
Fabio D’Andrea
LMD – 4e étage “dans les serres”
01 44 32 22 31

dandrea@lmd.ens.fr

http://www.lmd.ens.fr/dandrea/TEACH

mailto:dandrea@lmd.ens.fr
http://www.lmd.ens.fr/dandrea/CLASS_2013


Program 17/1 Elementary statistics – 1
23/1  Elementary statistics - 2 
14/2  Exercises – Computer room

14/2  Fourier Analysis -1 
3/3 Fourier Analysis -2, stochastic processes 
6/3 Exercises – Computer room
13/3 Exercises – Computer room

13/3 Principal component analysis -1
20/3 Principal component analysis -2
27/3 Exercises – Computer room
3/4 Exercises – Computer room

17/4 Cluster analysis – Machine learning
24/4 Exercises – Computer room

15/5 Principal component analysis: Complements 

22/5 Exam



. Lesson 2.
Frequency domain methods.



Fourier transform. A reminder.

 
F (x(t)) = x̂(s) = x(t)e− i2π st dt

−∞

∞

∫

For any “well behaved” function x(t), the Fourier 
transform will be written:  

Joseph Fourier 
1768 - 1830

P(s) = x̂(s) 2 + x̂(−s) 2( )

x(t) x̂(s)
 F

 F
−1

Spectral density:



Important theorems:

 

1)  if  f ∗g = f (t)g(τ − t)dt
−∞

∞

∫   then   F ( f ∗g) = f̂ (s) ⋅ĝ(s)  (Convolution)

2)  if f •g = f (t)g(τ + t)dt
−∞

∞

∫    then   F( f •g) = f̂ (s)* ⋅ĝ(s) (Cross − correlation)

3)  x(t)2 dt
−∞

∞

∫   = x̂(s) 2 ds    (Parseval)
−∞

∞

∫



In most practical applications, the function x(t) is only known at discrete 
intervals of time Δt, and for a non-infinite time, 0 ≤ t ≤ T. 

Hence and

Δt is also called “sampling interval”, and Δt-1 is called the “sampling rate”.

There is also a special frequency that can be defined, the Nyquist frequency:

f = 1
2Δt

x(t) = x(nΔt), n = 0,1,...N T = NΔt



Fourier Series. A reminder.

Any periodic function                                    can be written as a Fourier Series

Where the Fourier coefficients are defined as:

x(t) = a0
2
+ an cos

2πnt
T

⎛
⎝⎜

⎞
⎠⎟ +n=1

∞

∑ bn sin
2πnt
T

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑

x(t) = x(t +T )

an = x(t)cos 2πnt
T

⎛
⎝⎜

⎞
⎠⎟ dt−T

2

T
2∫ ,     for  n ≥ 0

bn = x(t)sin 2πnt
T

⎛
⎝⎜

⎞
⎠⎟ dt−T

2

T
2∫ ,     for  n ≥1

0 T



Fourier Series. A reminder.

x(t) = cne
i
2πnt

T

n=−∞

∞

∑

Any periodic function                                    can be written as a Fourier Series 

Where the Fourier coefficients are defined as:

This is a compact way of writing the original Fourier 
formula that made use of sines and cosines, Where 
the coefficients are related in this way:

cn = x(t)e
− i2πnt

T dt
−T
2

T
2∫

an = cn + c−n        n = 0,1,2,3...
bn = i(cn − c−n )     n = 1,2,3.....

� 

x(t) = x(t +T)

0 T





Interpretation as basis of a Hilbert space

Functions                          are an orthonormal basis of the space 

of the square-Integrable functions defined over                          . This space is 
called a Hilbert space with an inner product defined as:

So that any function of the space can be expanded as:

This also holds for the sines and cosines representation of the Fourier basis. In

this case  the basis would be formed by the functions 1,                     and

.

e n=
1
T
e
− i2πnt

T

−T / 2, T / 2[ ]
 L

2 −T / 2, T / 2[ ]( )

< f ,g >= f (t)g(t)* dt
−T
2

T
2∫

f = < f ,en > en
n=−∞

∞

∑

2
T
sin 2πnt

T

2
T
cos 2πnt

T



Step wave Triangular wave





In most practical applications, the function x(t) is only known at discrete 
intervals of time Δt, and for a non-infinite time, 0 ≤ t ≤ T. 

Hence and

Δt is also called “sampling interval”, and Δt-1 is called the “sampling rate”.

There is also a special frequency that can be defined, the Nyquist frequency:

� 

f =
1
2Δt

x(t) = x(nΔt), n = 0,1,...N 

� 

T = NΔt



It can be shown that if a continuous it is band-limited [ -f , f ], then it can be 
reconstructed exactly by a countable infinity of discrete samples. There is a link 
between the frequency limits and the sampling rate Δt. 

Nyquist frequency. 

We can write:

(Nyquist-Shannon sampling 
theorem)

This also means that, conversely, if you only have discrete samples of a function, all you 
can reconstruct about it is limited in band!

� 

f =
1
2Δt

x(t) = Δt x(nΔt) sin(2π f (t − nΔt))
π (t − nΔt))n=−∞

∞

∑

Harry Nyquist
1889-1976

Claude Shannon
1916 – 2001



Δt x(nΔt) sin(2π f (t − nΔt))
π (t − nΔt))n=−∞

∞

∑

€ 

x(t)

n=-1,0,1

n=-2,-1,0,1,2 n=-3, … ,0, ... 3

n=0

n=-5, … ,0, ... 5N=-4, … ,0, ... 4



Aliasing. If x(t) is not band-limited, then the sampling theorem is not satisfied,  
and there might be an aliasing effect.

The frequencies higher than the Nyquist frequency will be squashed on to the 
frequencies resolved.

€ 

x(nΔt)

€ 

x(t) Spectrum



So we have discovered that:

1) If a function is limited (or periodic) we can reconstruct it exactly with a 
countable Infinity of harmonic functions.
The expansion coefficients of this reconstruction are given by the Fourier 
tranform of the function.

2) If a function is band limited, it can be reconstructed entirely from a countable 
infinity of samples. Conversely, if a function is discretely sampled, all infomation 
to reconstruct it is included between + and – the Nyquist frequency.

We are now ready to reconstruct exactly a limited and discretely sampled 
sequence of numbers by a discrete and limited Fourier expansion.



Discrete Fourier analysis: sampling in the frequency domain.

If we have a discrete and limited timeseries

We seek its discrete Fourier transform in the frequency range 
-1/2Δt ≤ s ≤ 1/2Δt, that is –f ≤  s  ≤  f. Sampling in regular intervals we get the 
frequencies

Hence we can write :

is the discrete Fourier transform

x̂(sk ) = x(t)e− i2π skt
−∞

∞

∫ dt = xn
n=0

N−1

∑ e− i2π sktnΔt = Δt xn
n=0

N−1

∑ e− i2π (nΔt )(k /NΔt )

x̂(sk ) = Δt xn
n=0

N−1

∑ e
− i2π nk

N

€ 

x(t) = x(nΔt) = xn ,     n = 0,1,2,3......,N −1

€ 

sk =
k
NΔt

                  k = −
N
2

,......,N
2

� 

ˆ x k = xn
n = 0

N −1

∑ e
−i2π

nk
N



xn =
1
N

x̂k
k=0

N−1

∑ e
i2π nk

NThe inverse transform is

It is the exact reconstruction of the time domain discrete function via the Fourier 
coefficients and the Fourier basis.

Exercise: prove the above definition of the inverse transform.

The Parseval theorem takes the form:

Exercise: prove it!

xn
2

n=0

N−1

∑ = 1
N

x̂k
2

k=0

N−1

∑



Some symmetry properties, they hold for continuous and discrete FT



Aliasing. If x(t) is not band-limited, then the sampling theorem is not satisfied,  
and there might be an aliasing effect.

The frequencies higher than the Nyquist frequency will be squashed on to the 
frequencies resolved.

€ 

x(nΔt)

€ 

x(t) Spectrum



2d aliasing



Time aliasing 
“the cartwheel effect”

https://www.youtube.com/watch?v=2pbYKDW0myU



https://www.youtube.com/watch?v=6XwgbHjRo30



Fast Fourier Transform (FFT)

One of the most common methods of spectral analysis used is the Fast Fourier
Transform. 

The FFT reduces the number of operation to N log N.

Cornelius Lanczos
(1893-1974)

Gordon Danielson
(1912-1983)

John Tukey
(1915-2000)

James Cooley
(1926- )



The FFT is  an efficient algorithm that works best when the length of the time series 
has been chosen to be an integer power of two N=2n.

Defining                     , the Fourier transform becomes:                            .

Hence the transform requires N2 operations.
The FFT reduces the number of operation to N log2 N.

An example with N=4 just to understand the idea
Note that              and                      

� 

W = e
−i
2π
N

� 

ˆ x k = W nk xn
n = 0

N

∑

 

x! 0 = x0 + x1 + x2 + x3 = x0 + x2( ) + x1 + x3( )
x!1 = x0 +W

1x1 +W
2x2 +W

3x3 = x0 − x2( ) +W 1 x1 − x3( )
x! 2 = x0 +W

2x1 +W
4x2 +W

6x3 = x0 + x2( )− x1 + x3( )
x! 3 = x0 +W

3x1 +W
6x2 +W

9x3 = x0 − x2( )−W 1 x1 − x3( )

W 2 = −1 W 4 = 1



= Fk
ee +W kFk

eo +W kFk
oe +W 2kFk

oo

It is based on the idea of cutting the transform in two, then again
in two, etc etc.

At the end the transform is cut into pieces of length 1 tranforms. A length1 
transform is just the Identity. In general:



So we are reduced to N identities, the 
trick consist in finding which n corresponds
to a given pattern of o’s and e’s. 
As it happens, if you put e=0 and o=1, the 
patterns « …eooeoeo... », reversed, give the 
value of n in binary!!

The existences of the FFT 
Algorithm is one of the reasons 
Why Fourier analysis is so popular.



Spectra.

The simplest estimate of spectral power is the periodogram. 
One does the Fourier transform of the data series:

And then plots:

Remembering the Parseval theorem, one can see the periodogram is the 
variance of the signal per frequency. The sum of all             is the total variance. 

x̂k = xn
n=0

N−1

∑ e
− i2π nk

N

P(0) = 1
N 2 x̂0

2

P( fk ) =
1
N 2 x̂k

2 + x̂N−k
2( )

xn
2

n=0

N−1

∑ = 1
N

x̂k
2

k=0

N−1

∑
� 

P( fk )

(Parseval)





Leakage, tapering etc…

Some further considerations on computing spectra. An example to understand.
Let us compute the Fourier transform of a cosine:

Exercise: do it at the blackboard

This is the “real” continuous Fourier transform.
Now suppose that you only observe the original cosine signal for a limited 
amount of time [0,T]. How does the Fourier transform change?

x(t) = cos 2π p1t( )

x̂(s) = cos(2π p1t)e
− i2π st dt

−∞

∞

∫ =

      = 1
2
δ (s − p1)+δ (s + p1)( )



This problem becomes the problem of computing the Fourier transform of

, where 

With some algebra one finds:

Exercise: Who does it at 
the blackboard?

xΠ(t) =Π t
T

⎛
⎝⎜

⎞
⎠⎟ cos 2π p1t( ) Π x( ) =

0  if   x >1
 1   if   x ≤1  

⎧
⎨
⎪

⎩⎪

x̂Π(s) = ???



This problem becomes the problem of computing the Fourier transform of

, where 

With some algebra one finds:

Exercise: Who does it at 
the blackboard?

for

xΠ(t) =Π t
T

⎛
⎝⎜

⎞
⎠⎟ cos 2π p1t( ) Π x( ) =

0  if   x >1
 1   if   x ≤1  

⎧
⎨
⎪

⎩⎪

x̂Π(s) =
sin(2πT (s − p1)
2π (s − p1)

+ sin(2πT (s + p1)
2π (s + p1)

⎧
⎨
⎩

⎫
⎬
⎭

T = 1, p1 = 1.5
Leakage



Can we reduce this problem? Change the     function.

For example, instead of a square function, take a triangle:

The Fourier transform of

gives:

€ 

Π

� 

Λ x( ) =
0   if   x > 1

 1− x   if   x ≤1  
⎧ 
⎨ 
⎩ 

� 

ˆ x Λ(s) =
sin2(2πT(s − p1)

2π(s − p1)[ ]2 +
sin2(2πT(s + p1)

2π(s + p1)[ ]2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

� 

xΛ(t) = Λ
t
T
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ cos 2πp1t( )



Smaller leakage

Larger peaks

There is always a trade off 
between leakage and 
resolution



More sophisticated windows and associated leaking function.
Multiplying the data timeseries by a window is called “tapering”.

From the “Numerical Recipes”:



Data windowing.

According to the considerations that we made above on spectral leakage, before 
computing the spectrum, one can multiply the data by one of the well conceived 
windows that we have seen. (Tapering)

Most software packages propose pre-computed window tapering.



The periodogram values are subject to substantial random fluctuation, 
because they are one realization of an underlying random process. We 
are thus faced with the problem of very many "chaotic" periodogram spikes.
Every determination of the spectral power at a given frequency is affected by 
an error. 
A by-the-eye estimate of the error – the variance – of the power estimates is 
the width of the wiggles in the periodogram.
How can we reduce the error of estimation of spectral density? 



First consideration: having a longer timeseries does not reduce the error in 
the estimate of the spectral power at a given frequency, i.e. it doesn’t 
increase the statistical significance of the spectrum found.
- If we take a longer sample at the same sampling rate, we increase the   
resolution.
- If we take a higher sampling rate, we have a larger spectrum of frequencies.
Remind that the frequencies are given by: 

Where for k=-N/2 and k=N/2 we get the Nyquist frequency          .

How is this possible? All the additional information goes into computing 
more frequency points, not into computing more accurately the same 
frequencies.

Instead, we may want to find frequency regions, consisting of many adjacent 
frequencies, we want to trade spectral resolution versus statistical 
significance.

� 

fk =
k
NΔt

                  k = −
N
2

,......,N
2

� 

1
2Δt



Two possible strategies to do so:
1) Band averaging
2) Subsampling.

1) Band averaging consists simply in computing a periodogram estimate
with finer discrete frequency spacing than you really need, and then to sum the 
periodogram estimates at K consecutive discrete frequencies to get one 
“smoother” estimate at the mid-frequency of those K. The variance of that 
summed estimate will be smaller than the estimate itself by a factor of exactly 
K.

2) A second technique is to partition the original sampled data into K segments 
each of M consecutive sampled points. Each segment is separately Fourier-
transformed to produce a periodogram. Finally, the K periodogram estimates 
are averaged at each frequency. It is this final averaging that reduces the 
variance of the estimate by a factor K (the standard deviation by K1/2). This 
technique is the natural choice for processing long runs of data.
Instead of just cutting the series, one can taper each chunk with a non-square 
window, in this case, some overlap of the chunk edges is possible.



There is a technique that optimizes the trade-off between reduction of spectral 
leakage, reduction of error in the estimate of the spectrum and loss of 
resolution.

The Multitaper method computes spectra tapering with windows that are 
orthogonal to one-another, and that minimize the leakage.



δ18O for past 800 kyr - In plancton sediments

Richard A. Muller, and Gordon J. MacDonald PNAS 
1997;94:8329-8334

©1997 by National Academy of Sciences

δ18O for past 800 kyr. (a) Data of site 607 from Ruddiman et al. (15). (b) Specmap stack of Imbrie et al. (16). (c) Spectral power of 
site 607. (d) Spectral power of Specmap. In the Milankovitch theory, the peak near 0.01 (100-kyr period) is attributed to eccentricity, 
the peak near 0.024 (41-kyr period) to obliquity, and the peak near 0.043 (23-kyr period) to precession.



Multitaper spectral 
analysis results of a). 
the Hurrell [1995] 
DJFM NAOSLP 
index over the 
periods 1874-1979 
and b). 1874-1995; 
c). R4 over the 
periods 1874-1979
and d). 1750-1979
Figure

Cullen, D'Arrigo, Cook, Mann. Multiproxy (ice cores, tree rings, sediments..) 
reconstructions of the North Atlantic Oscillation. 



Figure 4. Power spectrum 
(unnormalized variance) for 
R8 proxy ENSO index
(EOF1) for the period 1727–
1982. Significance at the 
90% and 95% (dotted
lines) level is indicated 
relative to estimated 
background AR1 noise
(solid line). Effective 
bandwidth after smoothing = 
3.2/N cycles/a.
Enhanced EPS [1.0 MB]

Braganza, K., J. L. Gergis, S. B. Power, J. S. Risbey, and A. M. Fowler
(2009), A multiproxy index of the El Niño–Southern Oscillation, A.D.
1525–1982, J. Geophys. Res., 114, D05106, doi:10.1029/2008JD010896.

Examples of power spectra



LEFT: Multi-taper power 
spectrum of the above 
coralline red algal time 
series showing 
significant power at 
~60, 10, 4, 2.5 and 2.25 
years. The power 
spectrum corresponds 
to cyclic climate 
patterns associated 
with the El Nino-
Southern Oscillation 
and the Pacific Decadal 
Oscillation.

Examples of power spectra



What are the statistical significance lines that you see in these figures?

It is the spectrum of the “null hypothesis”, i.e. the hypothesis that the spectrum is 
the result of a random time series, or the spectrum of noise. 

So, one can build a number of rednoise time series that has the same 
autocorrelation at a given lag τ, as the data sample, as well as the same 
variance. Then one computes the spectra and extract a PDF, plotting the – say –
95th centile as a function of the frequency. 

The spectrum of a rednoise process with a given autocorrelation and variance 
can also be computed theoretically.



2D application



END



ROADMAP for exercise 2.

1) Get Southern Oscillation Index (SOI) data from the class website.
What’s SOI? Check it out: http://www.cgd.ucar.edu/cas/catalog/climind/soi.html. 
Transform the data from an array to a vector (reshape…)

2) Compute Fourier transform of the data (commands: fftshift and/or fft)

3) Understand how the Fourier coefficients are ordered in output. Define a vector of the frequencies.

4) Compute the spectrum (periodogram) and plot it as a function of frequency 
Try different graphical representations, log-log, log-lin, lin-lin…

5) Band-average for smoothing the result 
Define a window length, sum the spectral coefficient and plot as a function of the central or mean 
frequency.

6) Define a rednoise model of your data timeseries
The rednoise model is defined by the recursive formula xn+1=axn+wn, where the variance of xn and the 
autocorrelation at lag 1 are the same as the ones of the data.

7) Use the rednoise model to build a test of statistical significance of your spectrum.
build 1000 rednoise timeseries, compute the spectrum for each of them, with the same band 
averaging as the data. Estimate the 95% and 99% centile of the rednoise spectra. Plot on top of the 
data spectrum. You may also compare with the thoeretical spectrum of the rednoise.

http://www.cgd.ucar.edu/cas/catalog/climind/soi.html


Spectrum SOI

Spectrum QBO



From: Labat et al, 2005. Journal of Hydrology, 314, pp. 289-311 

SOI

NAO


