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Ecole Polytechnique Fédérale de Lausanne

CH - 1015 Lausanne, Switzerland
Tudor.Ratiu@epfl.ch

This version: September 29, 2009

Abstract

On the identity component of the universal Teichmüller space endowed with
the Takhtajan-Teo topology, the geodesics of the Weil-Petersson metric are
shown to exist for all time. This component is naturally a subgroup of the
quasisymmetric homeomorphisms of the circle. Viewed this way, the regularity
of its elements is shown to be H

3
2−ε for all ε > 0. The evolutionary PDE associ-

ated to the spatial representation of the geodesics of the Weil-Petersson metric
is derived using multiplication and composition below the critical Sobolev index
3/2. Geodesic completeness is used to introduce special classes of solutions of
this PDE analogous to peakons. Our setting is used to prove that there exists
a unique geodesic between each two shapes in the plane in the context of the
application of the Weil-Petersson metric in imaging.
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1 Introduction

This paper establishes a link between three distinct subjects: conservative evolu-
tionary PDEs having a form similar to those appearing in fluid dynamics, the theory
of the universal Teichmüller space, and the study of maps at critical Sobolev index.

It is well known since the work of Arnold [1966] that the solutions of the Euler
equations are the spatial representation of the geodesics on the group of volume
preserving diffeomorphisms. In material representation, the evolution is governed
by a smooth vector field, the geodesic spray, on the tangent bundle of this diffeomor-
phism group (see Ebin and Marsden [1970], Bourguignon and Brezis [1974]). This
point of view not only leads to an elegant proof of well posedness but to many other
results regarding the Euler equations. This is a rare and remarkable property that,
to our knowledge, appears in the conservative situation only for the incompress-
ible non-homogeneous Euler equations (Marsden [1976]), the averaged Euler equa-
tions (Marsden, Ratiu, and Shkoller [2000], Shkoller [2000]), and the n-dimensional
Camassa-Holm equations (Gay-Balmaz [2008]). Even equations that exhibit strong
geometric properties, such as KdV, in general, do not have this property.

The universal Teichmüller space appears in many areas of mathematics and
mathematical physics. For example, it is a special coadjoint orbit of the Bott-
Virasoro group (Nag and Verjovsky [1990]) and plays an important role in the theory
of Riemann surfaces, several complex variables, and quasiconformal maps (Gardiner
and Lakic [2000], Lehto [1987], Nag [1988]).

The theory of the groups of diffeomorphisms of an n-dimenstional manifold en-
dowed with a Sobolev manifold structure requires differentiability class strictly above
n
2 + 1. It is not even clear how to define a group of diffeomorphisms at this crit-
ical index. This is reflected in the fact that a particle path flow associated to the
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Euler equations in dimension at least 3, defined at every point in the reference con-
figuration, is known only for differentiability class strictly bigger than this critical
index.

In this paper we shall establish a connection between these three problems in
the context of Weil-Petersson geometry on the universal Teichmüller space. The
classical theory endows the universal Teichmüller space with a group structure and
an infinite dimensional complex Banach manifold structure relative to which the
inclusion of the Teichmüller spaces of Riemann surfaces is holomorphic. However, it
is not a topological group and the formula for the Weil-Petersson metric proposed in
Nag and Verjovsky [1990] is divergent and thus does not define a Riemannian metric.
These basic problems were overcome in Takhtajan and Teo [2006] who endowed the
universal Teichmüller space with a different complex Hilbert manifold structure in
which the formula for the Weil-Petersson metric not only converges, but defines a
strong metric, that is, a metric which induces the Hilbert space topology on each
tangent spaces. They also show that the identity component of universal Teichmüller
space is a topological group. With this manifold structure the tangent space at the
identity is the space of functions on the circle of class H3/2. Therefore, the identity
component of universal Teichmüller space takes the place of diffeomorphisms of
critical Sobolev class H3/2.

We shall study this group from the point of view of manifolds of maps by identi-
fying it with a subgroup of the quasisymmetric homeomorphisms of the circle. We
shall prove that all elements of this group are of class H

3
2
−ε for all ε > 0. Then we

shall use the fact that the metric is strong to show that all geodesics of the Weil-
Petersson metric exist for all time, that is, we have geodesic completeness. We shall
also prove that this space is Cauchy complete (something not generally implied
by geodesic completeness in infinite dimensions) relative to the distance function
defined by the Weil-Petersson metric.

The spatial formulation of the geodesic equations turns out to be considerably
more involved than in the case of the Euler equations. We obtain a new equation,
that we call the Euler-Weil-Petersson equation, and we show its solutions are C0 in
H3/2 and C1 in H1/2. A comparison of the technical difficulties encountered in the
study of the Euler equations and of the Euler-Weil-Petersson equation is in order.
For the Euler equations, the main technical problem was the proof of the smoothness
of the geodesic spray and the passage from material to spatial representation was
easy. For the Euler-Weil-Petersson equation, the smoothness of the spray follows
easily from the fact that the metric is strong, but the passage from material to
spatial representation is difficult and requires composition and multiplication under
the critical Sobolev exponent 3/2. We close the paper with two applications. The
first one is the proof of long time existence of special solutions called Teichons
by analogy with the peakons for the Camassa-Holm equations. It turns out that
these singular solutions are actually smoother than the generic geodesics. In the
second application, we use again long time existence of Weil-Petersson geodesics to
positively address a comment of Sharon and Mumford [2006], namely that there
exists a unique geodesic between each two shapes in the plane.
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Plan of the Paper. Section 2 reviews the basic facts concerning the universal
Teichmüller space T (1) endowed with its classical infinite dimensional complex Ba-
nach manifold structure. In particular, we recall that this manifold structure is
not compatible with the natural group operation and that formula for the Weil-
Petersson Riemannian metric on T (1) is divergent. These difficulties are solved by
endowing T (1) with a new complex Hilbert manifold structure, the Takhtajan-Teo
topology, that we review in Section 3. This approach allows us to define a new topo-
logical group and Hilbert manifold of homeomorphisms of the circle, that replaces
the group of Sobolev diffeomorphisms in the case of the critical exponent s = 3/2.
In particular, we show that the model space is given by Sobolev H3/2 vector fields
on the circle. In Section 4 we prove that this new Hilbert manifold is continuously
embedded in the topological group of all homeomorphisms of the circle that are
of Sobolev class H3/2−ε for all ε > 0. In Section 5 we exploit the strongness of
the Weil-Petersson metric to show that the Hilbert manifold T (1) is geodesically
and Cauchy complete. The passage from the Lagrangian to the spatial formula-
tion of geodesics is carried out in Section 6, using multiplication and composition
under critical exponents in Sobolev spaces. Section 7 is concerned with particular
solutions of the Euler-Weil-Petersson equation, called Teichons, by analogy with the
peakons of the Camassa-Holm equations. These Teichons are shown to be particular
Weil-Petersson geodesics. Finally, Section 8 considers application to imaging from
the functional analytic point of view developed in the paper.

Acknowledgments. We thank D. Beltiţă, L. Fehér, A. Figalli, F. Gardiner,
F. Gueritaud, S. Klainerman, P. Michor, M. Paicu, G. Raugel, L. Takhtajan, B.
Tumpach for discussions that improved our exposition.

2 The Universal Teichmüller Space

In this section we recall some basic classical facts we shall need about universal
Teichmüller space, for the reader’s convenience and to establish notation. A more
complete exposition can be found in Ahlfors [1987], Gardiner [1987], Gardiner and
Lakic [2000], Lehto [1987], and Nag [1988].

Notation and Some Important Facts. Let Ĉ be the Riemann sphere. Let the
open unit disk in the complex plane be denoted by D := {z ∈ C | |z| < 1} and its
exterior by D∗ := {z ∈ Ĉ | |z| > 1}. We denote by d2z the usual two dimensional
Lebesgue measure on C, that is, d2z := i

2(dz ∧ dz̄).
Consider the separable complex Banach space L1(D∗) of integrable complex val-

ued functions on D∗. Its dual can be isometrically identified with the non separable
complex Banach space L∞(D∗) of essentially bounded complex valued functions on
D∗. In the context of Teichmüller theory, the elements of L∞(D∗) are called the
Beltrami differentials on D∗.

Define the closed subspace

A1(D∗) =
{
φ ∈ L1(D∗)

∣∣ φ is holomorphic on D∗
}



2 The Universal Teichmüller Space 5

of L1(D∗). Its dual can be identified with the quotient Banach space L∞(D∗)/N (D∗),
where

N (D∗) :=

{
µ ∈ L∞(D∗)

∣∣∣∣ ∫
D∗
µ(z)φ(z)d2z = 0, ∀φ ∈ A1(D∗)

}
is the space of infinitesimally trivial Beltrami differentials. There is a canon-
ical splitting

L∞(D∗) = N (D∗)⊕ Ω−1,1(D∗), (2.1)

where Ω−1,1(D∗) is the closed non separable Banach subspace of L∞(D∗) defined by

Ω−1,1(D∗) :=
{
µ ∈ L∞(D∗)

∣∣∣µ(z) = (1− |z|2)2φ(z), φ a holomorphic map on D∗
}
.

This projection allows us to identify L∞(D∗)/N (D∗) with Ω−1,1(D∗), whose elements
are called, by definition, harmonic Beltrami differentials on D∗. We can write
this space as

Ω−1,1(D∗) :=
{
µ(z) = (1− |z|2)2φ(z)

∣∣∣ φ ∈ A∞(D∗)
}
,

where A∞(D∗) is the non separable complex Banach space

A∞(D∗) =

{
φ holomorphic in D∗

∣∣∣∣ sup
z∈D∗
|φ(z)(1− |z|2)2| <∞

}
.

All the results of this section remain valid when D∗ is replaced by D.

The Real Lie Group PSU(1, 1). Recall that the biholomorphic maps of the
Riemann sphere Ĉ are of the form

z 7→ az + b

cz + d
where a, b, c, d ∈ C, ad− bc = 1.

The set of such maps form a group under composition that is readily checked to be
isomorphic to the complex matrix Lie group

PSL(2,C) := SL(2,C)/{±I}

of complex dimension 3, called the group of Möbius transformations. The
subgroup of all biholomorphic maps of the Riemann sphere which preserve the unit
disc D are of the form

z 7→ az + b

b̄z + ā
, where a, b ∈ C, and |a|2 − |b|2 = 1.

This group is isomorphic to the real three dimensional Lie group

PSU(1, 1) := SU(1, 1)/{±I}.

The elements of PSU(1, 1) preserve the unit circle S1 and are uniquely determined
by their restriction to the circle S1. Being conformal, these maps are orientation
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preserving on the disk. Since the circle inherits the natural boundary orientation, it
follows that PSU(1, 1) can be regarded as a subgroup of Diff+(S1), the orientation
preserving C∞ diffeomorphisms of the circle S1.

View this way, and using the standard chart θ 7→ eiθ of the circle, the Lie algebra
of PSU(1, 1) consists of periodic functions of the form

psu(1, 1) = {fa,b,c(θ) = a+ b sin θ + c cos θ | a, b, c ∈ R} .

The Lie algebra bracket on this space of functions is minus the usual Jacobi-Lie
bracket on vector fields. This Lie algebra bracket is given as follows: for Lie algebra
elements f(θ)∂/∂θ and g(θ)∂/∂θ, their bracket is

[f, g](θ) = g(θ)f ′(θ)− g′(θ)f(θ).

Quasiconformal Maps. Let φ : A → φ(A) be an orientation preserving homeo-
morphism defined on an open subset A of the complex plane. The map φ is said to
be quasiconformal if it has all directional derivatives (in the sense of distributions)
in L1

loc(A) and if there is µ ∈ L∞(A) with ‖µ‖∞ < 1 such that

∂z̄φ = µ∂zφ. (2.2)

This is called the Beltrami equation with coefficient µ. If A and φ(A) have
boundaries which are Jordan curves (that is, curves homeomorphic to a circle), then
any quasiconformal map on A extends to an orientation preserving homeomorphism
from cl(A) to cl(φ(A)) (see Theorem I.8.2 in Lehto and Virtanen [1973]).

In a similar way, an orientation preserving homeomorphism between Riemann
surfaces is said to be quasiconformal if its local expressions are quasiconformal maps
between open subsets of the complex plane. The only Riemann surface we will
consider is the Riemann sphere Ĉ.

The Universal Teichmüller Space. We recall below two equivalent models for
the universal Teichmüller space, by following the presentation given in Takhtajan
and Teo [2006]. See also Ahlfors [1987], Lehto [1987], and Nag [1988]. We denote
by B∗1 the unit open ball in L∞(D∗).
• Model A. Extend every µ ∈ B∗1 to D by the reflection

µ(z) = µ

(
1

z

)
z2

z2 , z ∈ D.

Thus we get a new map, also denoted by µ ∈ L∞(C). We denote by ωµ : Ĉ → Ĉ
the unique solution of the Beltrami equation

∂z̄ωµ = µ∂zωµ

which fixes ±1,−i. This ωµ is obtained by applying the existence and uniqueness
theorem of Ahlfors-Bers (see Ahlfors and Bers [1960]); ωµ is a homeomorphism of

Ĉ and it satisfies

ωµ(z) = ωµ

(
1

z

)
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due to the reflection symmetry of µ. As a result, S1,D and D∗ are invariant under ωµ.

•Model B. Extend every µ ∈ B∗1 to be zero outside D∗. We denote by ωµ : Ĉ→ Ĉ
the unique solution of the Beltrami equation

∂z̄ω
µ = µ∂zω

µ,

satisfying the conditions f(0) = 0, ∂zf(0) = 1, and ∂2
zf(0) = 0, where f is the

holomorphic mapping f := ωµ|D. This ωµ is a homeomorphism of Ĉ and is also
obtained by applying the existence and uniqueness theorem of Ahlfors-Bers.

The relation between these two models is given by the following standard result.

Theorem 2.1. For µ, ν ∈ B∗1 , we have the equivalence

ωµ|S1 = ων |S1 ⇐⇒ ωµ|D = ων |D.

See Lehto [1987], Chapter III, Theorem 1.2 for a proof. We now recall the
definition of the universal Teichmüller space.

Definition 2.2. The universal Teichmüller space is the quotient space:

T (1) := B∗1/∼,

relative to following equivalence relation on B∗1 :

µ ∼ ν ⇐⇒ ωµ|S1 = ων |S1 ⇐⇒ ωµ|D = ων |D.

In view of this definition T (1), endowed with the quotient topology, is clearly
connected. It turns out that T (1) is contractible (Lehto [1987], Chapter III, Theorem
3.2).

The Bers Embedding and the complex Banach manifold structure. The
embedding of T (1) into A∞(D) plays a crucial in the theory of Teichmüller spaces.
We recall below the classical Bers theorem about this embedding.

Theorem 2.3. The Bers embedding

β : T (1)→ A∞(D), β([µ]) := S (ωµ|D) ,

is an injective mapping from T (1) onto an open subset of A∞(D). Its image contains
the ball of radius 2 and is contained in the ball of radius 6. Here S denotes the
Schwarzian derivative of a conformal map f , that is,

S(f) :=
∂3
zf

∂zf
− 3

2

(
∂2
zf

∂zf

)2

.
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Theorem 2.4. There is a unique Banach manifold structure on T (1) relative to
which the projection map

π : B∗1 → T (1)B

is a holomorphic submersion. Relative to this Banach manifold structure, the Bers
embedding

β : T (1)B → A∞(D)

is a biholomorphic map onto its image.

It can be shown that the kernel of the tangent map T0π : L∞(D∗) → T0T (1)B

is given by N (D∗), so the tangent space T0T (1)B can be identified with the Banach
space L∞(D∗)/N (D∗) ' Ω−1,1(D∗).

It is known that the topology of T (1) is that of a metric space relative to the
Teichmüller distance τ (see Lehto [1987], Chapter III, §2). Since this distance func-
tion will not be used in the sequel, we will not recall the definition. Nevertheless,
it is interesting to recall that the metric space (T (1), τ) is complete. By Theorem
2.3, T (1) is homeomorphic to an open subset of the Banach space A∞(D), which is
clearly incomplete.

Quasisymmetric Homeomorphisms of the Circle. An orientation preserving
homeomorphism η of the circle S1 is quasisymmetric if there is a constant M such
that for every x and every |t| ≤ π/2

1

M
≤ η(x+ t)− η(x)

η(x)− η(x− t)
≤M.

Note that the definition implies that M ≥ 1. Here we identify the homeomorphisms
of the circle with the strictly increasing homeomorphisms of the real line satisfying
the condition η(x+2π) = η(x)+2π. The set of all quasisymmetric homeomorphisms
of the circle is denoted by QS(S1), it is a group under the composition of maps. The
link with the quasiconformal mappings on the disc is given by the Beurling-Ahlfors
extension theorem (see Beurling and Ahlfors [1956]).

Theorem 2.5. An orientation preserving homeomorphism of the circle admits a
quasiconformal extension to the disc if and only if it is quasisymmetric.

Note that this extension is far from being unique. From this result, it follows
that the restriction to the circle of a solution ωµ of the Beltrami equation with
coefficient µ ∈ B∗1 is a quasisymmetric homeomorphism of the circle. We therefore
obtain that the map

Φ : T (1) −→ QS(S1)fix, [µ] 7−→ ωµ|S1 (2.3)

is a bijection, where QS(S1)fix denotes the subgroup of QS(S1) consisting of qua-
sisymmetric homeomorphisms fixing the points ±1 and −i.

This bijection endows the group QS(S1)fix with the structure of a complex Ba-
nach manifold by pushing forward this structure from T (1)B. The resulting Banach
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manifold is denoted by QS(S1)Bfix. This bijection also endows the set T (1) with a
group structure by pulling back the group structure of QS(S1)fix. A straightforward
computation shows that this group structure reads

[ν] · [µ] =

[
µ+ (ν ◦ ωµ)rµ
1 + µ̄(ν ◦ ωµ)rµ

]
, rµ =

∂zωµ
∂zωµ

. (2.4)

Relative to the complex Banach manifold structure, the right translations R[µ] are
biholomorphic mappings for all [µ] ∈ T (1). The left translations are not continuous
in general, therefore T (1)B is not a topological group (see Theorem 3.3 in Lehto
[1987]).

Note that QS(S1)fix can be identified with the quotient space QS(S1)/PSU(1, 1)
(or PSU(1, 1)\QS(S1)). Indeed, given η ∈ QS(S1), there exists only one γ ∈
PSU(1, 1) such that η ◦ γ (or γ ◦ η) fixes the points ±1 and −i. Note that the
projections QS(S1) → QS(S1)/PSU(1, 1) and QS(S1) → PSU(1, 1)\QS(S1) are
not group homomorphisms, when the quotient space is endowed with the group
structure of QS(S1)fix.

The Tangent Space of QS(S1)Bfix. Recall that the tangent space to a point m of
a Banach manifold M is defined as a space of equivalence of smooth curves. Two
curves are said to be equivalent at m if they are tangent at this point in a chart.
In general there is not a canonical realization of the tangent space. Nevertheless, in
the case of manifolds of maps such a canonical realization exists.

We recall below how tangent spaces to manifolds of maps are concretely con-
structed (see Palais [1968] and Ebin and Marsden [1970]). If s > dimM/2 then it is
well-known that the set Hs(M,N) of Hs-Sobolev class maps between two boundary-
less compact manifoldsM andN admits a smooth Hilbert manifold structure. Let us
recall the basic ideas of this construction. To get a feeling of what a tangent vector at
f ∈ Hs(M,N) might be, let us take a path t ∈ ]−ε, ε[ 7→ ft ∈ Hs(M,N) such that the
map ft(m) is jointly smooth in (t,m) ∈ ]− ε, ε[×M . Then t ∈ ]− ε, ε[ 7→ ft(m) ∈ N
is a smooth path in N and hence ∂ft(m)/∂t|t=0 is a tangent vector to N at the
point f0(m). This suggests that a tangent vector at f is a Hs-map Uf : M → TN
satisfying Uf (m) ∈ Tf(m)N for every m ∈ M , that is, a vector field covering f .
Hence the candidate tangent space is

TfH
s(M,N) = {Uf ∈ Hs(M,TN) | Uf (m) ∈ Tf(m)N}.

Now one proceeds constructing charts for Hs(M,N) with these Hilbert spaces as
models, using the exponential map of some Riemannian metric on N . Once the
manifold structure on Hs(M,N) has been obtained, one proves the identity(

d

dt
ft

)
(m) =

∂

∂t
(ft(m)).

for a smooth path t ∈ ]− ε, ε[ 7→ ft ∈ Hs(M,N).
In our case, QS(S1)Bfix is also a space of maps, as opposed to T (1)B. Hence

one would like to study QS(S1)Bfix in the spirit of manifolds of maps. However,
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the topologies are different and to implement manifold of maps constructions one
needs to use theorems in complex analysis as opposed to the standard facts in
Sobolev space theory. Our goal is to obtain a concrete realization of the tangent
space at η := Φ([µ]) ∈ QS(S1)Bfix to the complex Banach manifold QS(S1)Bfix. Note
that we already have an abstract description of this tangent space, namely, it is
T[µ]Φ

(
T[µ]T (1)B

)
. However, so far we do not have any concrete realization of this

complex Banach space. We will show below that it is equal to the right translate
of a very concrete function space on S1, the Zygmund space. In the process we will
explicitly calculate TRη.

Recall that the Banach manifold structure on QS(S1)Bfix is defined by the con-
dition that the bijection Φ : T (1)B → QS(S1)fix, Φ([µ]) := ωµ|S1 is a diffeo-
morphism. This simply says that the manifold charts of QS(S1)Bfix are of the
form (ϕ ◦ Φ−1,Φ−1(U)) where (ϕ,U) are the manifold charts of T (1)B. A curve
ηt ∈ QS(S1)Bfix is smooth if it is of the form ηt = ωµ(t)|S1 , where µ(t) is a smooth
curve in the open ball B∗1 . The problem of finding a concrete expression of the vec-
tor d

dtηt is equivalent to that of finding a concrete realization of the tangent spaces
Tη QS(S1)fix or a concrete expression for TηΦ. A first step in this direction is the
following theorem. The first part is a direct consequence of Theorem 11 in Ahlfors
and Bers [1960]. The expression (2.5) is the reformulation for the disk of equation
(2.34) in Nag [1988]; see §1.2.11 - 1.2.12 of this book for additional information and
the proof of this formula.

Theorem 2.6. Let µ(t) ∈ B∗1 be a smooth curve such that µ(0) = 0. Then for all
z ∈ S1, the curve t 7→ ωµ(t)(z) ∈ S1 is smooth in a neighborhood of t = 0. The
derivative at t = 0 is given by

∂

∂t

∣∣∣∣
t=0

ωµ(t)(z) = Vν(z),

where ν ∈ L∞(C) is µ̇(0) extended to C by reflection, and

Vν(z) = −(z + 1)(z + i)(z − 1)

π

∫∫
C

ν(w)

(w + 1)(w + i)(w − 1)(w − z)
d2w. (2.5)

This theorem generalizes to the case where µ(0) is not 0. Indeed, since right
translation on B∗1 is smooth, the curve t 7→ µ(t) · µ(0)−1 is smooth. Here the dot
denotes the group multiplication on B∗1 given in (2.4). We have

∂

∂t

∣∣∣∣
t=0

ωµ(t)(z) =
∂

∂t

∣∣∣∣
t=0

ωµ(t)·µ(0)−1(ωµ(0)(z)) = Vν(ωµ(0)(z)),

where ν is the extension of ∂
∂t

∣∣
t=0

(µ(t) · µ(0)−1) by reflection.

Here is a reformulation of these results. Let ηt be a smooth curve in QS(S1)Bfix.
Then for all z ∈ S1, the curve ηt(z) is differentiable as a curve on S1 and the time
derivative is of the form

∂

∂s

∣∣∣∣
t=0

ηt(z) = Vν(η0(z)), (2.6)
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where Vν is a vector field on S1 of the form (2.5).
The next theorem states that the vector field Vν belongs to the Zygmund space

on S1 defined by

Z(S1) :=
{
u ∈ C0(S1)

∣∣ there is a C such that

|u(x+ t) + u(x− t)− 2u(x)| ≤ C|t| for all x, t ∈ S1
}
.

Here, the continuous vector fields u on the circle are identified with continuous
2π-periodic functions on the real line. We also define the subspace

Z(S1)0 :=
{
u ∈ Z(S1) | u(±1) = u(−i) = 0

}
.

Relative to the Zygmund norm

‖u‖Z := ‖u‖∞ + sup
x,t∈S1

|u(x+ t) + u(x− t)− 2u(x)|
|t|

, (2.7)

Z(S1) is a nonseparable Banach space and Z(S1)0 a closed subspace (see Earle,
Gardiner, and Lakic [2000], Gardiner and Lakic [2000]).

It is known that for all 0 < α < 1 and s < 1 we have the strict continuous
inclusions

Λ1(S1) ⊂ Z(S1) ⊂ Λα(S1), and Z(S1) ⊂ Hs(S1),

where Λ1(S1) denotes the space of Lipschitz functions on the circle, Λα(S1) denotes
the space of α-Hölder functions on the circle, and Hs(S1) denotes the space of
Sobolev class Hs functions on the circle. In terms of the Fourier series representation
we have

Hs(S1) =

{
u(x) =

∑
n∈Z

une
inx

∣∣∣∣∣ u−n = un and
∑
n∈Z
|n|2s|un|2 <∞

}
.

These continuous inclusions are particular cases of embedding theorems for spaces
of Besov-Triebel-Lizorkin type, see Triebel [1983] and Runst and Sickel [1996] for
example.

Theorem 2.7. For all ν ∈ L∞(D∗), we have Vν ∈ Z(S1)0. Moreover the linear
map

[ν] ∈ L∞(D∗)/N(D∗) ' Ω−1,1(D∗) 7→ Vν ∈ Z(S1)0 (2.8)

is an isomorphism of Banach spaces, where L∞(D∗)/N(D∗) is endowed with the
quotient norm and Z(S1)0 is endowed with the cross-ratio norm, a norm equivalent
to the Zygmund norm defined in (2.7).

See Chapter 3 in Gardiner and Lakic [2000], Gardiner and Harvey [2002], and
Gardiner and Sullivan [1992] for the definition of the cross-ratio norm and proofs of
this theorem. On Z(S1) the cross-ratio norm is actually a seminorm whose kernel
is given by psu(1, 1).
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Using the preceding discussion, it follows that for two smooth curves η1
t and η2

t

in QS(S1)Bfix such that η2
0 = η1

0 = η, they are tangent at the point η with respect to
the Banach manifold structure if and only if

∂

∂t
(η1
t (z)) =

∂

∂t
(η2
t (z)), ∀ z ∈ S1.

By formula (2.6) and Theorem 2.7 it follows that a realization of the tangent space
to QS(S1)Bfix at η is

Tη QS(S1)Bfix = Z(S1)0 ◦ η.

Remark. It is worth noting here the difference between the usual theory of Hs-
diffeomorphism groups and QS(S1)Bfix. The formula above completely determines
Tη QS(S1)Bfix. The same formula is also valid for the group of Hs-diffeomorphisms
Diffs(M), namely, Tη Diffs(M) = Xs(M) ◦ η, where Xs(M) is the Hilbert space of
Hs-vector fields on M . However, for the diffeomorphism group one can go further
and say that Tη Diffs(M) = Xs(M) ◦ η = {Uη ∈ Hs(M,TM) | Uη(m) ∈ Tη(m)M}, a

realization that is not available for Tη QS(S1)Bfix. �

With respect to this realization, the tangent map to Φ at [0] is

T[0]Φ : L∞(D∗)/N (D∗)→ Tid QSfix(S1) = Z(S1)0, T[0]Φ([ν]) = Vν ,

and the derivative of a smooth curve ηt is the vector in Tηt QS(S1)Bfix given by(
d

dt
ηt

)
(z) =

∂

∂t
(ηt(z)).

Of course, the previous equality holds only if the curve ηt is known to be smooth
with respect to the Banach manifold structure. It is not sufficient that for all z, the
curve t 7→ ηt(z) is smooth.

Right translation by γ is given by Rγ(ξ) = ξ ◦ γ and it is known to be a smooth
map. Using the preceding results we have, for uη ∈ Tη QS(S1)Bfix,

(TRγ(uη)) (z) =

(
d

dt

∣∣∣∣
t=0

Rγ(ηt)

)
(z) =

d

dt

∣∣∣∣
t=0

∂

∂t
(ηt(γ(z)))

=

(
d

dt

∣∣∣∣
t=0

ηt

)
(γ(z)) = uη(γ(z)).

Thus, we have TRγ(uη) = uη ◦ γ.
The isomorphism between the tangent space Tid QS(S1)Bfix and the Banach model

space A∞(D) of T (1)B is given by taking the tangent map at the identity to the
map β ◦ Φ−1 : QS(S1)Bfix → T (1)B → A∞(D), where β denotes the Bers embedding
and Φ is the diffeomorphism defined in (2.3). It was proved Teo [2004], Theorem
2.11, that we have

Tid
(
β ◦ Φ−1

)
:
∑
n∈Z

une
inx ∈ Tid QS(S1)Bfix 7−→ i

∑
n≥2

(n3 − n)unz
n−2 ∈ A∞(D).
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Using the complex Banach manifold structure of QS(S1)Bfix thought of as a real
manifold, it is possible to endow the whole group QS(S1) with a real Banach mani-
fold structure, by declaring that the bijection

Ψ : QS(S1) −→ PSU(1, 1)×QS(S1)Bfix, (2.9)

defined by the condition

Ψ(η) = (η̂, η0)⇐⇒ η = η̂ ◦ η0, (2.10)

is a diffeomorphism. The group QS(S1) endowed with this Banach manifold struc-
ture is denoted by QS(S1)B. Its properties are given in the theorem below. We will
use the following lemma which shows that the choice of an other subgroup fixing
three points does not change the Banach manifold structure on QS(S1).

Lemma 2.8. Let QS(S1)1 be a subgroup of QS(S1) consisting of quasisymmetric
homeomorphisms fixing three points. Then QS(S1)1 can be endowed with a Banach
manifold structure in the same way as QS(S1)fix. The bijection

PSU(1, 1)×QS(S1)Bfix → PSU(1, 1)×QS(S1)B1

defined by
(γ0, η0) 7→ (γ1, η1), such that γ0 ◦ η0 = γ1 ◦ η1,

is a smooth diffeomorphism.

Proof. By definition of the Banach manifold structures on QS(S1)fix and QS(S1)1,
we obtain that the map

QS(S1)fix → QS(S1)1, η 7→ γ ◦ η, (2.11)

where γ is the unique Möbius transformation such that γ ◦ η ∈ QS(S1)1, is a diffeo-
morphism.

We now show that the map (γ0, η0) 7→ (γ1, η1) is smooth. Since γ0 ◦ η0 = γ1 ◦ η1,
we have η1 = (γ−1

1 ◦γ2)◦η0. Thus, using (2.11), we obtain that the map (γ0, η0) 7→ η1

is smooth. In order to show that (γ0, η0) 7→ γ1 is smooth, we consider the map

F : PSU(1, 1)×QS(S1)fix × PSU(1, 1)→ R3, F (γ, η, ξ) = (γ(η(xi))− ξ(xi)),

where (xi), i = 1, 2, 3, denote the fixed points associated to the group QS(S1)1.
Note that F is smooth and that F (γ0, η0, ξ) = 0 if and only if ξ = γ1. The partial
derivative of F with respect to the variable ξ and in the direction V ∈ Tξ PSU(1, 1)
is computed to be

∂F

∂ξ
(γ0, η0, ξ)(V ) = −(V (xi)),

therefore the linear map ∂F
∂ξ (γ0, η0, ξ) : Tξ PSU(1, 1) → R3 is an isomorphism, and

by the implicit function theorem, the correspondence (γ0, η0) 7→ η1 is smooth. �
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As a consequence of this lemma, we obtain that the identification of QS(S1)
with PSU(1, 1)×QS(S1)Bfix or PSU(1, 1)×QS(S1)B1 gives the same Banach manifold
structure.

Theorem 2.9. The tangent space at the identity to the real Banach manifold
QS(S1)B is the Zygmund space Z(S1). The group QS(S1)B is not a topological group
but the right translations are smooth; QS(S1)B contains the subgroup QS(S1)Bfix as
a closed submanifold of codimension 3.

Proof. From the definition of the Banach manifold structure we have

Tid QS(S1)B = psu(1, 1)⊕ Tid QS(S1)Bfix.

Recall that Tid QS(S1)Bfix consists of vector fields in Z(S1) such that u(±1) = u(−i) =
0. Therefore by a adding any element of psu(1, 1) we recover the whole space Z(S1).
The set QS(S1)Bfix is clearly a subgroup of QS(S1)B. It is also a closed submanifold
since it is identified with the closed submanifold {e} × QS(S1)Bfix in PSU(1, 1) ×
QS(S1)Bfix.

We now show that the right translations Rξ : QS(S1)B → QS(S1)B, η 7→ η ◦ ξ
are smooth for each fixed ξ ∈ QS(S1). We first prove this for ξ ∈ QS(S1)fix.
Using the diffeomorphism (2.9), the correspondence η 7→ η ◦ ξ reads (η̂, η0) 7→
(η̂, η0 ◦ ξ). This is a smooth map since right translations are known to be smooth
on QS(S1)Bfix. We now consider the case ξ ∈ PSU(1, 1). Note that for any ξ we
can define the subgroup QS(S1)ξ consisting of quasisymmetric homeomorphisms
of the circle fixing the three points ξ−1(−1), ξ−1(1) and ξ−1(−i). As a map from
PSU(1, 1)×QS(S1)Bfix to PSU(1, 1)×QS(S1)Bξ , the correspondence η 7→ η ◦ ξ reads

(η̂, η0) 7→ (η̂◦ξ, ξ−1◦η0◦ξ). By the preceding lemma it suffices to show that this last
correspondence is smooth. For the first factor this is trivial since right translation
on PSU(1, 1) is smooth. Hence it suffices to show that the map

η0 ∈ QS(S1)Bfix 7→ ξ−1 ◦ η0 ◦ ξ ∈ QS(S1)Bξ

is smooth. This follows from the fact this map is induced by the smooth map

µ ∈ L∞(D∗) 7→ (µ ◦ ξ)∂zξ
∂zξ
∈ L∞(D∗).

To show that Rξ is a smooth map for all ξ ∈ QS(S1) it suffices to write ξ = ξ̂ ◦ξ0

with (ξ̂, ξ0) ∈ PSU(1, 1) × QS(S1)fix. We then have Rξ = Rξ0 ◦ Rξ̂, which is a
composition of smooth maps by the preceding arguments. �

As in the case of QS(S1)Bfix, we can show that Tη QS(S1)B = Z(S1) ◦ η. Let
ηt be a smooth curve in QS(S1)B. By definition, see (2.10), we can write ηt =
η̂t ◦ (ηt)0, where η̂t is a smooth curve in PSU(1, 1) and (ηt)0 is a smooth curve in
QS(S1)Bfix. Therefore, we obtain that for all z ∈ S1 the curve ηt(z) is smooth. A
direct computation shows for a smooth curve ηt we have

∂

∂t

∣∣∣∣
t=0

ηt(z) = V (η0(z)),
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where V ∈ Z(S1). This shows that a canonical realization of the tangent space
Tη QS(S1)B is given by Z(S1) ◦ η, and that the tangent map to right translation is
TRγ(uη) = uη ◦ γ.

A system of neighborhoods of the identity in QS(S1)B is given by {U(ε) | ε > 0},
where U(ε) consists of all quasisymmetric homeomorphisms η ∈ QS(S1) such that

1

1 + ε
≤ η(x+ t)− η(x)

η(x)− η(x− t)
≤ 1 + ε and sup

x∈S1

{
|η(x)− x|, |η−1(x)− x|

}
< ε.

At other points, the neighborhoods are obtained by right translation.

Relation with Diffeomorphism Groups. We have the following chain of sub-
group inclusions

Diff+(S1) ⊂ Diffs+(S1) ⊂ DiffC
1

+ (S1) ⊂ QS(S1), (2.12)

for all s > 3/2. The differential properties are the following. The group Diff+(S1) is
endowed with the C∞ Fréchet manifold structure. The group Diffs+(S1) denotes the
group of all orientation preserving Sobolev class Hs diffeomorphisms of the circle.
It is endowed with the Sobolev Hs Hilbert manifold structure; this is possible for all
s > 3/2. The group DiffC

1

+ (S1) is endowed with the C1 Banach manifold structure.
All these manifold structures are real and not complex. Recall that Diff+(S1) is

a Fréchet Lie group (see Kriegl and Michor [1997]), Diffs+(S1) and DiffC
1

+ (S1) are
topological groups with smooth right translations (Ebin and Marsden [1970] and
Omori [1997]), QS(S1) has smooth right translations but is not a topological group
(Theorem 2.9). Note also that all the inclusions are smooth. The two first inclusions
on the left have dense ranges and the last inclusion on the right is neither dense nor
closed. The closure of DiffC

1

+ (S1) in QS(S1) determines the topological group S(S1)
of symmetric homeomorphisms of the circle. We refer to Gardiner and Sullivan
[1992], Gardiner and Lakic [2000] for the definiton and the properties of S(S1).

The same differential properties hold for the corresponding subgroups fixing the
points ±1 and −i. We get the inclusions

Diff+(S1)fix ⊂ Diffs+(S1)fix ⊂ DiffC
1

+ (S1)fix ⊂ QS(S1)fix, (2.13)

for all s > 3/2. These subgroups have the additional property to be also complex
manifolds. The tangent spaces at the identity to these subgroups, denoted by

C∞(S1)0 ⊂ Hs(S1)0 ⊂ C1(S1)0 ⊂ Z(S1)0, (2.14)

are obtained by imposing the conditions u(±1) = u(−i) = 0 on the elements of the
tangent spaces at the identity to the corresponding large groups in (2.12).

Note that an other realization of the tangent spaces at the identity to these
subgroups is given by imposing the conditions u−1 = u0 = u1 = 0 on the Fourier
coefficients. This corresponds to thinking of these subgroups as quotient spaces of
the corresponding groups by the Möbius group PSU(1, 1); therefore the vector fields
are taken modulo psu(1, 1). The tangent spaces at the identity in this interpretation
are denoted by

h∞ ⊂ hs ⊂ hC
1 ⊂ hQS .
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More on the Complex Structure. Recall that the complex structure of T (1)B

is the trivial one induced by the assumption that the projection B∗1 → T (1)B is
a holomorphic submersion. Therefore the complex structure operator is simply
multiplication by i. We denote by J the complex structure operator induced on
the Banach manifold QS(S1)Bfix. The following Theorem due to Nag and Verjovsky
[1990] shows that J takes a remarkably simple expression in terms of Fourier series.

Theorem 2.10. The complex structure on the Banach manifold QS(S1)Bfix is the
right-invariant structure given at the identity by the map J : hQS → hQS defined by

J

 ∑
n6=−1,0,1

une
inx

 = i
∑

n6=−1,0,1

sgn(n)une
inx.

The operator J is in fact the Hilbert transform on the circle

J(u)(x) =
1

2π

∫
S1

u(s) cot

(
s− x

2

)
ds.

The Weil-Petersson Metric. The Weil-Petersson Hermitian metric on
T (1)B is the right-invariant metric whose value at the identity [0] is given by

〈µ, ν〉 :=

∫
D∗
µ(z)ν(z)

4

(1− |z|2)2
d2z. (2.15)

This metric was introduced by Nag and Verjovsky [1990] as a direct generalization of
the Weil-Petersson metric on the finite dimensional Teichmüller spaces. As remarked
by these authors, this Hermitian metric does not make sense for all µ, ν ∈ Ω−1,1(D∗).
Indeed, it converges only for µ, ν in the Hilbert space H−1,1(D∗) ⊂ Ω−1,1(D∗) defined
by

H−1,1(D∗) =

{
µ ∈ Ω−1,1(D∗)

∣∣∣∣ ∫
D∗
|µ(z)|2 1

(1− |z|2)2
d2z <∞

}
=
{
µ(z) = (1− |z|2)2φ(z)

∣∣∣ φ ∈ A2(D∗)
}
,

where

A2(D∗) =

{
φ holomorphic in D∗

∣∣∣∣ ∫
D∗
|φ(z)|2(1− |z|2)2d2z <∞

}
.

Using the identifications

Tid QS(S1)Bfix = hQS
T[0]Φ←−−−− T[0]T (1)B

T[0]β−−−−→ A∞(D),

the metric on hQS has the expression

hid(u, v) =
π

2

∞∑
n=2

n(n2 − 1)unvn (2.16)
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and one can see that it converges only for u, v ∈ h
3
2 , the subspace of Sobolev class

H
3
2 real vector fields on the circle with u0 = u1 = 0, a subspace strictly included in

hQS . Therefore we obtain that

T[0]Φ
(
H−1,1(D)

)
= h

3
2 . (2.17)

On the other hand, the metric on A∞(D) is given by the expression

hid(φ, ψ) =
1

4

∫
D
φ(z)ψ(z)(1− |z|2)2d2z, (2.18)

which converges only for φ, ψ in the strict subspace A2(D) of A∞(D). We obtain
hence that

T[0]β
(
H−1,1(D)

)
= A2(D). (2.19)

The corresponding Weil-Petersson Riemannian metric on QS(S1)Bfix, considered
as a real manifold, is given by

gid(u, v) =
π

2
Re

( ∞∑
n=2

n(n2 − 1)unvn

)
=
π

4

∑
n 6=−1,0,1

|n|(n2 − 1)unvn. (2.20)

The imaginary part of the Hermitian metric is the symplectic two-form

ωid(u, v) =
π

2
Im

( ∞∑
n=2

n(n2 − 1)unvn

)
= − iπ

4

∑
n6=−1,0,1

n(n2 − 1)unvn. (2.21)

As it was the case for the Weil-Petersson Hermitian metric, g and ω are only defined
on the subspace h

3
2 of Tid QS(S1)Bfix = hQS ∼= Z(S1)0.

In order to solve the convergence problem in (2.15) , Takhtajan and
Teo [2006] introduce a new complex Hilbert manifold structure on T (1),
such that the natural inner product is given by the Weil-Petersson Her-
mitian metric.

3 Takhtajan–Teo Theory

The Complex Hilbert Manifold Structure on T (1). The first step is to define
an A2(D)-Hilbert manifold structure on the set A∞(D). This is done by defining
a collection of charts on the set A∞(D) as follows. Each point φ ∈ A∞(D) is
declared to have a chart domain given by φ + A2(D) and the chart map is given
by mapping the point φ + ψ ∈ φ + A2(D) to ψ ∈ A2(D). This construction makes,
in an elementary way, A∞(D) into a A2(D)-Hilbert manifold. Of course this sort
of construction can be done for any vector space X that has a subspace Y that
is, in its own right, a Hilbert manifold. Clearly, the resulting Hilbert manifold
A∞(D) modeled on A2(D) is not connected. Indeed, to each [φ] ∈ A∞(D)/A2(D)
we associate the connected component φ+A2(D). This map is a bijection between
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the quotient space A∞(D)/A2(D) and the set of all uncountably many connected
components of A∞(D), the latter being viewed as a A2(D)-Hilbert manifold.

In a similar way, Takhtajan and Teo [2006] define a A2(D)-Hilbert manifold
structure on the set T (1), following the same approach as above for A∞. The de-
tails of the construction are, however, considerably more technical. For details see
Takhtajan and Teo [2006], Theorem 3.10. The resulting Hilbert manifold T (1), mod-
eled on A2(D), is also not connected, but rather has uncountably many components.
The sets T (1) and A∞(D) endowed with the A2(D)-Hilbert manifold structures are
denoted by T (1)H and A∞(D)H .

Normally one could view such a construction with some skepticism; however, as
we shall see, Takhtajan and Teo [2006] prove some profound things about this type
of construction. The main results of Takhtajan and Teo [2006] regarding T (1)H are
as stated in the following theorem and in the properties below.

Theorem 3.1. The Bers embedding

β : T (1)H → A∞(D)H , β([µ]) := S (ωµ|D) ,

is a biholomorphic mapping from T (1)H onto an open subset of A∞(D)H . In par-
ticular, the tangent map T[0]β induces an isomorphism H−1,1(D∗) ' A2(D). The

connected components of T (1)H are the inverse images of the connected components
of β

(
T (1)H

)
.

The connected component of [0] ∈ T (1)H is denoted by T (1)H◦ . The manifolds
T (1)H and T (1)H◦ have the following very attractive properties:

• The Weil-Petersson metric is strong on T (1)H , since it is the natural Hermi-
tian inner product on the tangent spaces. As a consequence, g and ω are also
strong with respect to the Hilbert manifold structure. Moreover, (T (1)H , J, ω)
is a strong Kähler-Einstein Hilbert manifold with negative constant Ricci cur-
vature and negative sectional and holomorphic sectional curvatures.

• The right translations on T (1)H are biholomorphic mappings.

• The connected component T (1)H◦ is a topological group.

• The connected component T (1)H◦ is the closure in T (1)H of the subgroup
Φ−1

(
Diff+(S1)fix

)
; see (2.3) for the definition of Φ.

Recall that a Riemannian metric g on a Hilbert manifold Q is said to be strong if for
all q ∈ Q, the associated flat map TqQ → TqQ

∗, vq 7→ gq(vq, ·) is an isomorphism.
Equivalently, g is strong if for all q, the inner product gq induces the Hilbert space
topology on TqQ.

The Hilbert Manifold T. As in the Banach case, the bijection Φ : T (1) →
QS(S1)fix defined in (2.3) endows the group QS(S1)fix with the structure of a com-
plex Hilbert manifold denoted by QS(S1)Hfix. In addition, by (2.15), (2.16) and (2.17),
the Banach space isomorphism

T[0]Φ : T[0]

(
T (1)B

)
= Ω−1,1(D∗)→ Tid QS(S1)Bfix = Z(S1)0, ν 7→ Vν
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restricts to a Hilbert space isomorphism

T[0]Φ : T[0]

(
T (1)H

)
= H−1,1(D∗)→ Tid QS(S1)Hfix = H

3
2 (S1)0.

Consider a smooth curve t 7→ ηt ∈ QS(S1)Hfix, then ηt is smooth as a curve in
QS(S1)Bfix. Therefore, by Theorem 2.6, the curve t 7→ ηt(z) ∈ S1 is smooth for all
z ∈ S1. As in the case of QS(S1)Bfix we obtain that(

d

dt
ηt

∣∣∣∣
t=0

)
(z) =

∂

∂t

∣∣∣∣
t=0

(ηt(z)) = V (η0(z)), (3.1)

where V ∈ H
3
2 (S1)0. Therefore, a canonical realization of the tangent space at η is

given by

Tη QS(S1)Hfix = H
3
2 (S1)0 ◦ η.

As before, we denote by QS(S1)Hfix,◦ the connected component of the identity of

the Hilbert manifold QS(S1)Hfix. The key object of interest to us in this paper is the
Hilbert manifold T defined to be

T := Φ(T (1)H◦ ) = QS(S1)Hfix,◦.

Let us now summarize some of the key properties of T.

• T is a complex Hilbert manifold and a connected topological group

• Right translations on T are biholomorphic maps Rη : T→ T

• The group Diff+(S1)fix of smooth orientation preserving diffeomorphisms of
S1 that fix the three points ±1,−i is dense in T

• The tangent space at the identity, TeT is equal to H
3
2 (S1)0 ' h

3
2 .

• The Weil-Petersson metric on T is a right invariant strong and smooth metric
that makes T into a Kähler-Einstein manifold with negative constant Ricci
curvature and negative sectional and holomorphic sectional curvatures.

As we have seen, the tangent space at the identity is the space of H
3
2 vector fields

on S1 vanishing at ±1,−i. This is a Hilbert space of real vector fields, identified
with real valued functions that also has a complex structure given in Theorem 2.10.
Since the derivative of right translation by η ∈ T from TidT → TηT is a Hilbert
space isomorphism, the topology on the other tangent space is equivalent to the
H

3
2 topology as well. Thus, the topology induced on the tangent spaces of T by

the Weil-Petersson Riemannian metric (given by equation (2.20)) is also the H
3
2

topology, by strongness of the metric.
Moreover, again by strongness and smoothness of the Weil-Petersson Riemannian

metric, its exponential maps form coordinate charts. Since these charts map into
the space of H

3
2 functions, we can say that T is an H

3
2 Hilbert manifold. Since, as

explained, the topology on T is the H
3
2 topology and since Diff+,fix(S1) is dense in

T, we can think of T as the H
3
2 -completion of Diff+,fix(S1).
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The Hilbert Manifold QS(S1)H◦ . Using the Hilbert manifold structure of QS(S1)Hfix,
it is possible to endow the whole group QS(S1) with a real Hilbert manifold struc-
ture, by declaring that the bijection

Ψ : QS(S1) −→ PSU(1, 1)×QS(S1)Hfix, (3.2)

defined by the condition Ψ(η) = (η̂, η0) ⇐⇒ η = η̂ ◦ η0, is a diffeomorphism. The
group QS(S1) endowed with this Hilbert manifold structure is denoted by QS(S1)H

and its connected component of the identity by QS(S1)H◦ .
In the same way as in Theorems 2.9 we prove the following result.

Theorem 3.2. The tangent space at the identity to the real Hilbert manifold QS(S1)H

is the space H
3
2 (S1) of H

3
2 real valued functions on S1. The manifold QS(S1)H has

smooth right translations and contains the subgroup QS(S1)Hfix as a closed submani-
fold of codimension 3. Moreover, the connected component of the identity QS(S1)H◦
inherits from QS(S1)Hfix,◦ the property of being a topological group.

Proof. It suffices to show that the composition and inversion are continuous maps
on QS(S1)H◦ . Using the diffeomorphism

η ∈ QS(S1)H◦ 7→ (η̂, η0) ∈ PSU(1, 1)×QS(S1)Hfix,◦,

the composition reads
(η̂, η0), (ξ̂, ξ0)→ (η̂ ◦ a, b ◦ ξ0), (3.3)

where a ∈ PSU(1, 1) and b ∈ QS(S1)Hfix,◦ are uniquely determined by the condition

a◦b = η0◦ξ̂. Since a is determined by the condition a(xi) = η0(ξ̂(xi)), xi = −1, 1,−i,
the map (η0, ξ̂) 7→ a is clearly continuous. Now we have b = a−1 ◦ η0 ◦ ξ̂. The map
(a, η0, ξ̂) 7→ b is continuous since, in terms of Beltrami coefficients it reads

(a, µ, ξ̂) 7→ (µ ◦ ξ̂)∂z ξ̂
∂z ξ̂

.

By combining these observations with the fact that composition on QS(S1)Hfix,◦ and
PSU(1, 1) is continuous, we obtain that the map (3.3) is continuous. The inversion
reads

(η̂, η0) 7→
(
η̂−1, (η−1)0

)
,

thus, we have η−1
0 ◦ η̂−1 = η̂−1 ◦ (η−1)0. As before, η̂−1 and (η−1)0 depends continu-

ously on (η−1
0 , η̂−1). Using that inversion on QS(S1)Hfix,◦ and PSU(1, 1) is continuous,

we obtain the result. �

As before, we can show that, for a smooth curve in QS(S1)H , the curve ηt(z)
is smooth in S1 for all z ∈ S1. A canonical realization of the tangent space at η is
H

3
2 (S1) ◦ η.
From the preceding Theorem, the group QS(S1)H◦ inherits from T the following

properties
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• Elements η ∈ QS(S1)H◦ are symmetric homeomorphisms η : S1 → S1

• QS(S1)H◦ is a real Hilbert manifold and a connected topological group

• Right translations on QS(S1)H◦ are smooth diffeomorphisms Rη : QS(S1)H◦ →
QS(S1)H◦

• The group Diff+(S1) of smooth orientation preserving diffeomorphisms of S1

is dense in QS(S1)H◦

• The tangent space at the identity, Te QS(S1)H◦ is equal to H
3
2 (S1).

We summarize in the diagram below the various spaces that appear at the tan-
gent space level. The maps T[0]β and T[0]Φ are complex Banach space isomorphisms.
All other arrows are continuous inclusions. The two horizontal arrows on the right
are continuous inclusions whose images are codimension three subspaces. The ver-
tical arrows have ranges that are neither closed nor dense.

A∞(D) Ω−1,1(D∗) Z(S1)0 Z(S1)

A2(D) H−1,1(D∗) H
3
2 (S1)0 H

3
2 (S1)

6 6 6 6

� - -

� - -

T[0]β

T[0]β T[0]Φ

T[0]Φ

Below is the corresponding diagram at manifold level. The maps β and Φ are
diffeomorphisms relative to the indicated complex Banach and complex Hilbert man-
ifold structures. The two images of β are open in the indicated Banach spaces. The
two horizontal arrows on the right are codimension three embeddings with closed
range. All spaces in this diagram are connected. The four vertical arrows are smooth
inclusions whose inverses from their ranges are discontinuous; the first three vertical
arrows are also holomorphic maps.

A∞(D) ⊃ β(T (1)B) T (1)B QS(S1)Bfix QS(S1)B

A2(D) ⊃ β(T (1)H◦ ) T (1)H◦ QS(S1)Hfix,◦ QS(S1)H◦

6 6 6 6

� - -

� - -

β

β

Φ

Φ

4 Regularity in T and QS(S1)H◦

As we have seen before, QS(S1)H◦ is a Hilbert manifold and a topological group with

smooth right translation, modeled on the Hilbert space H
3
2 (S1). It contains the

Fréchet Lie group Diff+(S1) as a dense subgroup.
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Recall that for s > 3/2, the group Diffs+(S1) has exactly the same properties,
namely, it is a smooth Hilbert manifold and a topological group with smooth right
translation, modeled on the Hilbert space Hs(S1). It contains the Fréchet Lie group
Diff+(S1) as a dense subgroup. Also, it is known that if η is a C1 diffeomorphism
of S1 and if η is of class Hs, s > 3/2, then its inverse η−1 is automatically of class
Hs. Therefore, the set defined by

Diffs+(S1) := DiffC
1

+ (S1) ∩Hs(S1, S1)

consists of Sobolev class Hs diffeomorphisms of S1. Moreover it is a group and an
open subset of the Hilbert manifold Hs(S1, S1).

The Flow of a H3/2 Vector Field. A similar definition is not possible in the
critical case s = 3/2, since H

3
2 functions on S1 are not C1 in general. It is there-

fore natural to ask if there exists a group, denoted by Diff
3
2
+(S1), which replaces

the group Diffs+(S1) in the limiting case s = 3/2. The discussion above suggests

that one can define Diff
3
2
+(S1) := QS(S1)H◦ . Note that in the case of Diffs+(S1) with

s > 3/2, the regularity of the group elements (the diffeomorphisms) and that of
the model space (the vector fields) is the same, namely, the Sobolev Hs regularity.

Since QS(S1)H◦ is modeled on H
3
2 (S1) it is natural to ask whether or not the group

elements are in H
3
2 . The answer depends on examining the flows of H

3
2 (S1)-vector

fields. Since H
3
2 (S1) ⊂ Z(S1), by Reimann [1976], H

3
2 (S1)-vector fields have qua-

sisymmetric flows; in particular, there is existence and uniqueness of integral curves.
Unfortunately the flow need not be in H

3
2 (S1), as shown by the following Theorem

of Figalli [2009].

Theorem 4.1. Let u ∈ C0
(

[0, T ], H
3
2 (S1)

)
and let η(t, x) be the solution of the

ODE 
d

dt
η(t, x) = u(t, η(t, x))

η(0, x) = x.
(4.1)

Then t 7→ η(t, ·) is in L∞
(
[0, T ],W 1+r,p(S1)

)
for all 0 < r < 1/2 and 1 ≤ p < 1/r.

Consider the vector field v on S1 given by

v(x) :=

(∫ x

0

∫ 1/2

y

1

s
√
| log(s)| log | log(s)|

dsdy

)
ϕ(x),

where ϕ is a smooth function such that

0 ≤ ϕ ≤ 1, ϕ(x) = 1 for x ∈ [0, 1/4], ϕ(x) = 0 for x ∈ [1/2, 1].

Then, v ∈ H
3
2 (S1) but its flow is neither Lipschitz nor in W 1+r,1/r(S1, S1) for all

0 < r < 1. In particular the flow of v is not in H
3
2 (S1, S1).
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We now interpret the result of this theorem in terms of the Sobolev embedding.
Recall that for all s, r ≥ 0 and p, q ≥ 1 such that s ≥ r and s − 1/p ≥ r − 1/q we
have the continuous inclusion

W s,p(S1) ⊂W r,q(S1).

Given a pair (p, s) ∈ [1,∞[× [0,∞[, we consider the domain D(p,s) in the plane
defined by

D(p,s) :=

{
(q, r) ∈ [1,∞[× [0,∞[

∣∣∣∣ s ≥ r and s− 1

p
≥ r − 1

q

}
,

and the curve

L(p,s) :=
{

(q, t(q)) ∈ [1,∞[× [0,∞[
∣∣ t(q) = max{r | (q, r) ∈ D(p,s)}

}
⊂ D(p,s),

as in Figure 4.1.

Figure 4.1: The graph in (q, r)-space of the Sobolev embedding W s,p(S1) ⊂ W r,q(S1). If u ∈
W s,p(S1), then u ∈ W r,q(S1) for all (q, r) ∈ D(p,s) including the boundary L(p,s). The hyperbola
part of L(p,s) has horizontal asymptote r = s− 1

p
.

The interpretation of this graph is the following. Given u ∈ W s,p(S1), we have
u ∈W r,q(S1) for all (q, r) ∈ D(p,s). In particular, this also holds if (q, r) ∈ L(p,s).

Now consider a given time dependent vector field t 7→ u(t, ·) ∈ C0
(

[0, T ], H
3
2 (S1)

)
with flow t 7→ η(t, ·). Then from the above theorem and discussion, for all t ∈ [0, T ]
we have

t 7→ η(t, ·) ∈ L∞
(
[0, T ],W r,q(S1, S1)

)
, for all (q, r) ∈ D(2,3/2) \ L(2,3/2).

This figure illustrates that the result in Theorem 4.1 is sharp.
In particular, the flow map generated by the time dependent vector field u ∈

C0
(

[0, T ], H
3
2 (S1)

)
is in L∞

(
[0, T ], H

3
2
−ε(S1, S1)

)
for all ε > 0. This corresponds

to the vertical interval {q = 2, 0 ≤ r < 3/2}; see Figure 4.2. The counterexample in
the theorem shows that the flow is not in the hyperbola part of L(2,3/2) and hence,

in general, η(t, ·) is not in H
3
2 (S1, S1).
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Figure 4.2: The graph in (q, r)-space of the regularity of the flow of an H
3
2 vector field on S1.

The flow t 7→ η(t, ·) of u ∈ C0
(

[0, T ], H
3
2 (S1)

)
is in L∞

(
[0, T ],W r,q(S1, S1)

)
, for all (q, r) ∈

D(2,3/2) \ L(2,3/2). The hyperbola part of L(2,3/2) has horizontal asymptote r = 1. The flow is not
in the hyperbola part of L(2,3/2).

Regularity. We now apply this result to the study of the regularity of the elements
in QS(S1)H◦ . Consider an element η ∈ QS(S1)H◦ . By connectedness, we can consider
a smooth curve η(t) such that η(0) = id and η(1) = η. This defines a continuous

curve u(t) := TRη(t)−1 (η̇(t)) ∈ Tid QS(S1)H◦ = H
3
2 (S1) whose flow is given by η.

Using the first equality in (3.1) and the previous theorem, we obtain that η and η−1

are in the Sobolev class H
3
2
−ε for all ε > 0. Thus, we have

QS(S1)H◦ ⊂ H
3
2
−ε(S1, S1), for all ε > 0.

The next theorem, shows that this inclusion is continuous.

Theorem 4.2. Let (ηn)n∈N be a sequence in QS(S1)H◦ such that ηn → id relative to
the Hilbert manifold topology of QS(S1)H◦ . Then

ηn → id and η−1
n → id in H

3
2
−ε, for all ε > 0.

Proof. By Theorem 3.2, it suffices to prove this in T = QS(S1)Hfix,◦. Let ηn(t)
be a smooth curve in T such that ηn(0) = id and ηn(1) = ηn. For n sufficiently
large, ηn lies in a local chart U around id, and we can choose ηn(t) to be locally
a straight line. Thus, ηn(t) can be seen as a sequence in Ck ([0, 1],T) , k ≥ 1,
converging to the constant curve id in Ck([0, 1],T), k ≥ 1. Define un(t) := η̇n(t) ◦
ηn(t)−1 ∈ H

3
2 (S1). Note that η̇n(t) converges to 0 in Ck−1([0, 1],T). By Lemma

4.3 below, the curve t 7→ un(t) is continuous and the sequence un(t) converge to the
constant curve 0 in C0([0, 1],T). Since the Banach manifold structure of QS(S1)B

is weaker than the Hilbert manifold structure, ηn(t) also converges to id as a curve
in Ck

(
[0, 1],QS(S1)B

)
, k ≥ 1. This implies that for ε > 0, we have

sup
t∈[0,1]

sup
x∈S1

|ηn(t)(x)− id| < ε,
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for n sufficiently large. Thus, for all t, ηn(t) converges to id in C0(S1) and in
particular in Lp(S1), for all p.

By Figalli [2009], we know that the flow of the time dependent vector field

u ∈ C0([0, 1], H
3
2 (S1)) is in H

3
2
−ε(S1, S1) for all ε > 0. Moreover, by putting

together all the estimations done in Figalli [2009], we obtain, for all ε > 0, the
inequality

‖η(t)′‖
H

1
2−ε ≤ A‖u′‖B

L∞
(

[0,T ],H
1
2

)
(

1 + ‖η‖CL∞([0,T ],Lp) + ‖u′‖D
L∞

(
[0,T ],H

1
2

)
)
,

where all constants 0 < A,B,C,D <∞ and 1 < p <∞ depend on ε.
Thus, if ηn(t) converges to id in C0(S1) and un(t) converges to 0 in H

3
2 , then,

for all t, ηn(t) converges to id in H
3
2
−ε(S1), for all ε > 0. For t = 1, this implies

that the sequence (ηn)n∈N converges to id in H
3
2
−ε for all ε > 0. �

Lemma 4.3. Let G be a Hilbert manifold and a topological group whose right-
translations Rg are smooth. Suppose that G carries a strong and G-invariant Rie-
mannian metric γ. Then the map

(g, ξh) ∈ G× TG 7−→ TRg(ξh) ∈ TG (4.2)

is continuous. In particular, the map

(g, ξ) ∈ G× g 7−→ TRg(ξ) ∈ TG

is an homeomorphism.
This result applies to G = T, endowed with the Weil-Petersson metric.

Proof. Since γ is a strong Riemannian metric, we can consider the associated expo-
nential map exp : O ⊂ TG→ G×G, where O is a neighborhood of the zero section.
By restricting O, exp is a diffeomorphism onto its image. Using this diffeomorphism,
and the fact that exp is G-invariant, the map (4.2) reads (g, h, f) 7→ (hg, fg), which
is continuous, since G is a topological group. �

Define the space

H
1
2
−(S1) :=

⋂
s<1/2

Hs(S1)

endowed with the least fine topology such that each inclusion H
1
2
−(S1)→ Hs(S1),

s < 1/2 is continuous. This makes H
1
2
−(S1) into a Fréchet space for which a

fundamental system of neighborhood of 0 is given by

V = {U(r,R) | r < 1/2, R > 0}, U(r,R) :=
{
u ∈ H1/2−(S1)

∣∣∣ ‖u‖Hr < R
}
.

Note that we have the continuous and strict inclusion

H1/2(S1) ( H
1
2
−(S1).
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For example, the function u : S1 → R such that

u(x) =

{
1 on [0, 1/2[
0 on [1/2, 1[

,

is in H
1
2
−(S1) but is not in H

1
2 (S1), see Lemma 3, §2.3.1 in Runst and Sickel [1996].

We now recall from Gay-Balmaz, Marsden, and Ratiu [2009] two results about
multiplication and composition in Sobolev spaces below the critical exponents 1/2
and 3/2 respectively.

Lemma 4.4. For all ε1, ε2 > 0 such that max{2ε1 + ε2, 2ε2 + ε1} ≤ 1/2, pointwise
multiplication on C∞(S1) extends to a continuous bilinear map

H
1
2
−ε1(S1)×H

1
2
−ε2(S1)→ H

1
2
−ε(S1),

for all ε such that max{2ε1 + ε2, 2ε2 + ε1} ≤ ε ≤ 1/2. In particular, pointwise

multiplication in C∞(S1) extends to a continuous bilinear map on H
1
2
−(S1).

It is known that this result is false for H
1
2 (S1), see Theorem 1 of §4.3.2 and

Theorem 1 of §2.2.4 in Runst and Sickel [1996].

Lemma 4.5. Let un ∈ H
3
2
−ε(S1) for all ε > 0 and let η, ηn be orientation preserving

homeomorphisms of S1 such that η, η−1, ηn, η
−1
n ∈ H

3
2
−ε(S1, S1) for all ε > 0. If

un → u, ηn → η, and η−1
n → η−1 in H

3
2
−ε for all ε > 0, then

un ◦ ηn → u ◦ η, in H
3
2
−ε(S1, S1) for all ε > 0.

Consider the set Diff
3
2
−

+ (S1) of all orientation preserving homeomorphism η of

S1 such that η, η−1 ∈ H
3
2
−ε(S1, S1) for all ε > 0. As a consequence of the previous

lemma we obtain the following result.

Corollary 4.6. Diff
3
2
−

+ (S1) is a group under composition.

As for H
1
2
−(S1), there are elements η in Diff

3
2
−

+ (S1) which are not in H
3
2 (S1, S1).

The composition of two element in H
3
2 (S1, S1) is not in H

3
2 (S1, S1) in general, but

only in H
3
2
−ε(S1, S1) for all ε > 0.

We endow the group Diff
3
2
−

+ (S1) with the topology given by the system of neigh-
borhoods V(ξ) = {U(ξ, r, R) | r < 3/2, R > 0} of an element ξ, where

U(ξ, r, R) :=
{
η ∈ D3/2−(S1)

∣∣∣ ‖η − ξ‖Hr < R, ‖η−1 − ξ−1‖Hr < R
}
.

Using Lemma 4.5 we immediately obtain the following result.

Corollary 4.7. With this topology, Diff
3
2
−

+ (S1) is a topological group.

Using Theorem 4.2, we obtain the following result.

Theorem 4.8. The natural inclusion

QS(S1)H◦ ⊂ Diff
3
2
−

+ (S1)

is continuous.
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Lie Algebra Structure. It is known that for all s > 3/2, the group Diffs+(S1)
is a Hilbert manifold modeled on the Hilbert space Xs(S1) of all Sobolev class Hs

vector fields on S1. More precisely, Diffs+(S1) is an open set in the Hilbert manifold
Hs(S1, S1). It is also known that, with respect to the Hilbert manifold structure,
Diffs+(S1) is a topological group with smooth right translations. For s > 3/2, the
subgroup Diffs+(S1)fix of Diffs+(S1) consisting of diffeomorphisms fixing the points
±1 and −i, is a closed codimension 3 Hilbert submanifold. The tangent space at
the identity is

gs := Hs(S1)0 = {u ∈ Xs(S1) | u(±1) = u(−i) = 0}.

We now describe the Lie algebra bracket on the formal Lie algebra g
3
2 of T. Of

course since T is not a literal Lie group, we must proceed formally, as one does
with diffeomorphism groups. The bracket should be the same as that on the Lie
algebra of smooth vector fields, which, as we saw earlier, is, on Lie algebra elements
f(θ)∂/∂θ and g(θ)∂/∂θ,

[f, g](θ) = g(θ)f ′(θ)− g′(θ)f(θ)

We assert that this makes sense for f, g ∈ g
3
2 , producing a vector field in H

1
2 . To

see this, we use a standard result about pointwise multiplication in Hr, namely the
following (see for instance, Theorem 9.13 in Palais [1968]):

Theorem 4.9. If t > n
2 and r ≥ −t, pointwise multiplication extends from

C∞(M,R)× C∞(M,R)→ C∞(M,R)

to a continuous bilinear map

Ht(M,R)×Hr(M,R)→ Hmin{r,t}(M,R). (4.3)

In particular, for |r| ≤ t, Hr(M,R) is an Ht(M,R)-module.

5 Completeness of the Universal Teichmüller Space

We denote by g the Weil-Petersson Riemannian metric on T. Recall that this makes
T into a strong Riemannian Hilbert manifold that is also a topological group with
smooth right translations and that g is right invariant. The results below apply
equally well to T (1)H ; recall that T is diffeomorphic to the connected component of
the identity of T (1)H .

By invariance of the metric under right translations and the fact that the metric
is strong, we obtain the following result.

Proposition 5.1. The Riemannian manifold (T, g) is geodesically complete. The
geodesic spray of the metric gH is smooth and there is an associated Levi-Civita
connection. The curvature and Ricci tensors are bounded operators, the sectional
curvature is negative, and thus, there are no conjugate points.
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Proof. Recall that the geodesic spray of the metric is defined by the condition

iZΩ = dE, (5.1)

where E : TT→ R is the right invariant kinetic energy of the Weil-Petersson metric
gH and where Ω is the strong symplectic form on TT that is obtained by the Hilbert
bundle isomorphism of TT to T ∗T associated to the (strong) Weil-Petersson metric.
Since Ω is a strong symplectic form and E is a smooth function, equation (5.1)
defines a smooth vector field Z on the tangent bundle TT of the Hilbert manifold
T. Therefore we obtain the local existence and uniqueness of a smooth geodesics
with initial velocity u ∈ g

3
2 .

To show that the integral curves of Z are globally defined, we use the following
standard argument. Indeed, one has

Lemma 5.2. Let G be a smooth strong Riemannian Hilbert manifold that is also
a topological group with smooth right translation. Then geodesics on G exist for all
time.

Proof. We begin by showing that for any v ∈ TidG the geodesic γv satisfying
γ̇v(0) = v exists for all time. Since γλv(t/λ) = γv(t) for any λ > 0 and t in the
domain of definition of γv, it suffices to prove the statement for ‖v‖ small.

The local existence and uniqueness theorem for Z implies that there is a ball
B ⊂ TidG of initial velocities, τ > 0, and a smooth map F : B× ] − τ, τ [→ TG,
such that the curve vu : ] − τ, τ [→ TG, defined by vu(t) := F (u, t) is an integral
curve of Z with initial condition vu(0) = u. In particular, all integral curves of Z
starting in B exist for a time at least |t| < τ . Now extend the integral curve v(t)
starting at v0 ∈ B to a maximal time interval [0, T [. By conservation of energy, we
have ‖v(t)‖ = ‖v0‖ for all t ∈ [0, T [. Since the topology of the manifold coincides
with the topology defined by the geodesic distance, v(t) lies in the ball obtained by
right translation of B to the point x(t), where x(t) ∈ G is the base point of v(t).
Since right translation is a diffeomorphism and the vector field Z is smooth and
right invariant, the time of existence for initial conditions in this translated ball is
at least τ . Thus v(t) can be extended beyond T which proves that it exists for all
t ∈ R.

For geodesics starting at points whose base is not the identity, one uses right
translation to reduce to this cases. �

The existence of the associated Levi-Civita connection ∇ follows as in the finite
dimensional case, since the metric is strong. Consider the curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

In local charts, for u, v, w ∈ g
3
2 , the curvature tensor has the expression

R(x)(u, v, w) = DΓ(x)(v) · (u, z)−DΓ(x)(u) · (v, z)
− Γ(x)(u,Γ(x)(v, w))− Γ(x)(v,Γ(x)(u,w)),
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where Γ(x) denotes the local Christoffel map associated to the geodesic spray, that
is, we have Z(x, u) = (x, u, u,Γ(x)(u, u)) in local coordinates. By strongness of the
metric, we know that D is the Fréchet derivative with respect to the strong topology
H

3
2 . Therefore, for all η ∈ T, R(η) is a bounded trilinear operator on TηT (1)H with

respect to the Hilbert topology. Note that this argument does not work in the case of
a weak Riemannian metric with smooth geodesic spray. Indeed, when the metric is
weak, the Fréchet derivative D is taken relative to a weaker topology and an explicit
proof is needed to show that the curvature operator is bounded (see Misiolek [1993]
for an example where this situation occurs; this is the case for the L2 weak metric
appearing in the study of the Euler equations).

Theorem 7.11 in Takhtajan and Teo [2006], states that the Ricci tensor Ric is
well-defined as the trace of the curvature tensor and that

Ric = − 13

12π
g.

It follows that the Ricci tensor is a bounded bilinear operator.
Given a WP geodesic γ, we consider the Jacobi equation along γ

∇γ̇∇γ̇X −R(γ)(X, γ̇)γ̇ = 0. (5.2)

Since the curvature operator is bounded, using the same arguments as in Proposition
3.10 in Misiolek [1993], we obtain that for u, v ∈ g

3
2 there exists a unique vector

field X(t) along γ that is a solution of (5.2) satisfying X(0) = u and ∇γ̇X(0) = v.
Since the sectional curvature is negative (see Theorem 7.14 in Takhtajan and Teo
[2006]), there are no conjugate points. �

Corollary 5.3. The Riemannian exponential map expη : TηT (1)H◦ → T (1)H◦ at any

point η ∈ T (1)H◦ is a covering map. The Riemannian manifold (T, g) is a complete
metric space relative to the distance function induced by the strong Weil-Petersson
Riemannian metric.

Proof. The first statement consists of the extension of the Cartan-Hadamard The-
orem to the infinite dimensional case (Lang [1999], Chapter IX, §3, Theorem 3.8).

Recall that any strong Riemannian metric on a Hilbert manifold induces a dis-
tance function. For general infinite dimensional strong Riemannian Hilbert man-
ifolds, Cauchy completeness implies geodesic completeness but the converse is, in
general, false (Lang [1999], Chapter VIII, §6). However, if the sectional curvature is
≤ 0 and the manifold is connected, Corollary 3.9 in Chapter IX, §3 of Lang [1999]
proves that geodesic completeness and Cauchy completeness are equivalent. �

6 The Euler-Weil-Petersson Equation

In this section we shall study the geodesic equation in Eulerian (spatial) represen-
tation.
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The Associated Euler-Poincaré Equation. Using the general theory of Euler-
Poincaré reduction, we know that for γt a geodesic of the Weil-Petersson metric on
T, the curve

ut := γ̇t ◦ γ−1
t ∈ TidT = g

3
2

should formally be a solution of the Euler-Poincaré equation

d

dt

δ`

δut
= − ad∗ut

δ`

δut
,

where ` : g
3
2 → R, l(u) = 1

2gid(u, u) is the Weil-Petersson Lagrangian. We call this
equation the Euler-Weil-Petersson equation (or the EWP equation for short).
For the moment we shall proceed somewhat formally and then after this, will turn
to the rigorous interpretation of the equation. Below we derive the EWP equation
explicitly and examine several representations of it.

The solution of the Euler-Poincaré equation formally does not depend on the
choice of the duality pairing. Consider the L2 pairing on L2(S1)

〈u, v〉 =

∫
S1

uv. (6.1)

This pairing extends to a pairing between Hs(S1) and H−s(S1) for any s ∈ R.
Therefore the dual space to the closed subspace gs = {u ∈ Hs(S1) | u(±1) =
u(−i) = 0} of Hs(S1), s > 1/2, with respect to the pairing (6.1), is H−s(S1)/N ,
where N = {v ∈ H−s(S1) | 〈v, u〉 = 0, for all u ∈ gs}.

With respect the pairing (6.1), the Weil-Petersson Lagrangian reads

`(u) =
1

2
〈Qop(u), u〉, (6.2)

where Qop : Hs(S1)→ Hs−3(S1), s ∈ R, is the symmetric operator given by

Qop

(∑
n∈Z

une
inx

)
=

1

8

∑
n∈Z
|n|(n2 − 1)une

inx =
1

8

∑
n6=−1,0,1

|n|(n2 − 1)une
inx.

Properties of the Operator Qop. We have Qop = 1
8 J ◦(∂3 + ∂) where J is the

Hilbert-transform of Theorem 2.10. Thus, while Qop is not literally a third order
elliptic differential operator, it has similar properties. Namely, since J : Hs(S1) →
Hs(S1) is an isomorphism for all s and since ∂3 + ∂ is literally a third order elliptic
differential operator, we have the properties
(1) Qop : Hs(S1)→ Hs−3(S1) and
(2) Qop(u) ∈ Hs(S1) ⇒ u ∈ Hs+3(S1).

We have

ker(Qop) = psu(1, 1) and Im(Qop) =

 ∑
n6=−1,0,1

vne
inx

∣∣∣∣∣∣ v−n = vn

 ∩Hs−3(S1).
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We now study the kernel and image of Qop|gs , the restriction of Qop to gs for
s > 1/2. Since ker(Qop) = psu(1, 1) as we have observed, we see that kerQop|gs =
kerQop ∩ gs = {0} because elements of psu(1, 1) that vanish at three points are
identically zero. Thus, Qop|gs is injective.

Next, we consider the image of Qop|gs . We claim that

Im(Qop|gs) = Im(Qop).

Indeed, for m ∈ Im(Qop) there exists u ∈ Hs(S1) such that m = Qop(u). Let
ū ∈ psu(1, 1) be such that ū and u have the same values at ±1 and −i. We have
u− ū ∈ gs and Qop(u− ū) = Qop(u) = m, therefore m ∈ Im(Qop|gs).

It follows, in particular, that

Qop : g
3
2 → Im(Qop) ⊂ H−

3
2 (S1)

is an isomorphism. As a consequence, note that the representation of l given by
(6.2) is well-defined on g

3
2 since u ∈ H

3
2 (S1) and Qop(u) ∈ H−

3
2 (S1).

With respect to the pairing (6.1), the infinitesimal coadjoint action reads

ad∗um = 2mu′ +m′u; (6.3)

more precisely we should write ad∗u[m] = [2mu′ +m′u], where [ ] denotes the equiv-
alence class modulo N . One can check that [2mu′ + m′u] does not depend on the
choice of m ∈ [m].

The functional derivative of l is

δl

δu
= Qop(u).

Thus, the Euler-Weil-Petersson equation reads

ṁ+ 2mu′ +m′u = 0, m = Qop(u) ∈ H−
3
2 (S1). (6.4)

However, there is a major difficulty with this formal argument. Namely, (6.3) as
well as (6.4) make no sense as written. We will repair this deficiency shortly, but
to appreciate the problem, we make some further remarks about this form of the
EWP equation.

We assert that the expression ad∗um = 2mu′+m′u is not well defined for u ∈ g
3
2 .

Indeed, Theorem 4.9 and Lemma 4.4 clearly do not apply to our situation, and this
suggests that pointwise multiplication of u′ ∈ H

1
2 and m ∈ H−

3
2 is not defined.

Thus, it seems that one cannot write the Euler-Poincaré equation. As another way
of expressing the same essential difficulty, one can try to write the Euler-Poincaré
equation in weak form to see if it makes sense. As we shall see, it does not, again
as written. Indeed, write〈

d

dt
m,ϕ

〉
= 〈m, [u, ϕ]〉, ∀ϕ ∈ C∞(S1), m = Qop(u). (6.5)

This is also not well-defined since on the right hand side there is a L2 pairing between
m ∈ H−

3
2 and [u, ϕ] ∈ H

1
2 .
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Remark. This sort of difficulty does not occur for the Camassa-Holm (or Euler,
or Euler-alpha) equation. For example, for the Camassa-Holm equation, we have
ṁ+ 2mu′ +m′u = 0; that is u̇+Q−1

op (2mu′ +m′u) = 0, where here, m = Qop(u) =
(1 − α2∂2)u. Since u ∈ Hs, s > 3/2, we have m ∈ Hs−2 and so, by Theorem 4.9,
2mu′ + m′u ∈ Hs−3. Therefore Q−1

op (2mu′ + m′u) ∈ Hs−1. We also know that
u ∈ C0(I,Hs) ∩ C1(I,Hs−1). Thus, it is meaningful to write the Camassa-Holm
equation in Euler-Poincaré form.

The Geometric Form of the EWP Equation. We now claim that the pre-
ceding difficulties disappear if one writes the equation directly in terms of u without
introducing the dual space. In doing so, we will heavily exploit the fact that the
spray of the WP metric is smooth.

Let γ(x, t) be a WP geodesic, for x ∈ S1. Thus, as a function of t, and thought
of as a curve in T, it is smooth because the spray of the WP metric is smooth. Thus,
γ̇ and γ̈ are well defined. According to the fact that there is a smooth WP spray,
we can write

γ̈ = Z(γ̇).

By definition of u, we have

u(γ(x, t), t) = γ̇(x, t).

This makes sense and defines a continuous curve ut ∈ g
3
2 because, by Takhtajan-

Teo theory, T is a topological group, right multiplication is smooth and the tangent
space at the identity is g

3
2 . Since multiplication on the left is not smooth, ut need

not be differentiable as a curve in g
3
2 . A formal computation shows that ut can,

at most, be differentiable as a curve in H
1
2 . This is made precise in the following

theorem.

Theorem 6.1. Let γt be a geodesic of the Weil-Petersson metric. Then the con-
tinuous curve t ∈ R 7→ ut := γ̇t ◦ γ−1

t ∈ H
3
2 (S1) is continuously differentiable as a

curve in H
1
2 (S1). Its derivative is given by

u̇t = −u′tut + Z(ut). (6.6)

Proof. Using Lemma 4.3, the map

U = u ◦ η ∈ TT 7→ (u, η) ∈ g
3
2 × T

is continuous. Thus, with Lemma 4.5, the inclusion

TT ⊂ H
3
2
−(S1) =

⋂
s<3/2

Hs(S1)

is continuous. Since the candidate for the time-derivative of ut is Z(ut) − u′tut, we
proceed as follows.
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We have∥∥∥∥ut+h − uth
−Z(ut) + u′tut

∥∥∥∥
1/2

=

∥∥∥∥∥ γ̇t+h ◦ γ−1
t+h − γ̇t ◦ γ

−1
t

h
−Z(ut) + u′tut

∥∥∥∥∥
1/2

≤

∥∥∥∥∥ γ̇t+h ◦ γ−1
t+h − γ̇t ◦ γ

−1
t+h

h
−Z(ut)

∥∥∥∥∥
1/2

(6.7)

+

∥∥∥∥∥ γ̇t ◦ γ−1
t+h − γ̇t ◦ γ

−1
t

h
+ u′tut

∥∥∥∥∥
1/2

. (6.8)

We now treat the term (6.7). We have∥∥∥∥∥ γ̇t+h ◦ γ−1
t+h − γ̇t ◦ γ

−1
t+h

h
−Z(ut)

∥∥∥∥∥
1/2

≤
∥∥∥∥( γ̇t+h − γ̇th

−Z(γ̇t)

)
◦ γ−1

t+h

∥∥∥∥
1/2

+
∥∥Z(γ̇t ◦ γ−1

t+h)−Z(γ̇t ◦ γ−1
t )
∥∥

1/2
.

Since Z(γ̇t) = γ̈t, the expression
γ̇t+h−γ̇t

h − Z(γ̇t) converges to 0, as h → 0, with
respect to the Weil-Petersson topology. Thus, by Lemma 4.5 the limit of the first
term is 0 in. The limit of the second term is clearly 0. Note that the previous
estimations can be done with the stronger norms H

3
2
−ε, for all ε > 0.

We now treat the term (6.8). We have∥∥∥∥∥ γ̇t ◦ γ−1
t+h − γ̇t ◦ γ

−1
t

h
+ u′tut

∥∥∥∥∥
1/2

=

∥∥∥∥∥ut ◦ (γt ◦ γ−1
t+h)− ut
h

+ u′tut

∥∥∥∥∥
1/2

. (6.9)

Thus, we need to show that for each t, the continuous curve

h 7→ ut ◦ γt ◦ γ−1
t+h ∈ TT ⊂ H

3
2
−ε(S1), for all ε > 0, (6.10)

is differentiable at h = 0, as a curve in H
1
2 (S1). We first prove that for all 0 < ε1 < 1

the curve
h 7→ γt ◦ γ−1

t+h ∈ T ⊂ H
3
2
−ε1(S1, S1),

is differentiable at h = 0, where H
3
2
−ε1(S1, S1) is endowed with its natural Hilbert

manifold structure (which exists because 3
2 − ε1 >

1
2). Note that∥∥∥∥∥γt ◦ γ−1

t+h − id
h

+ ut

∥∥∥∥∥
3
2
−ε1

→ 0

is equivalent to ∥∥∥∥γt − γt+hh
+ ut ◦ γt+h

∥∥∥∥
3
2
−ε1
→ 0,
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by Lemma 4.5. Furthermore, we have∥∥∥∥γt+h − γth
− ut ◦ γt+h

∥∥∥∥
3
2
−ε1
≤
∥∥∥∥γt+h − γth

− ut ◦ γt
∥∥∥∥

3
2
−ε1

+‖ut ◦ γt − ut ◦ γt+h‖ 3
2
−ε1 .

The limit of the first term is zero since γ̇t = ut◦γt with respect to the Weil-Petersson
topology. The second term converges to zero since h 7→ γt+h is continuous with
respect to the Weil-Petersson topology and by Lemma 4.5.

In order to show that the curve (6.10) is differentiable at 0, as a curve in H
1
2 (S1),

we need to show that the map

η ∈ H
3
2
−ε1(S1, S1) 7→ u ◦ η ∈ H

1
2 (S1)

is differentiable at id. Note that this map is only well-defined on a subset of
H

3
2
−ε1(S1, S1), which contains T, and is not continuous with respect to the topol-

ogy of H
3
2
−ε1(S1, S1). Moreover, η ∈ H

3
2
−ε1(S1, S1) and u ∈ H

3
2 does not imply

that u ◦ η ∈ H
1
2 (S1) because the hypotheses of Lemma 4.5 require that η−1 ∈

H
3
2
−ε1(S1, S1) for small ε1 > 0. Theorem 4.2 shows that the domain of this map

contains T because any η ∈ T satisfies η, η−1 ∈ H
3
2
−ε1(S1, S1) for all ε1 > 0.

In spite of these problems, we shall prove that this map, defined only on its
domain, is differentiable at id.

Recall that the functions inH1 are absolutely continuous and so are differentiable
a.e.. For absolutely continuous functions, the fundamental theorem of calculus is
still valid (see Hewitt and Stromberg [1975], §18). Since u is in H

3
2 (S1), we can

write, for all x, v ∈ R,

u(x+ v)− u(x) =

∫ 1

0
u′(x+ tv)v dt.

Thus, at points x at which u is differentiable, we have, for all v,

u(x+ v)− u(x)− u′(x)v =

∫ 1

0
(u′(x+ tv)− u′(x))v dt.

Let w ∈ H
3
2
−ε1(S1) = TeH

3
2
−ε1(S1, S1). Since the previous formula is valid for all

v, we can write

u(x+ w(x))− u(x)− u′(x)w(x) =

∫ 1

0

(
u′(x+ tw(x))− u′(x)

)
w(x)dt. (6.11)

By Lemma 4.5 and Theorem 4.9 we know that t ∈ [0, 1] 7→ (u′ ◦ (id+ tw)− u′)w ∈
H

1
2 is a continuous function if ε1 > 0 sufficiently small, and for admissible w,

that is, such that id + w and its inverse are in H
3
2
−ε1(S1). For the same reasons

u ◦ (id+ w)− u− u′w ∈ H
1
2 (S1). Thus, it makes sense to ask whether the identity

u ◦ (id+ w)− u− u′w =

∫ 1

0

(
u′ ◦ (id+ tw)− u′

)
wdt (6.12)
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holds as an equality in H
1
2 (S1). The two sides of the equality above can be evaluated

for all x in a subset of S1 whose complement has measure zero. For x in this set,
the evaluation of the left hand side of (6.12) clearly coincides with the left hand side
of (6.11). The evaluation at x of the right hand side of (6.12) equals the right hand
side of (6.11) by the definition of the integrals in both formulas.

Given M > 0, there is δ > 0 such that if ‖w‖ 3
2
−ε1 < δ we have

‖u′ ◦ (id+ tw)− u′‖ 1
2
< M,

by Lemma 4.5. Using the properties of the integral in Hilbert spaces and Theorem
4.9, we obtain∥∥∥∥∫ 1

0

(
u′ ◦ (id+ tw)− u′

)
wdt

∥∥∥∥
1
2

≤ C‖u′ ◦ (id+ tw)−u′‖1/2‖w‖ 3
2
−ε1 ≤ CM‖w‖ 3

2
−ε1 .

This proves that

‖u ◦ (id+ w)− u− u′w‖ 1
2
≤ CM‖w‖ 3

2
−ε1 .

Therefore, the map η ∈ H
3
2
−ε1(S1, S1) 7→ u ◦ η ∈ H

1
2 (S1) is differentiable at id

with respect to admissible directions. Since this map is well-defined on the curve
h 7→ γt ◦ γ−1

t+h, and since this curve is differentiable at 0, we obtain that the curve

h 7→ ut ◦ γt ◦ γ−1
t+h ∈ H

1
2 (S1)

is differentiable at h = 0 and its derivative is −u′tut. Thus we obtain that the
expression (6.9) converges to zero, for all t ∈ R. This proves that the curve t 7→ ut
is differentiable and its derivative is

u̇t = −u′tut + Z(ut).

Since we already know that t 7→ ut is continuous in H
3
2 (S1), we obtain, by Theorem

4.9 and by the smoothness of the geodesic spray, that t 7→ −u′tut + Z(ut) is a

continuous curve in H
1
2 (S1). This show that t 7→ ut is in C1

(
R, H

1
2 (S1)

)
. �

This shows the remarkable fact that the Eulerian representation of the geodesics
of the Weil-Petersson metric on the universal Teichmüller space have the same prop-
erty as the Eulerian representation of geodesics in fluid mechanics (incompressible
Euler, Euler-α, higher dimensional Camassa-Holm). Namely, the regularity of the
Eulerian velocity is always of the form

vt ∈ C0([0, T ], Hs) ∩ C1([0, T ], Hs−1), for all s >
n

2
+ 1.

However, note that for the Euler-Weil-Petersson equation we are obliged to use the
critical exponent s = 3/2. Long time existence follows from the strongness of the
metric, as we have seen in Proposition 5.1, that is, we have

ut ∈ C0
(
R, H

3
2

)
∩ C1

(
R, H1/2

)
.
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Summary. We conclude this section by giving a brief summary of the properties of
the WP geodesics on the Riemannian manifold (T, g). Recall that T is by definition
the Hilbert manifold Φ(T (1)H◦ ), where T (1)◦ is the connected component of the
identity of the universal Teichmüller space endowed the with the Takhtajan-Teo
Hilbert manifold structure. Alternatively, T can also be seen as the closure of
the diffeomorphism group Diff+,fix(S1) in the group QS(S1)Hfix of quasisymmetric
homeomorphisms relative to the Hilbert manifold structure. The homeomorphisms
in T as well as their inverse, are of Sobolev class Hs for all s < 3

2 .
Given an homeomorphism γ in T and a direction uγ ∈ TγT, there exists a unique

geodesic γ(t) starting at γ with initial velocity uγ . Moreover, this geodesic can be
extended for all time. The associated Eulerian velocity u(t) := γ̇(t)◦γ(t)−1 solves the

Euler-Weil-Petersson equations and defines a continuous curve in H
3
2 , differentiable

as a curve in H
1
2 .

7 Teichons as Particular WP Geodesics

In this section we consider particular solutions of the Euler-Weil-Petersson equa-
tion, analogue to the peakons solutions of the Camassa-Holm equations. They are
naturally called Teichons. Recall that in the case of Camassa-Holm equations, these
peakons are singular solutions and are not obtained by solving the geodesic spray
equations on the group of Sobolev diffeomorphism Diffs+(S1), s > 3/2. As we will
see below, the situation is different for the Teichons. For the Camassa-Holm equa-
tions, the peakons are given by expression of the form u(x) =

∑N
j=1 pjG(x − qj),

where G denotes the Green’s function of the operator (1 − α2∂2
x). The associated

momentum m = (1 − α2∂2
x)u is interpreted as a momentum mapping for the left

action of the diffeomorphism group Diff+(S1) on the Cartesian product of N circles.

Teichons. In the case of the Euler-Weil-Petersson equation, the Green’s function
is

G(x) =
4

π

∑
n6=−1,0,1

einx

|n|(n2 − 1)
,

since for Qop = 1
8 J ◦(∂3

x + ∂x) we have

Qop(G) =
1

2π

∑
n 6=−1,0,1

einx = P(δ) =
1

2π

∑
n6=−1,0,1

einx,

where δ is the Dirac distribution and P is the projection onto the space hs = {u ∈
Hs(S1) | u0 = u1 = u−1 = 0}, s ∈ R. From the expression for the Green’s function,
we see that

G ∈ h5/2−ε, for all ε > 0.

Recall that Qop : hs → hs−3 is an isomorphism. For s > 1/2, Qop : gs → hs−3 is also
an isomorphism.



7 Teichons as Particular WP Geodesics 37

We search for solutions of the weak Euler-Weil-Petersson equation (6.5) of the
form

u(x, t) =

N∑
j=1

pj(t)G(x− qj(t)) (7.1)

and want to determine (qj(t), pj(t)). We begin by noting that it makes sense to
search for solutions of this type. Indeed, all the terms in the equation 〈ṁ, ϕ〉 +

〈m,u′ϕ〉 − 〈m,uϕ′〉 = 0 make sense. In the second term m ∈ H−
1
2
−ε(S1) and

u′ ∈ H
3
2
−ε(S1) so the L2 integral of their product makes sense for this form of u.

In the third term, m ∈ H−
1
2
−ε(S1) and u ∈ H

5
2
−ε(S1) so the L2 integral of their

product also makes sense.
Let

m(x, t) = (Qopu)(x, t) =
N∑
j=1

pj(t)(Pδ)(x− qj(t)) = P

 N∑
j=1

pj(t)δ(x− qj(t))

 .

Assume that

N∑
j=1

pj(t) =

N∑
j=1

pj(t)e
iqj(t) =

N∑
j=1

pj(t)e
−iqj(t) = 0. (7.2)

Now note these three expressions are 2π times the n = 0,±1 Fourier coefficients of∑N
j=1 pj(t)δ(x− qj(t)). Therefore, under the conditions (7.2),

m(x, t) =

N∑
j=1

pj(t)δ(x− qj(t)).

Note that m(·, t) ∈ h−1/2−ε. A direct computation shows that 〈ṁ, ϕ〉 + 〈m,u′ϕ〉 −
〈m,uϕ′〉 = 0 for every ϕ ∈ C∞(S1) if and only if

∂tqj =
N∑
i=1

piG(qi − qj) =
∂H

∂pj
, ∂tpj = −

N∑
i=1

pipjG
′(qi − qj) = −∂H

∂qj
, (7.3)

relative to the collective Hamiltonian H : [T ∗S1]N → R given by

H(q,p) =
1

2

N∑
i,j=1

pipjG(qi − qj).

The conditions (7.2) are conserved along the flow of (7.3) and thus we need to impose
them only on the initial conditions, that is,

N∑
j=1

pj(0) =

N∑
j=1

pj(0)eiqj(0) =

N∑
j=1

pj(0)e−iqj(0) = 0. (7.4)
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Note that since G ∈ H
5
2
−ε(S1), the right hand side of (7.3) is in H

3
2
−ε(S1) ⊂ C0(S1)

and thus the solution is C1 in time.
Recall that the Euler-Weil-Petersson equation in weak form makes no sense

if u is only in H3/2(S1), but here the ansatz u(x, t) =
∑N

j=1 pj(t)G(x − qj(t))

is in H5/2−ε(S1), for all ε > 0, therefore it makes sense to say that u(x, t) =∑N
j=1 pj(t)G(x− qj(t)) is a weak solution of the Euler-Weil-Petersson equation.

Note that the solutions of (6.5) are in H
5
2
−ε(S1) for all t near zero and so they

necessarily lie in H
3
2 (S1). Thus they are solutions of the spatial representation (6.6)

of the geodesic spray of the Weil-Petersson metric on T (1)H◦ . Consequently t 7→ ηt,
where ηt is the solution of the equation η̇t(x) = u(t, ηt(x)), is a solution of the
geodesic spray of the Weil-Petersson metric. We summarize all these comments in
the following statement.

Theorem 7.1. The Hamiltonian system (7.3) with conditions (7.4) has infinite
time solutions. The functions u(x, t) given by (7.1) with (qj(t), pj(t)) solution of
(7.3) are particular solutions of the geodesic spray of the Weil-Petersson metric on
T (1)H◦ in spatial representation.

The long time existence result of solutions of the type (7.1) was independently
obtained by Kushnarev [2009] by a direct analysis of the Hamiltonian system (7.3).
Due to the similarity to soliton and peakon solutions for the KdV and Camassa-Holm
equations, solutions of the type (7.1) are called Teichons.

Momentum Mapping Interpretation. As in the case of the peakons of the
Camassa-Holm equations, see Holm and Marsden [2004], the momentum m = Qopu
associated to the Teichons solutions is given by momentum mapping. To see this,
it suffices to remark that

J : [T ∗S1]N → h−3/2, J(q,p) = P

 N∑
j=1

pjδ(x− qj)


is the momentum mapping associated to the cotangent lift of left composition by T.

Teichons Versus Peakons. The situation is totally different for the peakon so-
lution of the Camassa-Holm equations. In this case the Green’s function is in H

3
2
−ε,

therefore, the peakons solutions for Camassa-Holm are really less regular than the
solutions obtained by geometric means which require s > 3/2. This is exactly back-
wards for EWP, the Teichons are more regular than the geodesics.

We now mention another difference between Peakons and Teichons. For peakons
for the Camassa-Holm equations, to make sense of weak solutions, one has to mul-
tiply by a test function of space-time, not just space, see Alber, Camassa, Fedorov,
Holm, and Marsden [2001]
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8 Application to Pattern Recognition

The goal of this section is to apply the properties of the Euler-Weil-Petersson spray
to image recognition. Sharon and Mumford [2006] used the Weil-Petersson metric
to compare images and introduced the fingerprint map to identify a space of smooth
shapes with the group of diffeomorphisms by means of conformal welding. We shall
prove that the fingerprint map extends to certain completions of these spaces rela-
tive to the Weil-Petersson metric. This enables us to make use of the Takhtajan-Teo
theory and the results of the present paper. The fact that the universal Teichmüller
space is geodesically complete with negative curvature enables us to positively ad-
dress a comment of Sharon and Mumford [2006], namely that there exists a unique
geodesic between each two shapes in the plane.

Conformal Welding. Given a closed Jordan curve Γ in the Riemann sphere Ĉ,
we denote by Ω and Ω∗ the two components of the open subset Ĉ\Γ of Ĉ. By the
Riemann mapping theorem we can find conformal maps f : D→ Ω and g : D∗ → Ω∗.
These maps extend to homeomorphisms between the closures of the domains and,
by restriction of these extensions to S1, we can form the orientation preserving
homeomorphism

h := g−1 ◦ f

of the circle. A homeomorphism of the circle arising this way is called a conformal
welding. If Γ is a smooth curve, then f and g extend to smooth maps of the
corresponding boundaries. In this case h is a smooth diffeomorphism of S1. It is
well known that there exist homeomorphisms which are not conformal weldings.
We have the following well-known existence and uniqueness result in the case of
quasisymmetric homeomorphisms.

Theorem 8.1. Let η ∈ QS(S1)fix. Then η is a conformal welding and the de-
composition η = g−1 ◦ f is unique up to left composition of f and g by a Möbius
transformation.

This theorem follows easily form the fact that for each η ∈ QS(S1)fix we can
write

η = ωµ|S1 = (ωµ ◦ ω−1
µ )−1 ◦ ωµ|S1 . (8.1)

To the decomposition η = g−1 ◦ f we can associate the Jordan curve Γ := f(S1) =
g(S1), and from (8.1) we know that Γ is the image of S1 by a quasiconformal
mapping of Ĉ. Such a curve is called a quasicircle.

The Fingerprint Map. The set of all quasicircles in the complex plane is denoted
by QC. It is known (see Lemma p.123 in Kirillov [1986]) that if η is a smooth
diffeomorphism, then the quasicircle Γ associated to the decomposition η = g−1 ◦ f
is a smooth curve. We denote by S the subset of all smooth and simple closed curves
in C and by QC and S the corresponding quotient spaces associated to the action
of the group of transformations {az + b | a > 0, b ∈ C}.
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For a quasicircle Γ ∈ QC we denote by Γ+ the open subset of Ĉ bounded by Γ and
containing the point ∞ and by Γ− the other open subset bounded by Γ. Using the
fact that each quasicircle is the image of S1 by a quasiconformal mapping of Ĉ which
is conformal on D (see Lemma I.6.2 in Lehto [1987]) we can find a quasiconformal
map φ− of Ĉ verifying the following two conditions:

• φ−(D) = Γ−,

• φ−|D is conformal.

Similarly, we can find a quasiconformal map φ+ of Ĉ such that

• φ+(D∗) = Γ+,

• φ+|D is conformal,

• φ+(∞) =∞ and ∂zφ+(∞) > 0.

Note that we have φ−(S1) = φ+(S1) = Γ. Note also that given Γ ∈ QC, the
conformal map φ−|D is uniquely determined up to right composition with an element
in PSU(1, 1) and the conformal map φ+|D∗ is uniquely determined by the three
previous conditions. Therefore, we can consider the map

QC → PSU(1, 1)\QS(S1) ' QS(S1)fix, Γ 7→ [φ−1
+ ◦ φ−|S1 ].

This map is invariant under scalings and translations in QC and therefore induces
a map

F : QC → QS(S1)fix.

By Theorem 8.1, each η ∈ QS(S1)fix is a conformal welding, therefore we can write
η = g−1 ◦ f . Since f and g are unique up to left composition with a Möbius trans-
formation, we can impose the normalization conditions g(∞) =∞ and ∂zg(∞) > 0.
Setting Γ := g(S1), we obtain that F(Γ) = η. This proves that this map is surjec-
tive. Suppose now that we have an other decomposition η = ḡ−1 ◦ f̄ where ḡ verifies
the same normalization conditions. Since ḡ = γ ◦ g for γ a Möbius transformation,
we must have γ(z) = az + b where a > 0 and b ∈ C. This proves that F is a
bijection. Note that the map F restricts to a map

F : S → Diff+(S1)fix.

This restricted map is actually the fingerprint map considered in Sharon and Mum-
ford [2006]. In this paper, the set S is seen as the space of all smooth shapes in
the plane up to scalings and translations. Using the map F , each equivalence class
of shapes is identified with a unique diffeomorphism η ∈ Diff+(S1)fix. The Weil-
Petersson metric on Diff+(S1)fix can be used as a metric on this space of shapes.
This point of view is developed in Sharon and Mumford [2006] with applications to
2D-shape analysis and leads to interesting numerical computations.
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Hilbert Manifold Structure. Recall from section 3 the following two important
facts.

• The group QS(S1)fix can be endowed with a smooth Hilbert manifold structure
on which the Weil-Petersson metric is strong. This manifold is denoted by
QS(S1)Hfix and has uncountably many connected components.

• The completion in QS(S1)Hfix of the subgroup Diff+(S1)fix of smooth diffeo-
morphisms is the connected component of the identity in QS(S1)Hfix.

Using the fingerprint map, we can pull back the Hilbert manifold structure of
QS(S1)Hfix to the set QC of all quasicircles up to scalings and translations. The
connected component QC◦ of S1 in QC is therefore the completion of the shape
space S. We thus have the smooth inclusions

S ⊂ QC◦ ⊂ QC.

Since in the completionQC◦ the Weil-Petersson metric is strong and has non-positive
sectional curvature, we have the following theorem.

Theorem 8.2. Let Γ1,Γ2 be two shapes in QC◦. Then in any homotopy class of
curves from Γ1 to Γ2, there is precisely one Weil-Petersson geodesic from Γ1 to Γ2.

This discussion gives a positive answer to a question posed by Sharon and Mum-
ford [2006] in the introduction. Thus, integrating the Weil-Petersson metric along
a geodesic gives the distance between two shapes.
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