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Classical statistical physics says that in an atom, the accelerated movement of the electron, which is a
charged particle, must be accompanied by emission or absorption of electromagnetic energy. All levels
are accessible (in the limit where the electron is not in such a low orbit that it would “touch” the nucleus).
The most energetic levels correspond to X-rays, discovered by Wilhelm Roentgen in 1895.

Boltzmann’s law of thermal equilibrium is based on the fact that all states of the system for a given total
energy are equally accessible. It is then shown that the number of states allowing a parcel of the system
to have an energy is ~ Exp[-( /(k T))] where k is the Boltzmann constant.
Applied to  the kinetics  of gases, this law makes it  possible to obtain that  the energy  of  a perfect
monatomic gas is U= 3/2nkT where n is the number of atoms, i.e. U=3/2RT for a mole of gas with R=N k
where N is Avogadro’s number. The degrees of freedom are here the three components of the speed of
the atoms.

Let  us apply  the law to  the electrons surrounding molecules or atoms, seen  as many independent
oscillators. The average energy associated with an oscillator is then
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When a body is heated to high temperature, it is excited and its electrons store energy. They give it to
the environment by emitting energy in the form of photons, which makes the body luminous. By losing
energy, the body cools down.
The same phenomenon also occurs at room temperature but, as the law of the black body will confirm,
the emission takes place outside the visible range, in the infrared.
We consider here that matter only exchanges energy  in  radiative form and we neglect all  the other
effects (conduction, convection, etc.).

In its normal state, a body is bathed in a flow of energy (thermal exchange with other neighboring bodies
and exchange with radiation). It is this exchange with radiation that is dealt with by the law of the black
body.

A  prototype  black  body may consist  of  a dense gas at high temperature  T,  opaque  in all  radiation,
thermally insulated and surrounded by perfect mirrors which reflect all radiations. Another (more practi-
cal) model is a perfectly insulated oven with an internal material brought to temperature T, exchanging
nothing with the outside of the oven and surrounding an empty cavity where the electromagnetic radia-
tions propagate. An observer can in both cases measure the radiation by drilling a small diameter hole in
the wall generating little disturbance to the system.

In this case, classical physics says that the energy of the radiation at the frequency is
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This result is obtained by balancing the cooling by radiation of the electrons oscillating at the frequency
which is  ~ ^2 k T with  the  absorption by this oscillator of the ambient  radiation which is  ~ J[\[Nu ]].

Precise calculation implies knowing the laws of electromagnetism and calculating the radiation diagram
of an oscillating dipole, but this is ignored here.

The problem is that this law predicts that radiation in equilibrium grows as 2, and therefore any heated
body should emit high doses of X-rays, which is not the case.  Therefore, there must be a fundamental
error in this reasoning and its correction must provide a cut-off factor at large  for J[ ].

This is more or less the reasoning path followed by Planck who proved that such a cut-off factor could
be produced by assuming that the energy exchanges are quantified in multiples of h .

Thus  the possible  states of  the oscillator  are no longer continuous but discrete in the form 0, 0+h ,
0 2 h , 0+3 h , ... where 0 is the fundamental.

If we apply Boltzmann’s law to obtain the average energy of oscillators at frequency , we then obtain it
as a ratio of two sums rather than two integrals, that is
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In the limit where is very small in front of k T
h

, we obtain - 0 kT, thus recovering the classical formula.

As only the part of the energy above  the fondamental level can be exchanged, kT must be replaced in
equation 1 by h
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 and we finally obtain
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This is the Planck law which is very accurately checked by experimental spectrometry.

By replacing par
c
and accounting that d

c
d ,

we obtain the expression of the Planck law in terms of the wavenumber
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Let us define the constants involved in the Planck law

Const k BoltzmannConstant, h PlanckConstant, c SpeedOfLight

k
1.38065 10 23 Joule

Kelvin
, h 6.62607 10 34 Joule Second, c

299 792 458 Meter

Second

Plot of Planck law as a function of wavenumber for the temperature T = 255 K
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Stephan law
The  Stephan law provides the total energy emitted at a given temperature with the remarkable result
that it is proportional to T4
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