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Sta0s0cal	so4ware	
	
R,	SAS,	Matlab,	Pyton…..	
	
Do	it	yourself	or	use	packaged	rouJnes??	

Further reading: 
 
H. Von Storch and F. Zwiers. Statistical Analysis for Climate Research 
Cambridge University Press, 1999 

http://www.statsoft.com/Textbook 



.	Lesson	1.	
Introduc0on	to	elementary	sta0s0cs	



What	exactly	is	sta0s0cs	?	
	
The	purpose	of	staJsJcs	is	to	develop	and	apply	methodology	for	extracJng	
useful	knowledge	from	both	experiments	and	data.	In	addiJon	to	its	fundamental	
role	in	data	analysis,	staJsJcal	reasoning	is	also	extremely	useful	in	data	
collecJon	(design	of	experiments	and	surveys)	and	also	in	guiding	proper	
scienJfic	inference	(Fisher,	1990).	
	
StaJsJcal	data	analysis	can	be	subdivided	into	:	
	
descrip0ve	sta0s0cs	
inferen0al	sta0s0cs.		
	
DescripJve	staJsJcs	is	concerned	with	exploring	and	describing	a	sample	of	data,	
whereas	inferenJal	staJsJcs	uses	staJsJcs	from	sample	of	data	to	make	
statements	about	the	whole	populaJon.		



We	will	see	how	we	describe	random	variables,	by	their	mean,	variance,	and	
p.d.f,	and	how	we	compare	different	random	variables.	
	
A	random	variable	can	be	thought	of	as	an	unknown	value	that	may	change	
every	Jme	it	is	inspected.	Thus,	a	random	variable	is	a	funcJon	mapping	the	
sample	space	of	a	random	process	(a	physical	process)	to	the	space	of	real	
numbers.	

                              EXAMPLES 
Discrete       Continuous 
number of people in a car   total weight of people in a car 
number of cars in a parking lot  distance between cars in a parking lot 
number of phone calls to 911   time between calls to 911. 



In	geophysics	we	oYen	have	to	do	with	data	–	typically	with	Jme	series:	
	
Let’s	call	a	Jmeseries	x(t),	or,	in	the	discrete	case,	xi	where	i=1,2,…..,N	
	
xi	can	be	a	scalar	number,	or	also	it	can	be	a	vector.	
	
	
Time	series	analysis	is	a	sub-field	of	staJsJcs.	It	is	declined	in	two	main	fields:	
		
	0me	domain	methods	and	frequency	domain	methods.	

xi ∈ℜ
d



Scalar	and	vector	
examples	



DescripJve	vs	Inference	

Descrip0ve	Sta0s0cs	
Gives	numerical	and	graphic	procedures	to	summarize	a	collecJon	of	data	in	a	

clear	and	understandable	way	
	 	 	 	Finding	ways	to	summarize	the	important	characterisJcs	of	a	
dataset	

	
Inferen0al	Sta0s0cs		
Provides	procedures	to	draw	inferences	about	a	populaJon	from	a	sample	

	 	 		
	 							How	and	when	to	generalize	from	a	sample	dataset	to	the	larger	 	
	 	 	populaJon	

	

	



StaJsJcal	Methods	

Statistical 
Methods 

Descriptive 
Statistics 

Inferential 
Statistics 

Probability 



Elementary description  
of data: the table 

Name	 Height	(cm)	

1	 Fabio	 180	

2	 Francois	 181	

3	 Jean-Philippe	 185	

4	 Loic	 172	

5	 Ara	 176	

6	 Alvaro	 172	

7	 Ann’Sophie	 170	

8	 Xavier	 180	

9	 Guillaume	 183	

10	 Hector	 171	

11	 Bernard	 182	

12	 Michael	 177	

13	 Marta	 162	

14	 Tonia	 178	

The graph: 

Paris minimum temperature 
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Basic attributes of data population: 
 
N             population size 

mean 

variance 

 is the standard deviation 



Name	 Height	(cm)	

1	 Fabio	 180	

2	 Francois	 181	

3	 Jean-Philippe	 185	

4	 Loic	 172	

5	 Ara	 176	

6	 Alvaro	 172	

7	 Ann’Sophie	 170	

8	 Xavier	 180	

9	 Guillaume	 183	

10	 Hector	 171	

11	 Bernard	 182	

12	 Michael	 177	

13	 Marta	 162	

14	 Tonia	 178	 � 

N =14

µ =176.36

σ = 6.30



Paris minimum temperature 
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N =13149

µ = 8.68

σ = 5.70
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M(x) = µ =
1
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∑ E(x) = xf (x)dx
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∞

∫

The	mean:	 The	mathemaJcal	expectaJon,	or	
expected	value:	
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N
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∑ N( ˆ x ) = ˆ x n
n=1

6

∑ f ( ˆ x )

Timeseries	(sample)																											 Count	 Frequency	

Equivalent to 



In	the	case	of	a	real	and	conJnuous	random	variable,	the	probability	density	
funcJon	(PDF)	is	a	real	funcJon	f	for	which:	

P(a ≤ x ≤ b) = f (x)dx
a

b

∫

It	has	the	properJes	of	a	
distribuJon,	hence:	

f (x)dx
−∞

∞

∫ = 1

∀x ; f (x) ≥ 0



var(x) =σ 2 = 1
N

(xi − E(x))
2

i=1

N

∑

var(x) = E((x − E(x))2 ) = (x − E(x))2 f (x)dx
−∞

∞

∫

In	the	discrete	case:	

In	the	same	way	as	the	mathemaJcal	expectaJon,	or	mean:	
	
The	second	moment	is	the	the	variance:	



Normal	distribuJon,	or	Gaussian	distribuJon.	
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1
N
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∑

Higher	order	moments	
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a3 =
m3

σ 3

€ 

a4 =
m4

σ 4



Other distributions: 

Exponential Flat 

€ 

f (x) = λe−λx



InterpretaJon	of	probability:	
	
1) 	Inverse	of	the	number	of	possible	ways	of	happening	of	an	event	(classical	interpretaJon)		
2) 	Frequency	of	a	repeated	event	(frequenJst	interpretaJon)	
3) 	Non-frequenJst	subjecJve	interpretaJon	-	Bayes	
4) 	MathemaJcal	definiJon	(Kolmogorov)	



An event A is a set (or group) of possible outcomes of an uncertain process 

A random variable, X, is a label allocated to a random event A. 
The probability is a function defined on the event space,  

P(A) = P(X = x) ∈ [0,1]



€ 

P(A |B)P(B) = P(B | A)P(A)

Some properties of probability 

€ 

1) P(¬A) = P(Ac ) =1− P(A)
2)  P(A∪ B) = P(A) + P(B) − P(A∩ B)
3)  P(A∩ B) = P(A |B)P(B)
    P(A∩ B) = P(A)P(B)

From (3), we can also write: (Bayes Theorem) 

€ 

P(A)

€ 

P(B)



Exercise	
	
The	probability	of	a	New	York	teenager	owning	a	skateboard	is	
0.37,	of	owning	a	bicycle	is	0.81,	and	of	owning	both	is	0.36.		
If	a	New	York	teenager	is	chosen	at	random,	what	is	the	
probability	that	he/she	does	not	own	neither	a	skateboard	nor	a	
bicycle?		
	



Exercise	
	
The	probability	of	a	New	York	teenager	owning	a	skateboard	is	
0.37,	of	owning	a	bicycle	is	0.81,	and	of	owning	both	is	0.36.		
If	a	New	York	teenager	is	chosen	at	random,	what	is	the	
probability	that	he/she	does	not	own	neither	a	skateboard	nor	a	
bicycle?		
	

P(S)P(B)
P(S∪ B) = P(S)+ P(B)− P(S∩ B) =
= 0.37 + 0.81− 0.36 = 0.82

P(S∪ B) = 1− P(S∪ B) =
1− 0.82 = 0.18



A medical example of the Bayes theorem. 

1) If an individual has the disease, the test is positive 99% of the times 
2) If an individual doesn’t have the disease, the test is positive 1% of the times 
3) The population as a whole has probability 0.01% of having the disease 

1) P(B | A) = 0.99 (correct positive)
2) P(B | Ac ) = 0.01 ( false positive)
3) P(A) = 0.0001 (one person out of  10000 has the disease)

A: event “having the disease 
B: event “test is positive” 

If you go to the doctor and you test positive, what is the probability that you have 
the disease? i.e., what is                ?  P(A | B)

P(A | B) = P(B | A)P(A)
P(B)

= P(B | A)P(A)
P(B | A)P(A)+ P(B | Ac )P(Ac )

= 0.99 × 0.0001
0.99 × 0.0001+ 0.01× 0.9999

=

= 0.0098 ≈1%

Don’t worry and repeat the test a few times!  
(if you take the test again and you are positive, the probability is 50%, if you take a 
third, and are positive again, it’s 99%...) 



Exercise  
 
Among the clients of a gas station, 35% buy normal gasoline. 40% unleaded 
gasoline and 25% super-enhanced gasoline. Of those using normal gasoline, 60% 
systematically get a full tank-up, while of the others, only 30% and 50% respectively 
do it. 
 
 
 
 
Compute: 
 
1. The probability that next client will get a full tank-up of unleaded gasoline 

2. The probability that the next client will get a full tank-up 

3.  If the next client gets a full tank-up, compute the probability that it is of normal 
gasoline 
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Among the clients of a gas station, 35% buy normal gasoline. 40% unleaded 
gasoline and 25% super-enhanced gasoline. Of those using normal gasoline, 60% 
systematically get a full tank-up, while of the others, only 30% and 50% respectively 
do it. 
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P F | N( )  P N( )  =  P N | F( )  P F( ) ⇒ P N | F( ) = P F | N( )  P N( )

P F( ) = 0.6 *  0.35
0.455

= 0.46





sampling	theory	



Sampling	distribu0ons.	
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Can we say that                     ?  
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x = µ



Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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Sampling	distribu0ons.	
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P(x )
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Central limit theorem 

The sampling distribution tends to a normal distribution with 
mean equal to     and variance equal to              , 
 
independently of the distribution of the variable  
  
 
Consequently, whenever you have a sample of length N, it will 
 
be affected by a standard error of  

€ 

µ σ 2 / N

σ
N

€ 

x 



Proof of the central limit theorem. 
 
NB, this is a “crude” proof. For anything mode formal ask your 
mathematicians friends (or look at a book). 
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ii) variance E((x − µ)2 ) = σ 2
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Now we can prove that the correct  
estimator of the variance of a population 
from a sample is: 
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Taking the expectation value: 



	
Comparing	two	set	of	data:	
	
1) 	Are	two	samples	issued	from	the	same	populaJon?	
	
Ex.	Is	the	mean	temperature	in	Paris	for	summer	2003	staJsJcally	
different	from	climatology?	
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People at LMD are taller on average 
than the rest of the population of 
Paris  -  Or are they? 

An	example	of	hypothesis	tesJng:	
1) 	Set	up	a	Null	Hypothesis	
2) 	Chose	a	test	staJsJc	
3) 	Chose	a	level	of	significance	
4) 	Compute	the	level	of	probability	of	the	
sample,	from	the	test	staJsJc	
5) 	If	that	is	lower	than	the	level	of	significance,	
reject	the	null	hypothesis.	

Name	 Height	(cm)	

1	 Fabio	 180	

2	 Francois	 181	

3	 Jean-Philippe	 185	

4	 Hugo	 183	

5	 Alexandre	 175	

6	 Alexandra	 162	

7	 Alessandro	 172	

8	 Ayah	 160	

9	 Guillaume	 183	

10	 Hector	 171	

11	 Marie-ChrisJne	 165	

12	 Michael	 177	

13	 Pauline	 175	

14	 Riwal	 177	

Ronald Fisher 
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µ =174.7,  σ =σ 0 N
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µ0 =170,  σ 0 =14Paris: 

LMD 

Name	 Height	(cm)	

1	 Fabio	 180	
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9	 Guillaume	 183	

10	 Hector	 171	

11	 Marie-ChrisJne	 165	

12	 Michael	 177	
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An	example	of	hypothesis	tesJng:	
1) 	Set	up	a	Null	Hypothesis	
2) 	Chose	a	test	staJsJc	
3) 	Chose	a	level	of	significance	
4) 	Compute	the	level	of	probability	of	the	
sample,	from	the	test	staJsJc	
5) 	If	that	is	lower	than	the	level	of	significance,	
reject	the	null	hypothesis.	

People at LMD are taller on average 
than the rest of the population of 
Paris  -  Or are they? 



hypothesis	tes0ng:	
	
1) Set	up	a	Null	Hypothesis	

	The	sample	is	issued	from	the	same	populaJon:	
	People	at	LMD	are	not	taller	than	the	rest.	

	
2) Chose	a	test	staJsJc	

The	sample	mean	distribuJon	
	
4) Chose	a	level	of	significance	

	95%,	i.e.	2	standard	errors,		
	
4)	Compute	the	level	of	probability	of	the	sample,	from	the	test	staJsJc	

	 	 	 	 	 	 	 	 	 		(difference	of	means	in	std	error	units)	
	
	
	
	
	
	
5)	If	that	is	lower	than	the	level	of	significance,	reject	the	null	hypothesis.	

	CANNOT	REJECT	

(µ − µ0 )
σ N

= (174.7 −170)
14 14

= 1.26

p = P( h ≥ µ) ≈14 −15%

p ≤ 5%



Back to the initial question 

Mean = 22.6 Mean = 19.3 

Paris 

(µ − µ0 )
σ N

= (22.6 −19.3)
3.4 92

= 9.3
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Are the mean of these two samples 
different? I.e. are they issued from 
two distinct populations?  

Comparing two samples 



The	distribuJon	of:	
	
	
	
	
	
	
	
	
	
Is	known,	it	is	called	the	Student-t	distribuJon.	Its	value	for	a	given	t	can	be	found	in	
tables,	or	in	the	most	usual	staJsJcal	soYware	packages.	

t = µa − µb

s / N
,               s = (Na −1)σ a

2 + (Nb −1)σ b
2

Na + Nb − 2

1
N

= 1
Na

+ 1
Nb

⎛
⎝⎜

⎞
⎠⎟

where	

We are comparing two series that are both the sampling of an unknown 
variable. 
 
We need another test statistics 



µa − µb = 0.72,   
            

s = (Na −1)σ a
2 + (Nb −1)σ b

2

Na + Nb − 2
= 3.47

t = µa − µb

s / N
= 1.4

p(t) = 0.1588
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df  = Na + Nb − 2



n 'a =
na

1+ 1− i
na

⎛
⎝⎜

⎞
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ρa (i)

i=1

na

∑

Degrees of freedom 
In case of autocorrelation use: 



Suppose we divide the class in two groups: one studies in a room with loud 
techno music all day long, the other group studies in a silent room. After the 
exams, these are the results of the two groups: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can we say that techno music is good for studying statistics? 

Group	A	(with	music)	 Group	B	(no	music)	

18	 15	

17	 15	

13	 10	

10	 11	

14	

Ma	=	14.8	 Mb	=	12.75	 Ma-Mb	=	2.05	

Var(A)	=	9.7	 Var(B)	=	6.9167	



µa − µb = 14.8 −12.75 = 2.05   
            

s = (Na −1)σ a
2 + (Nb −1)σ b

2

Na + Nb − 2
= 4σ a

2 + 3σ b
2

7
= 4 9.7 + 3 6.9167

7
= 2.9167

N = 1
1
4
+ 1

5

= 2.222

t = µa − µb

s / N
= 2.05

2.9167 / 2.222
= 1.0477

p(t) = 0.1648
 



Applying it to the long timeseries… 

Mean = 22.6 Mean = 19.3 

Paris 

µa − µb = 3.3,   
            

s = (Na −1)σ a
2 + (Nb −1)σ b

2

Na + Nb − 2
= 3.25

t = µa − µb

s / N
= 9.4,      



Each problem its test distribution.  
 
1 One-Sample tests: 
 
1.1 mean with known variance: Z-test  
 
1.2 mean with unknown variance: T-test 
 
2 Two-Samples tests:  
 
2.1 means with unknown variances: T-test 
 
 
 
 
2.2 Variances: F-test,       test 
 
Look up your favourite statistics handbook and find your special case!!  
 

€ 

Z =  µ - µ0

σ 0/ n
~ N(0; 1)

€ 

T =  µ - µ0

σ/ n
~ tn -1

T = µa -µb

s/ n
~tna+nb−2, s = (na −1)σ a

2 + (nb −1)σ b
2

na + nb − 2
, 1
n
= 1
na

+ 1
na

€ 

χ2



In	geophysics,	someJmes	one	wonders	
whether	two	Jmeseries	are	linked.		
	

Are	two	0meseries	correlated?	 Francis 
Galton 



One	way	to	put	it	is	to	esJmate	if	one	series	
can	be	obtained	by	linear	transformaJon	from	
the	other:		 yi = axi + b

y	

x	

(axi + b − y i )
(yj − axj − b)



y	

x	

(axi + b − y i )
(yj − axj − b)

We	want	to	minimize:	

yi − axi − b( )2
i=1

N

∑

a) xi yi − axi − b( )∑ = 0

b) yi − axi − b( )∑ = 0

b) yi − a xi
i=1

N

∑ − Nb
i=1

N

∑ = 0 ⇒ b = y − ax

We	take	the	derivaJve	with	respect	to	a	and	
b	and	we	obtain	the	two	condiJons:		

CondiJon	b)	gives:	

a) yixi − axi
2 − yxi − axxi( )

i=1

N

∑ = ′yi ′xi − a ′xi
2( )

i=1

N

∑
SubsJtuJng	b)	into	a)	gives:	

Where	we	have	introduced	the	definiJons	:	

xi = x + ′x , yi = y + ′y .

Hence	

a =
′xi ′yi

i=1

N

∑

′xi
2

i=1

N

∑
= ′x ′y

′x 2

b = y − ax

Regression	



How	good	is	the	regression?	One	way	to	answer	is	to	compute	how	much	of	the	variance	
of	y is	explained	by	x. 

Introducing	the	error	 yi
* = yi − ŷi We	can	write	 yi = axi + b + yi

*

And	the	variance	of	y	becomes:	

′y 2 = a2 ′x 2 + y*2 ⇒ a2 ′x 2 + y*2

′y 2
= 1 explained	variance	+	unexplained	variance	=	1	

SubsJtuJng	the	value	of	a	found	above	we	find:	

a2 ′xi
2

′yi
2

=
′x ′y( )2
′x 2 ′y 2

= r2, r = ′x ′y
σ xσ y

Is	the	(Pearson’s)	correlaJon		
coefficient	

r2 = Explained Variance
Total Variance

; 1− r2 = Unexplained Variance
Total Variance

The	regression	is	not	perfect:	 ŷi = axi + b ≠ yi

Karl Pearson 



 
Detrended summertime (JJA) daily maximum temperature anomalies, averaged over European stations, as a function of 
year (in black), together with the detrended anomaly of rainfall frequency averaged in the 35°N-46°N latitude band 
during preceding winter and early spring (January to May), in red. Temperature anomalies are in °C while precipitation 
frequencies anomalies are in % of days. The correlation between the two sets of values is        -0.55. In order to assess 
the sensitivity of this latitude band for precipitation frequency, it is split into 2 latitude bands for which the time series 
are also calculated: 42°N-46°N (green) and 35°N-42°N. Yellow bars indicate the selected 10 hottest summers.	

Another	example,	summer	heat	in	Europe	and	Mediterranean	precipitaJons	

Vautard, R., P. Yiou, F. D'Andrea, N. de Noblet, N. Viovy, C. Cassou, J. Polcher, P. Ciais, M. Kageyama, and Y. Fan (2007), 
Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit, Geophys. Res. Lett., 34, 
L07711, doi:10.1029/2006GL028001. 



Two	cauJonary	notes	

1.  One	should	always	check	the	staJsJcal	significance	of	the	correlaJons	one	
computes.	

2.  High	correlaJon	does	NOT	imply	causality.	

hypothesis	tesJng:	
1) Set	up	a	Null	Hypothesis	
2) Chose	a	test	staJsJc	
3) Chose	a	level	of	significance	
4) Compute	the	level	of	probability	
of	the	sample,	from	the	test	
staJsJc	
5) If	that	is	lower	than	the	level	of	
significance,	reject	the	null	
hypothesis.	



Reduce Violent crimes? 
Stop eating ice cream! 



Church	of	the	Flying	Spaghes	Monster	
h:p://www.	venganza.org/	



AUTOCORRELATION 
 
Correlation of a time series  
with itself. 
 
 

€ 

φ(L) =
1

N − 2L
x'k

k=L

N−L

∑ x 'k+L = x'k x 'k+L             

 L = 0,±1,±2.....



Montecarlo methods are a class of computational algorithms that rely 
on repeated random sampling to computer their results. 
 
It is useful when one doesn’t know a priori the PDF of the statistical 
parameter to be tested. 
 
Example, test the correlation of two timeseries. 
 
1)  Set up null hypothesis 

The two series are not correlated 
2) Chose a test statistics 

 Create 1000 random time series of the same length, mean and 
 variance of one of the two series, estimate PDF from it. 

3) Chose a level of significance 
4) Compute the probability of the sample 

 Compare the value of the correlation of the two series with the 
 correlation of one series with all the random ones. 

5) Reject or accept the null hypothesis. 
  



Analysing	a	vector	series	x(t) 

Everybody	is	familiar	with	scalar	Jme	series	
staJsJcs.	Mean,	variance,	correlaJon,	etc.	

What	happens	with	vector	Jme	series?	

	

The	mean	is	easy.	Let’s	suppose		

	

But	what	takes	the	place	of	variance?	

The	covariance	matrix:		

0=x

€ 

xxT



C	gives	the	variance	of	the	sample	in	any	given	direcJon	in	phase	space.	
So	if	e is	a	unitary	vector, 

eTCe

is	the	variance	in	the	direcJon	e. 



ROADMAP	for	exercise	1.	
	
1) 	Go	to	h:p://www.lmd.ens.fr/dandrea/TEACH/index.html	

2) 	Get	city	temperature	data	(filenames	T_jja_City.txt)	
	These	are	mean	daily	summer	temperature	data	for	a	few	ci6es	in	Europe,	in	the	
	files	there	are	two	column:	the	date	and	the	temperature	in	C.	

	
3)	Chose	a	city	and	read	the	data	into	MATLAB	or	Python	
	
4)	Compute	mean	and	standard	deviaJon	of	the	daily	data.		

	Do	a	loop,	don’t	cheat	using	pre-made	func6on	like	mean()	or	std().	
	Numerical	trick:	can	you	compute	mean	AND	variance	in	one	loop	only?	

	
5)	Compute	yearly	temperature	means	of	the	city	you	chose.	Then	chose	another	city	

	and	do	the	same.	
	
6)	Compute	the	correlaJon	of	the	yearly	temperatures	of	the	two	ciJes		

	NB:	the	temperature	6merseries	of	the	different	ci6es	may	not	be	syncronous.	
	
7)	Is	the	correlaJon	significant?	Do	a	montecarlo	test	of	the	correlaJon.	

	Compute	the	correla6on	of	one	of	the	two	series	with	a	high	number	of	random
	series	having	the	same	mean	and	variances	as	the	other	6meseries.	


