(s)* -2(8) (Cross — correlation)

3) J: x(1)’dt = J:|)Ac(s)|2 ds (Parseval)



In most practical applications, the function x(%) is only known at discrete
intervals of time At, and for a non-infinite time, 0 <t < T.

Hence x(?)=x(nAt), n=0,1,..Nand T = NAt
At is also called “sampling interval”, and At! is called the “sampling rate”.

There is also a special frequency that can be defined, the Nyquist frequency:
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Fourier Series. A reminder.

Any periodic function x(f) = x(¢+7) can be written as a Fourier Series

N 21t | 27nt
x(t):%+zan cos( 7;1” j+zbn sin( 7;”

Where the Fourier coefficients are defined as:
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Fourier Series. A reminder.

Any periodic function x(f) = x(¢+7) can be written as a Fourier Series

2 mnt

x(t) = icnei d

N=—o0

Where the Fourier coefficients are defined as:

2nnt

T
c, = jo x(t)e T dt
2

This is a compact way of writing the original Fourier
formula that made use of sines and cosines, Where
the coefficients are related this way:

a =c,t+c_, n=0,12,3..

b, =i(c,—c_)
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Interpretation as basis of a Hilbert space

1 _i27znt

Functions €n=?€ " are an orthonormal basis of the space @([—T/Z, T/2])

of the square-Integrable fiunctions defined over [-T/2, T/2] . This space is
called a Hilbert space with an inner product defined as:

<f.e>= |2 e dr

So that any function of the space can be expanded as:

f: i<f’en >en

1=—o0

This also holds for the sines and cosines representation of the Fourier basis. In

_ _ _ 2 2mnt
this case the basis would be formed by the functions 1,?COS

and

2 . 2nnt
—sin :
T T
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In most practical applications, the function x(%) is only known at discrete
intervals of time At, and for a non-infinite time, 0 <t < T.

Hence x(?)=x(nAt), n=0,1,..Nand T = NAt
At is also called “sampling interval”, and At! is called the “sampling rate”.

There is also a special frequency that can be defined, the Nyquist frequency:

1
f‘zm
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Claude Shannon
1916 — 2001

Harry Nyquist
1889-1976

It can be shown that if a function is sampled with intervals At, and it is band-limited,
-1/2At < s < 1/2At, then it can be reconstructed exactly. We can write:

c sin(27tf (t — nAt))
x(1) = At 2 x(nAt) (Nyquist-Shannon sampling
=0 7T(1 — nAt)) theorem)

Which in turn means that a band-limited function can be perfectly reconstructed by
samples of the function at discrete times nAt.

f= L is the Nyquist frequency.
2At
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Aliasing. If x(?) is not band-limited, then the sampling theorem is not
satisfied, and there might be an aliasing effect.

The frequencies higher than the Nyquist frequency will be squashed on to the
frequencies resolved.

x(1)

x(nAt)

1 1 1 1 | 1 |
-30 -20 -10 0 10 20 30 40



Discrete Fourier analysis: sampling in the frequency domain.

If we have a discrete and limited timeseries

x(t)=x(nAt)=x,, n=0,12,3..... N -1

We seek its discrete Fourier transform in the frequency range
-1724t <5 < 1/24¢, thatis—f < s < f. Sampling in regular intervals we get the
frequencies

S, = ——
NAt 2 2

In this cases it is:

> N N-1
)AC(Sk) _ fx(t)e—ﬂnstdt _ Exne-imkrn Af = Atzxne—ih(nAt)(k/NAt)
- n=0 n=0

N-1 nk
Fs)=AtYyxe N
n=0
A N —iznn—k
x, =2, ,x,e N isthediscrete Fourier transform



A 2m—
The inverse transform is X :—Zxke N

It is the exact reconstruction of the time domain discrete function via the Fourier
coefficients and the Fourier basis.

Exercise: prove the above definition of the inverse transform.
The Parseval theorem takes the form:
S =Sl
2 A
X, =— ) |X
n=0 N k=0

Exercise: prove it!



Some symmetry properties, they hold for continuous and discrete FT

If... then...

h(t) is real H(-f)=[H(f)]"

h(t) is imaginary H(-f)=-[H()

h(t) is even H(-f)= H(f) |ie., H(f)iseven)
h(t) is odd H(—f)=—H(f) [ie, H(f)is odd]
h(t) is real and even H(f) is real and cven

h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even  H(f) is imaginary and even
h(t) is imaginary and odd  H(f) is real and odd



Aliasing. If x(?) is not band-limited, then the sampling theorem is not satisfied,
and there might be an aliasing effect.

The frequencies higher than the Nyquist frequency will be squashed on to the
frequencies resolved.

X(7)

x(nAt)
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-30 -20 -10 0 10 20 30 40



h(t)

(a)

A
H(f)

v

(b)

aliased Fourier transform

—true Fourier transform

(c)

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time 7. It
follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth limited
but has finite amplitude for all frequencies. If the original function is sampled with a sampling interval
A. as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist critical
frequency. Power outside that range is folded over or “aliased” into the range. The effect can be eliminated
onlv bv low-pass filterine the original function before sampline.

2d aliasing



Time aliasing
“the cartwheel effect”




Wagon Wheel
(stroboscopic)
Effect




Fast Fourier Transform (FFT)

One of the most common methods of spectral analysis used is the Fast Fourier
Transform.

The FFT reduces the number of operation to N log N.

\ &t

Cornelius Lanczos Gordon Danielson John Tukey James Cooley
(1893-1974) (1912-1983) (1915-2000) (1926-)




The FFT is an efficient algorithm that works best when the length of the time series
has been chosen to be an integer power of two N=2".

2 N

—]—

Defining W =e¢ V , the Fourier transform becomes: )Ack — EW”"xn.

n=0
Hence the transform requires N2 operations.
The FFT reduces the number of operation to N log, N.

An example with N=4 just to understand the idea
Note that w2 =—1and W*=1

Xo =Xy + X, 4+ 2, + 2, = (x, + 1, )+ (x, + x;)

X1 = X, +W'a, +Wox, +Wix, = (xo —x2)+W1(x1 —x3)

Xo = X, +Wox, + Wi, +Wox, = (xo +x2)—(x1 +x3)

X0 =x, +W’x, +W°x, + W’x, :(xo —xz)—Wl(x1 —x3)



It is based on the idea of cutting the transform in two, then again
in two, etc etc.

At the end the transform is cut into pieces of length 1 tranforms. A length1
transform is just the Identity. In general:

>
|

Fk — 2rijk/N - f/

e

]

-
I
S

IV,:/ —1 JV,.‘(Z—I
(2 7Y/ . k(2j+1)/ '
— 27k 2NN f2j + Z e2mik2j+D/N S2j+1
. Jj=0
N/2—1 N/2-1
. _ iy wikj/(N/2) p
_ Z ezmlu, (N 2)f2j + w" Z ez'”""’ (N7 )f2j+1
j=0
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So we are reduced to N identities, the

trick consist in finding which n corresponds
to a given pattern of o’s and e’s.

As it happens, if you put e=0 and 0=1, the
patterns « ...eooeoeo... », reversed, give the
value of n in binary!!

Fpoeeoeomoce = f) for some n

The existences of the FFT
Algorithm is one of the reasons
Why Fourier analysis is so popular.



Spectra.

The simplest estimate of spectral power is the periodogram.
One does the Fourier transform of the data series:

N-1 . nk
A z —zZnW
X, =2 Xxe

n=0

And then plots:

1 .
P(O):Fxoz

1 4. n
P(fk)zﬁ(xkz'l' xN—k‘z)

Remembering the Parseval theorem, one can see the periodogram is the
variance of the signal per frequency. The sum of all P(f,) is the total variance.

X :_2‘3%‘2 (Parseval)
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Leakage, tapering etc...

Some further considerations on computing spectra. An example to understand.
Let us compute the Fourier transform of a cosine:

x(t)= cos(27rp1t)

2(s) = j cos(2mp,t)e’*™ dt =

—00

1
= 5(5(s—p1)+5(s+p1))

Exercise: do it at the blackboard

This is the “real” continuous Fourier transform.
Now suppose that you only observe the original cosine signal for a limited
amount of time [0,T]. How does the Fourier transform change?



This problem becomes the problem of computing the Fourier transform of

xn(t)=\_[(%)cos(2nplt) . where H(x):{ 0 if \x\>1

1 if |x|<1

With some algebra one finds:

2.(5) =777

Exercise: Who does it at
the blackboard?



This problem becomes the problem of computing the Fourier transform of

xn(t)=\_[(%)cos(2nplt) . where H(x)z{ 0 if \x\>1

1 if |x|<1
With some algebra one finds:

A {sin(27rT(s —p)  sinal(s+ pl)}
xH(S) — +
2m(s — pl) 27m(s+ pl)

Exercise: Who does it at
the blackboard?

for T=1, P =1.5 2 el




Can we reduce this problem? Change the I1 function.

For example, instead of a square function, take a triangle:

0 i 1
ORI
ol i <1t

0.8+

0.6

The Fourier transform of

04

x,(5), x ()

X, () = A(%JCOS(ZTE[)II)

gives:
% (s) =+ sin* (2T (s — [291) N sin* (2T (s + [291) >
| [272:(S — pl)] [277:(s+ pl)]




Smaller leakage

There is always a trade off
between leakage and
resolution

1.2

|

Larger peaks



More sophisticated windows and associated leaking function.
Multiplying the data timeseries by a window is called “tapering”.

From the “Numerical Recipes”:

] _l T T T T I T T T T I | T T T | T T T T |_
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Figure 13.4.1. Window functions commonly used in FFT power spectral estimation. The data segment,
here of length 256, is multiplied (bin by bin) by the window function before the FFT is computed. The
square window, which is equivalent to no windowing, is least recommended. The Welch and Bartlett
windows are good choices.

amplitude of leakage

offset in units of frequency bins

Figure 13.4.2. Leakage functions for the window functions of Figure 13.4.1. A signal whose frequency
is actually located at zero offset “leaks™ into neighboring bins with the amplitude shown. The purpose
of windowing is to reduce the leakage at large offsets, where square (no) windowing has large sidelobes.
Offset can have a fractional value, since the actual signal frequency can be located between two frequency

bins of the FFT.



Data windowing.

According to the considerations that we made above on spectral leakage, before
computing the spectrum, one can multiply the data by one of the well conceived
windows that we have seen. (Tapering)

Most software packages propose pre-computed window tapering.



The periodogram values are subject to substantial random fluctuation,

because they are one realization of an underlying random process. We

are thus faced with the problem of very many "chaotic" periodogram spikes.

Every determination of the spectral power at a given frequency is affected by
an error.

A by-the-eye estimate of the error — the variance — of the power estimates is

the width of the wiggles in the periodogram.

How can we reduce the error of estimation of spectral density?

10

Power
P W
S

13 5 50 100 150
Frequency (Hz)



First consideration: having a longer timeseries does not reduce the error in
the estimate of the spectral power at a given frequency, i.e. it doesn’t
increase the statistical significance of the spectrum found.

- If we take a longer sample at the same sampling rate, we increase the
resolution.

- If we take a higher sampling rate, we have a larger spectrum of frequencies.
Remind that the frequencies are given by:

k N N
fk — k=——,...... 7~
NAt 2 2
1
Where for k=-N/2 and k=N/2 we get the Nyquist frequency E .
[

How is this possible? All the additional information goes into computing
more frequency points, not into computing more accurately the same
frequencies.

Instead, we may want to find frequency regions, consisting of many adjacent
frequencies, we want to trade spectral resolution versus statistical
significance.



Two possible strategies to do so:
1) Band averaging
2) Subsampling.

1) Band averaging consists simply in computing a periodogram estimate

with finer discrete frequency spacing than you really need, and then to sum the
periodogram estimates at K consecutive discrete frequencies to get one
“smoother” estimate at the mid-frequency of those K. The variance of that

summed estimate will be smaller than the estimate itself by a factor of exactly
K.

2) A second technique is to partition the original sampled data into K segments
each of M consecutive sampled points. Each segment is separately Fourier-
transformed to produce a periodogram. Finally, the K periodogram estimates
are averaged at each frequency. It is this final averaging that reduces the
variance of the estimate by a factor K (the standard deviation by K'2). This
technique is the natural choice for processing long runs of data.

Instead of just cutting the series, one can taper each chunk with a non-square
window, in this case, some overlap of the chunk edges is possible.



There is a technique that optimizes the trade-off between reduction of spectral

leakage, reduction of error in the estimate of the spectrum and loss of
resolution.

The Multitaper method computes spectra tapering with windows that are
orthogonal to one-another, and that minimize the leakage.
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Examples of power spectra

Cullen, D'Arrigo, Cook, Mann. Multiproxy reconstructions of the North Atlantic

Oscillation.

Multitaper spectral
analysis results of a).
the Hurrell [1995]
DJFM NAOSLP
index over the
periods 1874-1979
and b). 1874-1995;
c). R4 over the
periods 1874-1979
and d). 1750-1979
Figure

spectral power

spectral power

16107
12107 L
108 F T

4106 F

1400 |
1200 L
1000 L.
a00 [
Q00 |
400 TS
200 |

NAO Index 1874-1979

| AL LA (LA N A L NN N B N N B B

L NULANLI B L L Lt L L L LI NI

frequency (cyclesisecond)

1.610 7 =
1210 7 |
8106 F

410 8 FY

2000 [T
1500 |

1000 |

S00

Figure 5

NAO Index 1874-1995

T T LI B S B N e e |

frequency { cyclesksecond)



Examples of power spectra

Braganza, K., J. L. Gergis, S. B. Power, J. S. Risbey, and A. M. Fowler
(2009), A multiproxy index of the El Nino—Southern Oscillation, A.D.
1525-1982, J. Geophys. Res., 114, D05106, doi:10.1029/2008JD010896.

Spectral Power for R8 (1727-1982)
Flgure4powerspectrum 0-015’.]l[llllllllll]llllllllllllIlllllllllllllllllllll

(unnormalized variance) for \ N
R8 proxy ENSO index

(EOF1) for the period 1727—-

1982. Significance at the 0010
90% and 95% (dotted '_\ """"

lines) level is indicated
relative to estimated
background AR1 noise B
(solid line). Effective 0.005
bandwidth after smoothing = =W L T LT T
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Examples of power spectra :

Log Power

. A )

75 25 15 10 5 4 35 3 25 2
Period (years)

LEFT: Multi-taper power
spectrum of the above
coralline red algal time
series showing
significant power at
~60, 10, 4, 2.5 and 2.25
years. The power
spectrum corresponds
to cyclic climate
patterns associated
with the El Nino-
Southern Oscillation
and the Pacific Decadal
Oscillation.



What are the statistical significance lines that you see in these figures?

It is the spectrum of the “null hypothesis”, i.e. the hypothesis that the spectrum is
the result of a random time series, or the spectrum of noise.

So, one can build a number of rednoise time series that has the same
autocorrelation at a given lag 71, as the data sample, as well as the same
variance. Then one computes the spectra and extract a PDF, plotting the — say —
95t centile as a function of the frequency.

The spectrum of a rednoise process with a given autocorrelation and variance
can also be computed theoretically.



2D application

igure 12.6.2. Fourier processing of an image. Upper left: Original image. Upper right: Blurred by low-
pass ﬁltermo Lower left: Sharpened by enhancing high frequency components. Lower right: Magnitude
of the derivative operator as computed in Fourier space.



END



ROADMAP for exercise 2.

1) Get Southern Oscillation Index (SOI) data from the class website.
What s SOI? Check it out: http://www.cqgd.ucar.edu/cas/catalog/climind/soi.html.
Transform the data from an array to a vector (reshape...)

2) Compute Fourier transform of the data (commands: fftshift, fft)
3) Define the frequencies.

4) Compute the spectrum (periodogram) and plot it as a function of frequency
Try different graphical representations, log-log, log-lin, lin-lin...

5) Band-average for smoothing the result
Define a window length, sum the spectral coefficient and plot as a function of the central or mean
frequency.

6) Define a rednoise model of your data timeseries
The rednoise model is defined by the recursive formula x,,,,=ax,+w, where the variance of x, and the
autocorrelation at lag 1 are the same as the ones of the data.

7) Use the rednoise model to build a test of statistical significance of your spectrum.

build 1000 rednoise timeseries, compute the spectrum for each of them, with the same band
averaging as the data. Estimate the 95% and 99% centile of the rednoise spectra. Plot on top of the data
spectrum. You may also compare with the thoeretical spectrum of the rednoise.



From: Labat et al, 2005. Journal of Hydrology, 314, pp. 289-311
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