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.	Lesson	2.	

Frequency	domain	methods.	



Fourier	transform.	A	reminder.	

 
F (x(t)) = x̂(s) = x(t)e− i2π st dt

−∞

∞

∫

For	any	“well	behaved”	funcNon	x(t),	the	Fourier		
transform	will	be	wri<en:			

Joseph Fourier  
1768 - 1830 

P(s) = x̂(s) 2 + x̂(−s) 2( )

x(t) x̂(s)
 F

 F
−1

Spectral density: 



Important	theorems:	
	
	

 

1)  if  f ∗g = f (t)g(τ − t)dt
−∞

∞

∫   then   F ( f ∗g) = f̂ (s) ⋅ĝ(s)  (Convolution)

2)  if f •g = f (t)g(τ + t)dt
−∞

∞

∫    then   F( f •g) = f̂ (s)* ⋅ĝ(s) (Cross − correlation)

3)  x(t)2 dt
−∞

∞

∫   = x̂(s) 2 ds    (Parseval)
−∞

∞

∫



In	most	pracNcal	applicaNons,	the	funcNon	x(t) is	only	known	at	discrete		
intervals	of	Nme	Δt,	and	for	a	non-infinite	Nme,	0 ≤ t ≤ T.		
	
Hence 	 	 	 	 	 	 		and	 				
	
Δt is	also	called	“sampling	interval”,	and Δt-1	is	called	the	“sampling	rate”.	
	
There	is	also	a	special	frequency	that	can	be	defined,	the	Nyquist	frequency:	
	
	
	 f = 1

2Δt

x(t) = x(nΔt), n = 0,1,...N T = NΔt



Fourier	Series.	A	reminder.	

Any	periodic	funcNon																																				can	be	wri<en	as	a	Fourier	Series	
	
	
	
	
	
Where	the	Fourier	coefficients	are	defined	as:	
	 	

x(t) = a0
2
+ an cos

2πnt
T

⎛
⎝⎜

⎞
⎠⎟ +n=1

∞

∑ bn sin
2πnt
T

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑

x(t) = x(t +T )

an = x(t)cos 2πnt
T

⎛
⎝⎜

⎞
⎠⎟ dt−T

2

T
2∫ ,     for  n ≥ 0

bn = x(t)sin 2πnt
T

⎛
⎝⎜

⎞
⎠⎟ dt−T

2

T
2∫ ,     for  n ≥1

0 T 



Fourier	Series.	A	reminder.	

x(t) = cne
i
2πnt

T

n=−∞

∞

∑

Any	periodic	funcNon																																				can	be	wri<en	as	a	Fourier	Series	 	

Where	the	Fourier	coefficients	are	defined	as:	
	
	
	
	
This	is	a	compact	way	of	wriNng	the	original	Fourier		
formula	that	made	use	of	sines	and	cosines,	Where		
the	coefficients	are	related	this	way:	
	

cn = x(t)e
− i2πnt

T dt
−T
2

T
2∫

an = cn + c−n        n = 0,1,2,3...
bn = i(cn − c−n )     n = 1,2,3.....

� 

x(t) = x(t +T)

0 T 





Interpretation as basis of a Hilbert space 
 
 
Functions                          are an orthonormal basis of the space  
 
of the square-Integrable functions defined over                          . This space is 
called a Hilbert space with an inner product defined as: 
 
 
 
 
So that any function of the space can be expanded as: 
 
 
 
 
This also holds for the sines and cosines representation of the Fourier basis. In 
 
this case  the basis would be formed by the functions 1,                     and 
 
                   . 
 

e n=
1
T
e
− i2πnt

T

−T / 2, T / 2[ ]
 L

2 −T / 2, T / 2[ ]( )

< f ,g >= f (t)g(t)* dt
−T
2

T
2∫

f = < f ,en > en
n=−∞

∞

∑

2
T
sin 2πnt

T

2
T
cos 2πnt

T



Step wave Triangular wave 





In	most	pracNcal	applicaNons,	the	funcNon	x(t) is	only	known	at	discrete		
intervals	of	Nme	Δt,	and	for	a	non-infinite	Nme,	0 ≤ t ≤ T.		
	
Hence 	 	 	 	 	 	 		and	 				
	
Δt is	also	called	“sampling	interval”,	and Δt-1	is	called	the	“sampling	rate”.	
	
There	is	also	a	special	frequency	that	can	be	defined,	the	Nyquist	frequency:	
	
	
	

� 

f =
1
2Δt

x(t) = x(nΔt), n = 0,1,...N 

� 

T = NΔt



	
It	can	be	shown	that	if	a	funcNon	is	sampled	with	intervals	Δt,	and	it	is	band-limited,	

-1/2Δt	≤	s	≤	1/2Δt,	then	it	can	be	reconstructed	exactly.	We	can	write:	
	
	

	 	 	 	 	 	 	 	 	 	 	 	(Nyquist-Shannon	sampling	
	 	 	 	 	 	 	 	 	 						 							theorem)	

	
Which	in	turn	means	that	a	band-limited	funcNon	can	be	perfectly	reconstructed	by	

samples	of	the	funcNon	at	discrete	Nmes	nΔt.		
	 	 						
	 	 							is	the	Nyquist	frequency.		

													

� 

f =
1
2Δt

x(t) = Δt x(nΔt) sin(2π f (t − nΔt))
π (t − nΔt))n=−∞

∞

∑

Harry Nyquist 
1889-1976 

Claude Shannon 
1916 – 2001 



Δt x(nΔt) sin(2π f (t − nΔt))
π (t − nΔt))n=−∞

∞

∑

€ 

x(t)

n=-1,0,1 

n=-2,-1,0,1,2 n=-3, … ,0, ... 3 

n=0 

n=-5, … ,0, ... 5 N=-4, … ,0, ... 4 



Aliasing. If x(t) is not band-limited, then the sampling theorem is not satisfied,  
and there might be an aliasing effect. 
 
The frequencies higher than the Nyquist frequency will be squashed on to the 
frequencies resolved. 

€ 

x(nΔt)

€ 

x(t) Spectrum 



So we have discovered that: 
 
1) If a function is limited (or periodic) we can reconstruct it exactly with a 
countable Infinity of harmonic functions. 
The expansion coefficients of this reconstruction are given by the Fourier 
tranform of the function. 
 
2) If a function is band limited, it can be reconstructed entirely from a countable 
infinity of samples. Conversely, if a function is discretely sampled, all infomation 
to reconstruct it is included between + and – the Nyquist frequency. 
 
We are now ready to reconstruct exactly a limited and discretely sampled 
sequence of numbers by a discrete and limited Fourier expansion. 



Discrete	Fourier	analysis:	sampling	in	the	frequency	domain.	
	
If	we	have	a	discrete	and	limited	Nmeseries	
	
	
We	seek	its	discrete	Fourier	transform	in	the	frequency	range		
-1/2Δt ≤ s ≤ 1/2Δt,	that	is	–f ≤  s  ≤  f. Sampling	in	regular	intervals	we	get	the	
frequencies	
		
	
	
In	this	cases	it	is:	
	
	
	
	
	

	 	 	 	 	 		
	
	

	 	 	 	 	is	the	discrete	Fourier	transform	
	

€ 

ˆ x (sk ) = x(t)e− i2πst

−∞

∞

∫ dt = xn
n =0

N −1

∑ e−i2πsk tnΔt = Δt xn
n =0

N −1

∑ e− i2π (nΔt )(k / NΔt )

ˆ x (sk ) = Δt xn
n =0

N −1

∑ e
− i2π

nk
N

€ 

x(t) = x(nΔt) = xn ,     n = 0,1,2,3......,N −1

€ 

sk =
k
NΔt

                  k = −
N
2

,......,N
2

� 

ˆ x k = xn
n = 0

N −1

∑ e
−i2π

nk
N



xn =
1
N

x̂k
k=0

N−1

∑ e
i2π nk

NThe inverse transform is 
 
 
It is the exact reconstruction of the time domain discrete function via the Fourier 
coefficients and the Fourier basis. 
 
Exercise: prove the above definition of the inverse transform. 
 
 
The Parseval theorem takes the form: 
 
 
 
 
Exercise: prove it! 
 
 

xn
2

n=0

N−1

∑ = 1
N

x̂k
2

k=0

N−1

∑



Some symmetry properties, they hold for continuous and discrete FT 



Aliasing. If x(t) is not band-limited, then the sampling theorem is not satisfied,  
and there might be an aliasing effect. 
 
The frequencies higher than the Nyquist frequency will be squashed on to the 
frequencies resolved. 

€ 

x(nΔt)

€ 

x(t) Spectrum 



2d aliasing 



Time aliasing  
“the cartwheel effect” 

https://www.youtube.com/watch?v=2pbYKDW0myU 



https://www.youtube.com/watch?v=6XwgbHjRo30 



Fast Fourier Transform (FFT) 
 
One of the most common methods of spectral analysis used is the Fast Fourier 
Transform.  
 
The FFT reduces the number of operation to N log N. 

Cornelius Lanczos 
    (1893-1974) 

Gordon Danielson 
    (1912-1983) 

John Tukey 
(1915-2000) 

James Cooley 
   (1926- ) 



The FFT is  an efficient algorithm that works best when the length of the time series 
has been chosen to be an integer power of two N=2n. 
 
 
 

Defining                     , the Fourier transform becomes:                            . 
 
Hence the transform requires N2 operations. 
The FFT reduces the number of operation to N log2 N. 
 
An example with N=4 just to understand the idea 
Note that              and                       
  

� 

W = e
−i
2π
N

� 

ˆ x k = W nk xn
n = 0

N

∑

 

x! 0 = x0 + x1 + x2 + x3 = x0 + x2( ) + x1 + x3( )
x!1 = x0 +W

1x1 +W
2x2 +W

3x3 = x0 − x2( ) +W 1 x1 − x3( )
x! 2 = x0 +W

2x1 +W
4x2 +W

6x3 = x0 + x2( )− x1 + x3( )
x! 3 = x0 +W

3x1 +W
6x2 +W

9x3 = x0 − x2( )−W 1 x1 − x3( )

W 2 = −1 W 4 = 1



= Fk
ee +W kFk

eo +W kFk
oe +W 2kFk

oo

It is based on the idea of cutting the transform in two, then again 
in two, etc etc. 
 
At the end the transform is cut into pieces of length 1 tranforms. A length1 
transform is just the Identity. In general: 



So we are reduced to N identities, the  
trick consist in finding which n corresponds 
 to a given pattern of o’s and e’s.  
As it happens, if you put e=0 and o=1, the 
patterns « …eooeoeo... », reversed, give the 
value of n in binary!! 
 
The existences of the FFT  
Algorithm is one of the reasons  
Why Fourier analysis is so popular. 



Spectra. 
 
The simplest estimate of spectral power is the periodogram.  
One does the Fourier transform of the data series: 
 
 
 
 
And then plots: 
 
 
 
 
 
 
Remembering the Parseval theorem, one can see the periodogram is the 
variance of the signal per frequency. The sum of all             is the total variance.  

x̂k = xn
n=0

N−1

∑ e
− i2π nk

N

P(0) = 1
N 2 x̂0

2

P( fk ) =
1
N 2 x̂k

2 + x̂N−k
2( )

xn
2

n=0

N−1

∑ = 1
N

x̂k
2

k=0

N−1

∑
� 

P( fk )

(Parseval) 





 
Leakage, tapering etc… 
 
Some further considerations on computing spectra. An example to understand. 
Let us compute the Fourier transform of a cosine: 
 
 
 
 
 
 
 
 
 
Exercise: do it at the blackboard 
 
This is the “real” continuous Fourier transform. 
Now suppose that you only observe the original cosine signal for a limited 
amount of time [0,T]. How does the Fourier transform change? 
 

x(t) = cos 2π p1t( )

x̂(s) = cos(2π p1t)e
− i2π st dt

−∞

∞

∫ =

      = 1
2
δ (s − p1)+δ (s + p1)( )



This problem becomes the problem of computing the Fourier transform of 
 
                

      , where  
 
 
With some algebra one finds: 
 
 
 
 
 
Exercise: Who does it at  
the blackboard? 
 
 

     
 
 

       

xΠ(t) =Π t
T

⎛
⎝⎜

⎞
⎠⎟ cos 2π p1t( ) Π x( ) =

0  if   x >1
 1   if   x ≤1  

⎧
⎨
⎪

⎩⎪

x̂Π(s) = ???



This problem becomes the problem of computing the Fourier transform of 
 
                

      , where  
 
 
With some algebra one finds: 
 
 
 
 
 
Exercise: Who does it at  
the blackboard? 
 
 

    for 
 
 

       

xΠ(t) =Π t
T

⎛
⎝⎜

⎞
⎠⎟ cos 2π p1t( ) Π x( ) =

0  if   x >1
 1   if   x ≤1  

⎧
⎨
⎪

⎩⎪

x̂Π(s) =
sin(2πT (s − p1)
2π (s − p1)

+ sin(2πT (s + p1)
2π (s + p1)

⎧
⎨
⎩

⎫
⎬
⎭

T = 1, p1 = 1.5
Leakage 



Can we reduce this problem? Change the     function. 
 
For example, instead of a square function, take a triangle: 
 
 
 
 
 
 
The Fourier transform of 
 
 
 
 
 
gives: 
 
 
 
 
 
 
 
 
 
  

€ 

Π

� 

Λ x( ) =
0   if   x > 1

 1− x   if   x ≤1  
⎧ 
⎨ 
⎩ 

� 

ˆ x Λ(s) =
sin2(2πT(s − p1)

2π(s − p1)[ ]2 +
sin2(2πT(s + p1)

2π(s + p1)[ ]2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

� 

xΛ(t) = Λ
t
T
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ cos 2πp1t( )



Smaller leakage 

Larger peaks 

There is always a trade off 
between leakage and 
resolution 



More sophisticated windows and associated leaking function. 
Multiplying the data timeseries by a window is called “tapering”. 
 
 
 
From the “Numerical Recipes”: 



Data windowing. 
 
According to the considerations that we made above on spectral leakage, before 
computing the spectrum, one can multiply the data by one of the well conceived 
windows that we have seen. (Tapering) 
 
Most software packages propose pre-computed window tapering. 



The periodogram values are subject to substantial random fluctuation, 
because they are one realization of an underlying random process. We 
are thus faced with the problem of very many "chaotic" periodogram spikes. 
Every determination of the spectral power at a given frequency is affected by 
an error.  
A by-the-eye estimate of the error – the variance – of the power estimates is 
the width of the wiggles in the periodogram. 
How can we reduce the error of estimation of spectral density?  
 
 
 



First consideration: having a longer timeseries does not reduce the error in 
the estimate of the spectral power at a given frequency, i.e. it doesn’t 
increase the statistical significance of the spectrum found. 
- If we take a longer sample at the same sampling rate, we increase the   
resolution. 
-  If we take a higher sampling rate, we have a larger spectrum of frequencies. 
Remind that the frequencies are given by:  
 
 
 
 
Where for k=-N/2 and k=N/2 we get the Nyquist frequency          . 

How is this possible? All the additional information goes into computing 
more frequency points, not into computing more accurately the same 
frequencies. 
 
Instead, we may want to find frequency regions, consisting of many adjacent 
frequencies, we want to trade spectral resolution versus statistical 
significance. 
 

� 

fk =
k
NΔt

                  k = −
N
2

,......,N
2

� 

1
2Δt



Two possible strategies to do so: 
1)  Band averaging 
2)  Subsampling. 

1) Band averaging consists simply in computing a periodogram estimate 
with finer discrete frequency spacing than you really need, and then to sum the 
periodogram estimates at K consecutive discrete frequencies to get one 
“smoother” estimate at the mid-frequency of those K. The variance of that 
summed estimate will be smaller than the estimate itself by a factor of exactly 
K. 
 
2) A second technique is to partition the original sampled data into K segments 
each of M consecutive sampled points. Each segment is separately Fourier-
transformed to produce a periodogram. Finally, the K periodogram estimates 
are averaged at each frequency. It is this final averaging that reduces the 
variance of the estimate by a factor K (the standard deviation by K1/2). This 
technique is the natural choice for processing long runs of data. 
Instead of just cutting the series, one can taper each chunk with a non-square 
window, in this case, some overlap of the chunk edges is possible. 



There is a technique that optimizes the trade-off between reduction of spectral 
leakage, reduction of error in the estimate of the spectrum and loss of 
resolution. 
 
The Multitaper method computes spectra tapering with windows that are 
orthogonal to one-another, and that minimize the leakage. 



δ18O for past 800 kyr - In plancton sediments 

Richard A. Muller, and Gordon J. MacDonald PNAS 
1997;94:8329-8334 

©1997 by National Academy of Sciences 

δ18O for past 800 kyr. (a) Data of site 607 from Ruddiman et al. (15). (b) Specmap stack of Imbrie et al. (16). (c) Spectral power of 
site 607. (d) Spectral power of Specmap. In the Milankovitch theory, the peak near 0.01 (100-kyr period) is attributed to eccentricity, 
the peak near 0.024 (41-kyr period) to obliquity, and the peak near 0.043 (23-kyr period) to precession. 



Multitaper spectral 
analysis results of a). 
the Hurrell [1995] 
DJFM NAOSLP 
index over the 
periods 1874-1979 
and b). 1874-1995; 
c). R4 over the 
periods 1874-1979 
and d). 1750-1979 
Figure 

Cullen, D'Arrigo, Cook, Mann. Multiproxy (ice cores, tree rings, sediments..) 
reconstructions of the North Atlantic Oscillation.  



Figure 4. Power spectrum 
(unnormalized variance) for 
R8 proxy ENSO index 
(EOF1) for the period 1727–
1982. Significance at the 
90% and 95% (dotted 
lines) level is indicated 
relative to estimated 
background AR1 noise 
(solid line). Effective 
bandwidth after smoothing = 
3.2/N cycles/a. 
Enhanced EPS [1.0 MB] 

Braganza, K., J. L. Gergis, S. B. Power, J. S. Risbey, and A. M. Fowler 
(2009), A multiproxy index of the El Niño–Southern Oscillation, A.D. 
1525–1982, J. Geophys. Res., 114, D05106, doi:10.1029/2008JD010896. 

Examples of power spectra 



LEFT: Multi-taper power 
spectrum of the above 
coralline red algal time 
series showing 
significant power at 
~60, 10, 4, 2.5 and 2.25 
years. The power 
spectrum corresponds 
to cyclic climate 
patterns associated 
with the El Nino-
Southern Oscillation 
and the Pacific Decadal 
Oscillation. 

Examples of power spectra 



What are the statistical significance lines that you see in these figures? 
 
It is the spectrum of the “null hypothesis”, i.e. the hypothesis that the spectrum is 
the result of a random time series, or the spectrum of noise.  
 
So, one can build a number of rednoise time series that has the same 
autocorrelation at a given lag τ, as the data sample, as well as the same 
variance. Then one computes the spectra and extract a PDF, plotting the – say – 
95th centile as a function of the frequency.  
 
The spectrum of a rednoise process with a given autocorrelation and variance 
can also be computed theoretically. 



2D application 



END	



ROADMAP	for	exercise	2.	
	
1)	Get	Southern	OscillaNon	Index	(SOI)	data	from	the	class	website.	

	What’s	SOI?	Check	it	out:	h?p://www.cgd.ucar.edu/cas/catalog/climind/soi.html.		
	Transform	the	data	from	an	array	to	a	vector	(reshape…)	

	
2)	Compute	Fourier	transform	of	the	data	(commands:	LshiM	and/or	L)	
	
3) 	Understand	how	the	Fourier	coefficients	are	ordered	in	output.	Define	a	vector	of	the	frequencies.	
	
4)	Compute	the	spectrum	(periodogram)	and	plot	it	as	a	funcNon	of	frequency		
Try	different	graphical	representaTons,	log-log,	log-lin,	lin-lin…	
	
5)	Band-average	for	smoothing	the	result		

	Define	a	window	length,	sum	the	spectral	coefficient	and	plot	as	a	funcTon	of	the	central	or	mean	
	frequency.	

	
6)	Define	a	rednoise	model	of	your	data	Nmeseries	

	The	rednoise	model	is	defined	by	the	recursive	formula	xn+1=axn+wn,	where	the	variance	of	xn	and	the	
	autocorrelaTon	at	lag	1	are	the	same	as	the	ones	of	the	data.	

	
7)	Use	the	rednoise	model	to	build	a	test	of	staNsNcal	significance	of	your	spectrum.	

	build	1000	rednoise	Tmeseries,	compute	the	spectrum	for	each	of	them,	with	the	same	band	
	averaging	as	the	data.	EsTmate	the	95%	and	99%	cenTle	of	the	rednoise	spectra.	Plot	on	top	of	the	
	data	spectrum.	You	may	also	compare	with	the	thoereTcal	spectrum	of	the	rednoise.	



Spectrum SOI 

Spectrum QBO 



From: Labat et al, 2005. Journal of Hydrology, 314, pp. 289-311  

SOI  

NAO  


