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Program	 18/1  Elementary statistics – 1 
25/1   Elementary statistics - 2  
8/2     Exercises – Computer room 
 
15/2   Fourier Analysis -1  
22/2  Fourier Analysis -2, stochastic processes  
1/3    Exercises – Computer room 
8/3    Exercises – Computer room 
 
15/3  Principal component analysis -1 
22/3  Principal component analysis -2 
29/3    Exercises – Computer room 
5/4          Exercises – Computer room 
 
12/4  Cluster analysis 
19 /4   Exercises – Computer room 
 
26/4  Principal component analysis: Complements   
 
10/5  catch-up, we will see 
17/5  Q&A 
 
7/6   Exam 



.	Lesson	3.	
Stochas6c	Processes,	the	role	of	Noise	



� 

xt = Dt + Nt

Noise 

A time series can be seen as the sum of a deterministic part and a noise part 



A time series can be seen as a finite sample of a stochastic process. 
 
The state of a stochastic process     at time t depends on the state at all other times. 
 
Properties of stochastic processes: 
 
Characteristic time. 
The series is  
Autocorrelated: 
 
 
The time    for which the  
Probability becomes 0.5 
Is the characteristic time. 
 
 
Stationarity 
The statistical properties do not depend on time:      has the same PDF for all t, and 
the joint PDF of     and       depend only on          .  
 
Weak Stationarity  
Same but only for mean and variance. 
 

MJO index - 1986
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P(xt+τ > 0 | xt > 0) > 0.5.

€ 

τ

� 

xt

� 

xt

� 

xs

� 

t − s

€ 

xt



stationarity with trend 
 
Cyclo-stationarity 
 
Cyclo-stationarity with trend 
 
Ergodicity 



, where      is a white noise  

Random Walk 

xt = zi
i=1

t

∑ zt

Example of a simulation of long-range 
transport of air pollutants.Left: 
Simulated 1000 hPa height field 24 
hours after model initialization.Right: 
Distribution of pollutant continuously 
emitted in east England after 24 
hours. From Lehmhaus et al. 

Example, pollutant transport: 
 
 xt+1 = xt +U + zt



Autoregressive processes 
 
It’s a sub-class of stochastic processes. But one can show that well behaved 
stochastic processes (stationary and ergodic) can be approximated by an 
autoregressive process. 
 
 
 
 
p  is the order. Common writing is AR(p): AR(1) is an order 1, AR(2) etc etc. 
If a process has mean zero it is            . 
 
So, an order 1, zero mean process can be written (red noise): 
                          . 
 
An order 0 (white noise): 
 
 
 
 
                            

� 

xt = a0 + ak
k=1

p

∑ xt−k + wt

� 

a0 = 0

� 

xt = a1xt−1 + wt

� 

xt = wt



Autoregressive processes are cool because: 
 
1)  Given any weakly stationary ergodic process it is possible to find an AR-process 
that approximates it arbitrarily closely 

2)  They can be seen as discretizations of ordinary differential equations. For 
example, order 1: 
 
 
 
 
 
 
 
 
 
 
And order 2? Exercise! 
 
 
 

� 

dx(t)
dt

+ αx(t) = f (t)

xt − xt−dt
dt

= αxt + f t

xt = axt−1 + wt               a =
1

1−α
,wt =

f t
1−α



AR(1) processes  
 
If we know the parameters    and      we can compute the variance and the 
autocorrelation of the AR(1) process. The autocorrelation is simply given by     and 
 
 

� 

a

� 

σw

� 

xt+1 = a1xt + wt

� 

σx
2 =

σw
2

1− a2
.

� 

a

One can construct a “rednoise 
model” of a given timeseries. 
Equalling the rednoise variance and 
autocorrelation and the timeseries 
variance and autocorrelation. That 
gives two equations for     and       . 
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a

� 

σw
2



Although there is no “memory” beyond lag 1, there is power at very low 
frequencies. Nonzero autocorrelation at short time lags can create high power at 
low frequency! 
 
This is a feature of climatic – and geophysical – timeseries.  
 
The rednoise process is used as a null hypothesis in spectral estimation.  

AR(p) spectrum. It can be shown that: 
 
 
 
 
 
Which in the case of an AR(1) becomes: 
 

� 

P( f ) = σx
2 1− a2

1− 2acos(2πf ) + a2
.

� 

P( f ) =
σw

2

1−1− ake
i2πfk

k=1

p∑ 2
.


