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Introduction
     
Theories of the passive scalar transport
     Statistical theory
     Deterministic theory
       
Theories at work with real flows
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Part I: Introduction
     Why transport and mixing is important for the 
distribution of chemical and biological compounds in 
geophysical flows?
     The 2D approximation and limits to its validity

Turbulence in 3D and 2D
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Chlorophyll
in the ocean

CO pollution plume
in the atmosphere

The atmosphere is filled with minor 
components (CO2, ozone, H2O, CO, 
CH4, other greenhouse gases, N2O, 
aerosols, ...), some of them 
controlling the climate, others like 
CO resulting from pollution.

The ocean carries nutrients on which 
depends the biologic production.  

The distribution of long-live tracer 
depends to a large extend of 
transport and stirring by winds and 
oceanic currents.

Biological production in the ocean 
and chemical reactions in the 
atmosphere depend on mixing 
which is performed by the 
turbulent motion.

Huge Reynolds number O(1010)
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Ozone is an essential UV 
filter for life on the 
surface of the Earth. 
90% of ozone is in the 
stratosphere.

Under 25 km, in the 
stratosphere, life-time 
of ozone is of the order 
of several months, 
except in the winter 
polar vortex where  it is 
depleted by 
anthropogenic chlorine.

Courtesy of C. Basdevant

Even there, the distribution of ozone is largely determined by 
transport. The isolines of ozone tend to follow 
more or less closely the streaklines of the flow as made apparent by 
the movie featuring also real balloons from VORCORE experiment.
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Numerically simulated 
two-dimensional turbulence Chlorophyll in the ocean

Large-scale motion (L>100 km in the atmosphere, L>10 km in the ocean) is 
dominated by layerwise quasi two-dimensional motion as a result of aspect-ratio, 
rotation and stratification 
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Fast horizontal stirring
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z ≈ 13 km

Motion in the stratosphere Holton et al., Rev. Geophys., 33,403-440,  1995
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Zonally averaged 
meridional sections of N

2
0 

and O
3
 from MLS-AURA.

3 August 2006

White contours: scaled PV
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Gloria Manney, JPL, Caltech/NASA

Artistic view of the MLS limb 
sounder in operation
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NASA ER-2 transect
across the edge of the 
Antarctic polar vortex

sharp transition over a few km



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

10

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

MLS AURA
15 September 2006

Gloria Manney, JPL, Caltech/NASA
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White contours: scaled PV
Black: temperature
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N2O measured from aircraft
in the stratosphere

In situ measurements 
exhibit a large amount
of small-scale fluctuations, 
that are still poorly 
represented by models

Time (hour)

Hence, it is both interesting 
from the theoretical point of 
view and challenging from the 
practical point of view to 
understand the distribution of 
tracers in geophysical flows.
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2D approximation is relevant for geophysical flows because of
aspect ratio, stratification and rotation.
Vertical velocities are small, motion is layerwise.

Large persistent tracer gradients are observed, indicating 
transport barriers.

Wide range of small-scale structures.

From thermodynamical point of view, outside active convective 
regions (<10% in the troposphere, none in the stratosphere), 
diabatic processes at any scale are slow with respect to dynamic 
processes
(in the stratosphere it takes 1 month to travel 1 km in the vertical)
Hence motion is mostly adiabatic on isentropic surfaces 
characterized by potential temperature Θ=T(p

0
/p)R/Cp

In summary,
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Layerwise motion does not mean that the dynamics is strictly two-
dimensional.
Actually, it is not: A multilayer framework (at least two layers) is 
necessary to provide the minimum description of atmospheric and 
oceanic dynamics driven by baroclinic instabilities in the mid and high-
latitudes. In the tropical region,  dynamics is driven by convection.

However, from the point of view of transported scalar, the two-
dimensional approximation provides very useful insights and can even be 
used for real practice.
In the first approximation, one can consider the stratosphere and, to 
some extend the stratosphere, to be  governed by layerwise quasi-2D 
isentropic motion.
In the second approximation, on must take into account both slow 
diabatic tendencies and fast mixing events due to convection, wind shear 
instabilities, and gravity-wave breaking.

The advecting winds span a much broader class than the solutions of the 
two-dimensional Navier-Stokes equation.
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Nature, 25 March 
1999

About 15% of the 
atmosphere is occupied 
by layers.

Mainly due to
stratospheric intrusions

Ozone layer in the troposphere a few km under the tropopause
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Example of layering in the free troposphere

(a)

26 May 27 May 28 May

SIRTA aerosol lidar on 26-28 May 2003
Ecole Polytechnique / LMD
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Turbulent stirring in 3D flows for 
large Reynolds with a large number 
of excited structures down to the 
Kolmogorov dissipative scale (of the 
order of 1mm in the atmosphere and ocean 
under standard conditions).

Ultimate mixing is performed by 
molecular forces under the 
Kolmogorov dissipative scale.
(let us assume as a simplification
that diffusion = viscosity, e.g. Peclet=1)

Ref.: Frisch, Turbulence, CUP

Inertial range

Injection
scale l

0

Dissipation
range

Kolmogorov
dissipation
scale   

Energy cascade
with flux ε 

Integral scale provided by
∫<v(0)v(r)>dr = L <v2>

η ~ n3/4/ε1/4

3D TURBULENCE
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Within the inertial range, the 
velocity fluctuations are non 
smooth.

The famous Kolmogorov law is
<(δv(r))3>= - 4/5 εr + O(n)
Thusδv(r) ~ r1/3

The velocity gradient is singular 
in the inviscid n0limit.

Intermittency of the velocity 
increment δv(r): large fluctuations 
are, in proportion, more frequent 
as rη (dissipation scale).

Non Gaussian distribution of the 
velocity increments.

In the dissipation range, r < η, the 
velocity is smooth.

PDF of velocity increments at 
various separations within the inertial
range
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In 2D or quasi-2D flows, the vorticity or a generalization, the potential 
vorticity P=((rot(v)+2Ω).grad(Θ))/ρ are Lagrangian invariant of motion.

Under the assumptions that stratification is large (∂Θ/∂z >> ∂Θ/∂x, ∂Θ/∂y) 
and/or Ω dominates the rotation, velocity gradient is bounded by initial 
conditions
->  motion is smooth at small scale δv(r) ~ r.

No intermittency

In 2D turbulence: two quadratic invariant 
of motion for the Euler equation, 
energy ½∫v2 dx dy and the enstrophy  
½∫(rot v)2 dx dy, inducing two inertial  
ranges.
A direct (to small-scale) enstrophy 
cascade.
An inverse (to large-scale) energy cascade.

Energy
cascade

Enstrophy
cascade

Injection

2D TURBULENCE
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Chaotic stirring in layerwise (quasi-
2D) flows is 
- smooth   U(r) ~ r
- dominated by the large-scale 
advection  

Velocity increments in the inverse cascade and vorticity increments in 
the direct cascade are essentially Gaussian. 

In forced dissipative 2D turbulence,
coherent eddies are ubiquitous. They
dominate the advection.

PDF of velocity increments in the inverse cascade PDF of vorticity increments in the direct cascade

Ref on 2D turbulence: Tabeling
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Part II: Theories of the passive scalar transport
● Mixing versus stirring
●II.A Spectral theory
● 1 Standard spectra of passive scalar
● 2 Verification of spectral theory in the lab
● 4 Observations apparently disagrees

II.B Large-scale limit
● 1 Random walk and diffusion
● 2 Taylor dispersion, diffusive limit

II.C Blob and wave-packet dynamics
● 1 Blob and wave-packet in fixed smooth flow
● 2 Selection of decaying modes
● 3 Lyapunov exponents
● 4 Stable and unstable Lyapunov eigenvectors
● 5 Lyapunov probability distribution
● 6 Wave packets under time varying smooth flow
● 7 Synthesis of blob evolution
●.8 Global modes
● 9 Prediction for the PDF of the tracer
● 10 Laboratory and atmospheric results
● 11 Variance spectrum
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Stirring versus mixing

Mixing performed by molecular
forces is necessary for 
chemical 
reactions to occur

Chaotic + turbulent
stirring increases 
gradient and contour
length (or surfaces in 
3D)

Small-scale
diffusion



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

22

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

Batchelor and Obhukov-Corrsin passive scalar spectra 

The spectral variance of the scalar is defined as 

 x , y =
1

2 
2 ∬−∞

∞
dk dl k , l ei kxly

and C K =
1

2
2∬ dx dy

∫
0

2 
d ∣ K ,∣2

 where k , l =K cos ,sin 

If the velocity fluctuations at scale r~1 /K  are characterized by
a time scale   and if  is the mean rate of the cascade (flux of
variance across wavenumber par unit of time), then

C K ~ K−1

If the flow is smooth , there is a unique time scale   independent
of K , hence C K ~K−1

If  v r ~rh  with 0h1 , then ~
r

 v
~r1−h~K h−1 , that is C K ~K h−2

For h=1 /3 , corresponding to a K−5/ 3  energy spectrum, C K ~K−5/ 3



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

23

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

I
B

Magnet

A 2D laboratory experiment

2 fluid layers, salt and 
Clear water

U

Tabeling, 2001, Experiments in a thin layer
of electrolytic fluid
ref: Tabeling, Two-dimensional turbulence: a physicist 
approach, Physics Report, 362, pp. 1-62, 2002
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CHARACTERISTICS OF THE VELOCITY FIELD
(GIVING RISE TO BATCHELOR REGIME)
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Energy Spectrum 2D Energy spectrum

Tabeling, 2001
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0.01

0.1

1

10

100

1000

1 10

Eq

(k)

k(cm-1)

1
10
100

1 10

k*Eq(k)

SPECTRUM OF THE CONCENTRATION FIELD

2D Spectrum

Tabeling, 2001
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Evolution of a drop in the Batchelor regime
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Energy spectrum for the inverse cascade

0.1
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0.1 1
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Slope -5/3

injectiondissipation

2D spectrum

Snapshot
of the flow
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Spectrum of the concentration field
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Evolution of a drop released in the inverse cascade
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What about the atmosphere?

Nastrom & Gage, J. Atmos. Sci., 1985
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kk-5/3

k-3

Both velocities and temperature tend to show a k-2.5 behaviour for the 
variance spectrum at scales smaller than about 25 km and k-5/3 between 
200 km and 25 km. Tracers show k-5/3 slope down to small scales.

Bacmeister et al., J.
Geophys. Res., 1996
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So what?
● Theory works well in the lab but less easily in the atmosphere
● Not easy to estimate isentropic spectra from airborne measurements

corrected structure function

uncorrected structure function

variance spectrum in k-β

● The existence of direct and inverse 2D cascades is uncertain in the 
atmosphere.
● Gravity waves can generate a downscale energy cacascade (Dewan, J. 
Geophys. Res. 1997)
● Discrete jumps in the tracer field, due to barrier effects, generate 
~k-2 contributions to the variance spectrum.
● Variance spectrum depends on the spatial distribution of stretching 
and dissipation.
● Let us try to understand better
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Random walk and diffusion  x=w i t

White noise, zero mean, variance 
〈w i w j 〉=w

2 ij

Displacement over N  steps, or time T=N  t

X=∑
i=1

N

 xi=∑
i=1

N

w i t

By central limit theorem, X  is a Gaussian random process with zero mean and variance
〈 X 2〉=N 2 w

2  t 2=w

2  t T
Hence, the p.d.f. P

X
 x , t  satisfies

∂ P

∂ t
= P

X
x ,t   with P

X
x ,0= x  ,

which has solution    P
X

x , t = 1

2 t d / 2
exp  −x 2

4 t 
provided = 1

2
w

2  t

If  t  is not constant but jumps are of duration i , the random process is over  x

with variance  x.A necessary condition is than 〈〉  is finite for which =
 x

2

2 〈〉
By adding advection by U  we obtain the Fokker-Planck equation

∂
∂ t

P
X

=U . ∇ P
X

= P
X

which is also the advection-diffusion equation for the passsive tracer
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Diffusive regime in transport  (Taylor) Scale of
distances 

in the 
diffusive
regime

We neglect here molecular diffusion and show that
at large scales where dispersion exceeds the size of
most energetic eddies, transport is again diffusive.
In Lagragian coordinates, motion of a parcel is

x a , t =x a ,0∫
0

t

u x a , s , sds

where x a , t   is position at time t  of parcel which was
in a  at time 0 (hence x a ,0=a )
For each parcel with initial position a i , define

x i t =x ai , t   and v i t =u  x a i , t  , t 

Hence,  d
dt

 x i−a i 
2
=2  x i−a i v i=2∫

0

t

v i t  v i s ds  ,

and after averaging over ensemble
d

dt
〈x i−a i 

2
〉=2∫

0

t

S t−s ds=2∫
0

t

S sds

where S  t−s=〈 v i t  v−i s〉  is the Lagrangian velocity
correlation, assuming homogeneity and stationnarity.
This can be solved as 

〈x i−a i 
2
〉=2∫

0

t

t−s  S s ds

If S s  decays fast enough, and for t≫I

〈x i−a i 
2
〉~2 Dt  with D=∫0

∞
S s ds

s

S s 

I

Integral scale I
∫

0

∞
S  s ds=〈v 2〉 I
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Cautions

   The limit does not mean the process is Gaussian since higer order
moments 〈 x p〉  with p2  can be far from Gaussian values long after
the regime 〈 x 2〉~2Dt  is reached. Nethertheless, this regime is
known as the diffusive regime.

If the integral ∫0

∞
S  s ds  diverges, the diffusive regime does not exist.

For instance if S s ~s−  with 01 , the regime is super-diffusive
〈 x2 〉~t2−

If now ∫
0

∞
S  s ds=0 , but if ∫

0

t

 t−s S  s ds  diverges with t , we have

a sub-diffusive regime. For instance if S s ~s− with 12  for
large enough times, we have again 〈 x2〉~t2−  but with an exponent
less than 1
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2 l d

L~e t

ldcmax~e− t

L~e t

l~e− tc t =c 0

Stretching and generation of tracer 
gradient 

General equation :    ∂
∂ t

cu⋅∇ c= ∇ 2 csource

For a pure deformation  u= x  and v=− y :

In the absence of diffusion and source:
c  and area  conserved + stretching

With diffusion:
∂
∂ t

c x ∂
∂ x

c− y ∂
∂ y

c= ∇ 2 c

Diffusion and advection balance at scale l d=2 /

Stationary solution for a density front
depending on y  only: c=AErf  y / ld 
reached in t≈−1 from steep initial condition and in
t≈−1ln L0/ ld  from smooth initial condition at scale L0

Impulsive solution

c x , y ,t =1

 f g
exp−x2

f 2
− y2

g2


with f 2=



e2  t−1 and g2=



1−e−2 t
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Another interesting separable solution, initially sinusoidal in both x  and y

c  x , y , t =At cos k e− t x cos k e t y

with At =exp−l2 k 2sinh 2 t , l= 


 being a separation constant.

The gradient is

∣∇ c∣2= k 2

2
cosh 2 t exp −2 l 2 k 2 sinh 2  t .
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Blob dynamics

Along the direction of stretching: exponential elongation of the blob

Along the direction orthogonal to the shear, two stages
- exponential narrowing until t*~α-1ln(α/κ)
- saturation of the width of the blob at the diffusive scale l

d
=(2 κ/α)1/2

-> exponential growth of the blob, exponential decay of the concentration
This second stage shared for blob or δ-like initial conditions

In the case of a sinusoidal solution

- first stage until t* for which the wave stretches and shrinks exponentially, 
and the gradient grows exponentially
- second stage of super exponential decay
-> paradox ?

Diffusion is felt after a time t* which depends only logarithmically upon κ



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

39

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

Let the velocity be a linear function of x
v=x⋅ t    where  t  is a matrix with zero trace.

For a single Fourier mode: c x , t =c k0 , t exp i k t ⋅x  with k0=k 0 
 and c k 0 ,0=c0 k0
The advection-diffusion equation is

∂t ci x⋅∂t k ci x⋅⋅k  c=−k 2 c
Since this holds far all x

∂t k=−⋅k

∂t c=− k 2 c

Hence k t =T t⋅k 0 ,  with ∂tT t=−  t ⋅T t , and T 0=Id , detT t=1.

If   is fixed then T t=exp − t 
c  x , t =∫ c k0 , t exp i x⋅k t d d k 0

c  x , t =∫ c0 k0exp i x⋅T t⋅k 0−∫
0

t

T t⋅k 0
2
dsd d

k0

A more general solution to the sinusoidal problem
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Recalling 
c  x , t =∫ c0k 0exp i x⋅T t⋅k0−∫

0

t

T t⋅k0
2
ds  d d

k0

If = 0

0 −  , k0=k , l  , x= x , y 

then T t=e− t 0

0 e t   and k t =k e− t , l e t 

∫
0

t

ds T s⋅k 0
2
= 1

2
 l 2 e2 t−1 k

2 1−e
−2 t  

Introducing l=l e t , the solution is

c  x , y , t =e− t ∫
−∞

∞

dk ∫
−∞

∞

d l c0 k , l e− t  exp i k t ⋅x−


2
 l2k

2
Replacing c0 k , l e− t   by the inverse Fourier transform 

c0
k , l e− t = 1

2 
2 ∫ c0 x ' , y ' exp −i k x '−i l e− t y ' dx ' dy '

We obtain 

c  x , y , t = e− t

2 
2∬ dk d l∬d x ' d y ' c0  x ' , y '  exp −i k x '−i l e− t y 'i k e− t xi l y−


2

l 2

and after integration 
c  x , y , t =e

− t∫−∞

∞
d y ' c0 e− t

x , y ' G  y−e
− t

y ' ; / 

where G  x ;h= 1

2h
2
exp −x

2

2h
2
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c x , y , t =e
− t∫−∞

∞
d y ' c0e− t

x , y ' G  y−e
− t

y ' ; / 

where G  x ;h = 1

2 h2
exp −x 2

2h2

This formula shows 

- the decay is exponential, no more super exponential

- the strip of width y results from the narrowing and smoothing 
of a strip of width y eαt

- the Fourier modes that contribute for large t are those for which 
l eαt is still of order 1 or less. These “zero-modes” are those which 
decay less rapidly in time. They live in a cone of aperture e-αt which
shrinks exponentially with time. 

- the decay rate is independent of the diffusivity
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Evolution equations for a line element and the passive scalar gradient in the absence
of diffusion and source are very similar since ∇ ⋅x=  is preserved

D

D t
 xi=

∂ u i

∂ x j

 x j                          
D

D t

∂ 
∂ x i

=
−∂ u j

∂ xi

∂ 
∂ x j

 D

D t
 time derivation along a given trajectory x t 

Over a time interval [t0, t0]:

x t0=M t0, t0 x  t0           ∇  t0=−M
T

t0, t0 ∇  t0 
Finite-time Lyapunov exponent

 , x  t0=
1


ln

∣Mx∣

∣x∣
= 1


ln

∣M
T

∇ ∣

∣∇ ∣

At large  , if the flow is ergodic,  ,x t0   tends to a unique  .
At intermediate  ,  exhibits large spatial and temporal variations.

Lyapunov exponent
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Finite time Lyapunov exponent 
in two-dimensional turbulence

Lapeyre, 2002, Chaos, 12, 688-698
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time t 0− time t 0 time t 0

M t 0− , t0−1
M t 0, t0

F -t 0

F
-t 0− F

+t 0

F +t 0

Stable eigendirection (future time)
M

T t0, t 0M t 0, t0 F +t 0=e
−2t 0, t 0 

F
+ t 0

M t 0, t 0F + t0=e t 0, t 0 F+ t 0

Unstable eigendirection (past time)
M t 0− , t 0MT  t0− , t 0 −1

F
- t 0=e

−2t0− , t 0 
F

- t 0

M  t 0− , t 0−1
F

- t0=e
 t 0− , t0

F
- t 0−

As  gets large
all directions at t 0  but F+  t0  get aligned with G+ t 0 in forward time
all directions at t 0−  but G- t 0,  get aligned with F- t 0  at t 0

Role of F  and G  is swapped as one considers gradient instead of separation
Gradient tends to align with G- t 0  at t 0

G
+ t0

G- t0

G
- t0−

G+ t0
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The Lyapunov exponent as built from repeated uncorrelated 
stretching events

For each individual stretching event experienced by a parcel 

i=
1


ln

∣ xi∣
∣ x

i−1
∣

After n  events 

= 1

n
ln

∣ x i∣
∣ x0∣

= 1

n
ln∏

i=1

n ∣ x i∣
∣ x

i−1
∣
= 1

n
∑
i=1

n

i

Hence   is a sum of n  independent variables with n~t.

The pdf of   is then  t G ' ' 

2 1/2

exp −t G 

where G  is the Cramèr function .

Here we use the large deviation theory which generalizes the central limit
theorem for deviations exceeding the variance
G  is a convex function such that G  =G '  =0

in the vicinity of  , G =G ' '
0
2

−
2
 recovers the Gaussian law.

References for the large deviation theory:
Ellis, Entropy, large deviation and statistical mechanics, Springer Verlag, NY, 1965
Frisch, Turbulence, CUP, 1995
Thiffeault, arXiv.nlin.CD/0502011, 2006
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Let us consider now an initial distribution made with a number of wave
packets with the same dominating wavenumber k 0  and with arbitrary
orientation over N  cells.
Each wave packet evolves according to the equations seen on p.36 with
a stretching rate determined by the Lyapunov exponent experienced along
its trajectory. Hence k i  t =k0 cos  i  exp i 

t where  i   is the initial
orientation of the main wavevector with respect to the compression axis F - .

For each wavepacket, the variance is

v i t =exp −2∫
0

t

k i 2 cos
2 i 

ds =exp − k 0

2 cos
2 i  exp 2 i 

t 

 i  
The total variance is a superposition of all wave packets (which may overlap

v t =∑
i

v i t 

This sum can be made over all the values of  i   and  i  , assuming that i 

is uniformly distributed

v t =∫
0

∞
P  , t d 

∫
0

2 
d 

2
exp  − k0

2


cos

2exp 2 t 
Since∫

0

2  d 
2

exp −a cos
2 ≡e−a/ 2 I 0  a2 ≈ 1

 a
for large a, 

the variance is 

v t =∫∞

0

d P  , t  
 k0

2 
2

exp − t 
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Using this variance

v t =∫∞

0

d P  , t  
 k 0

2  1 /2

exp − t 

and the probability distribution of  , that is P  , t = t G ' '  

2 1/ 2

exp −t G 

we get

v t =∫
0

∞
d  tG ' ' 

2 k 0
2 1/ 2

exp −t G 

By Laplace approximation, the main contribution to this integral arises
from the vicinity of c  such that cG c  is minimum.

Hence 
v t ~exp − t 

with
=cG cG ' c=−1 if G ' 0−1

=G 0  if G ' 0−1

G 

c
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0

x0

ld≈ 


L s  Characteristic size of synoptic
(energetic) advecting structures

l0

Evolution of a tracer blob under the combined action of 
stretching and diffusion

Size of the dispersed blob

R~  for ≫0=−1 ln L s /l 0

Length L~l0 ec 

max≈0 e−c

Advection
diffusion

over duration τ
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WHAT next?

In some recent works the local stretching leading to γ
c
 is challenged 

by another, global, theory where the decay is governed by solving an 
eigenvalue problem within the whole domain. This regime applies when 
the tracer over a domain which is much larger than the size of the 
main eddies. 
Both regimes have been observed and tested in numerical 
experiments.

Referencess: 
Pierrehumbert, 2000, Chaos, 10(1), 61-74
Sukhatme & Pierrehumbert, 2002, Phys. Rev. E, (66), 056302
Tsang et al., 2005, Phys. Rev. E, (71), 066301
Haynes & Vanneste, 2005, Phys. Fluids, (17), 097103
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For the forced case
P(q) has a Gaussian core and exponential tails
P(q) is a stretched exponential (decays faster than an 

      exponential but slower than a Gaussian
P(q,r) is like P(q) for small r
P(q,r) = P(q)P(q-q)dqfor large r, with enhanced Gaussian
core

For the decaying case
variance and other moments decay exponentially 

      <qn>~exp(-n T)
P(q) is non­Gaussian with fat tails
local theory predicts that all moments decay at the same rate n 
global theory predicts a self­similar decay n n

Chertkov et al., 1995, Phys. Rev. E, 51(6), 5609-5627
Antonsen et al., 1996, Phys. Fluids 8(11), 3094-3104
Balkovsky & Fouxon, 1999, Phys. Rev. E, 60(4), 4164-4174
Falkovich, Gawedzki & Vergassola, 2001, Rev. Mod. Phys, 73, 913-
975
* Pierrehumbert, 2000, Chaos, 10(1), 61-74
Sukhatme & Pierrehumbert, 2002, Phys. Rev. E, (66), 056302

Predictions for the PDF of the tracer
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1) By central limit theorem, the Lyapunov exponent has a Gaussian distribution
for time T ≫L , Lagrangian correlation time of the flow

P  ,T = a T


exp−aT −2

2) In the forced case and without diffusion, 
d 
dt

= f  where f   is  a random force at scale Ls

Over a time T , large with respect to the correlation time of the force, the PDF for 
is Gaussian with variance 〈 f 2〉 T (like for a random walk).
3)  With diffusion, the variance builds up until T ≈d=−1 ln Ls / ld  . 

Therefore P ∣∣~exp
−2

2〈 f 2〉 d

 , and

P =∫0

∞
P  ,d  P ∣∣d ~∫0

∞
exp−[ 2

2〈 f 2〉 d

 a
d

ln 
Ls

ld

−d 
2

]d d

Major contribution arises from the vicinity of d= 1
 ln

Ls

ld

2

 2

2a 〈 f 2〉
4) For ≪2a 〈 f 2〉ln Ls / ld 2 , that is for a range of   growing like the
logarithm of the Peclet number, the resulting distribution is Gaussian.
For much larger  ,  major contribution arises from d~∣∣ leading to
an exponential tail of the PDF.
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5) In the decay case, we assume an initial distribution of the tracer at scale Ls .

After a time T ≫d , a well-mixed parcel of size ld  combines approximately

N =l d / Ls expT  independant contributions. Therefore P ∣∣ is Gaussian
with variance proportional to N

P ∣∣~exp−b
ld

Ls

eT 2 , and

P =∫0

∞
P  , s P ∣∣d ~∫0

∞
exp−[

ld

Ls

e T 2a T −2]d 

The exponent is minimized when  2 a−b ld / L seT 2=0 .

For  a range   shrinking as Pe e− T , the tracer PDF is dominated by =
For fixed   it is dominated by the scaling of the PDF of   for small   and should have
fat tails.

adapted from Pierrhumbert, Chaos, 2000

The main point to recall is that PDF for tracers or tracer 
gradients always exhibit fat tails. Large deviations from the 
mean are  much more frequent than for a Gaussian distribution. 
These large deviations are mostly governed by the less 
stretched regions of the flow.
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Tracer PDF for a lattice model of advection-
diffusion
Pierrehumbert, 2000

forced case
Gaussian core + exponential tails

decaying case
stretched exponential
self-similar PDF
P(q,t)=P1(q/s(t))/s(t)

alternate shift
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[O3]

PDF

PDF of tracer differences from ER2 flights
(Hu & Pierrehumbert, GRL, 2002)

r=200 m r=90 km r=160 km

PDF of [O3] calculated from retro-
trajectories starting along a vertical 
profile using 3D ECMWF winds
(Legras, 2002)
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Hu & Pierrehumbert, 
JAS, 2001

Distributions of
decaying tracers 
advected by
stratospheric flow 
with diffusion

With initial 
inhomogeneities
in the zonal direction

With initial 
inhomogeneities
in the meridional 
direction
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What about the spectrum of tracer variance?

Using observed winds, it is possible to show, using 
the stretching theory and the combined effect of 
horizontal strain and vertical shear, that the 
variance spectrum is influenced by dissipation at 
much larger scale than the naïve estimate (κ/λ)1/2

and can be steeper than k-1.
Ref: Haynes and Vanneste, J. Atmos. Sci., 2004, 61, 
pp. 161-178
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Summary of part II.C Blob and wave-packet dynamics in 2D flows

1. Under the action of fixed strain (α) + diffusion (κ)

- A blob elongates exponentially as exp (αt) in the direction of extension 
while keeping a fixed limit size ~(κ/α)1/2 in the direction of compression.
- The concentration of tracer in the blob decays as exp(- αt).
- Diffusion is slaved to the strain which governs the decay rate

- A single Fourier mode or wave packet exhibit temporary growth of the 
gradient in the direction of compression followed by super exponential 
decay of the variance (and gradient) as exp (-κ2 k

0
 exp(2 αt))

As a blob can be considered as a linear combination of wave packets, the 
paradox is resolved by the fact that decay is governed by the initial 
wavenumbers with slowest decay mode. The modes which have not yet 
decayed after time t are located in a cone (in Fourier space) of angle 
~exp(- αt).
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Summary of part II.C Blob and wave-packet dynamics

2. Under the more general condition of a smooth time varying flow

The Lyapunov exponent describes the growth of both infinitesimal 
separation and tracer gradient along the path of a parcel carried by the 
flow. 
At given time t

0
 and location x

0
, stable direction is the single direction of 

separations that will not grow but decay  under future evolution. Initial 
gradients orthogonal to this direction are also the only one that do not 
decay.
Unstable direction is the direction of separation that do not grow for 
reverse temporal evolution. It is also the direction along which tend to 
align almost all separations initiated at earlier times, the gradient tend to 
align perpendicularly with the unstable direction. Hence, the observed 
tracer contours are expected to align with the unstable direction in the 
vicinity of x0 at time t

0
, for any passive tracer. 



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

59

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

Summary of part II.C Blob and wave-packet dynamics

2. Under the general condition of a smooth time varying flow and after 
statistical averaging taking into account the evolution of wave packets and 
the distribution of Lyapunov exponent

An exponential  decay rate γc is predicted

The distribtion of the tracer, its gradient and differences over short 
distances exhibit are non Gaussian with fat tails indicating that large 
fluctuations are realtively frequent.

It also predicts a scalar spectrum which is steeper (in wavenumber) than 
the prediction of the standard spectral theory.

These predictions can be checked experimentally on real flows.
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Part III: Deterministic non diffusive stirring within 
the Hamiltonian framework 

● 1 Hamiltonian form of the 2D advection equation
● 2 Canonical change of variables
● 3 Integrable Hamiltonian, action-angle variables.
● 4 Poincaré maps
● 5 Perturbation of an integrable Hamiltonian, 
Hamilton-Jacobi equation.
● 6 Preserved tori, formulation of the KAM theorem.
● 7 Breaking of resonant tori
● 8 Invariant stable and unstable hyperbolic manifolds
● 9 Hyperbolic tangle, and chaos
● 10 Lobe dynamics
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 x , y
u=

−∂
∂ y

v=∂

∂ x

  H  p ,q 
ṗ=

−∂H

∂q

q̇=
∂
∂ p

1 degree of freedom N degrees of freedom
two-dimensional phase space 2N dimensional phase space

Time dependence in x , y , t  can be treated as an extra degree of freedom
in the Hamiltonian. [new Hamiltonian is x , y ,q2p2]

3D stationary flows can be treated essentially as 2D time dependent flows
no Hamiltonian structure for the advection by 3D non stationary flows.

Hamiltonian dynamics preserves the symplectic area ∮ p⋅d q

III.1 Hamiltonian form of the 2D-advection equation 

Useful references:  Ott, Chaos in dynamical systems, CUP, 1993
Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport, CUP, 1989
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Canonical variable transform for Hamiltonian from  p ,q  to  p ' ,q ' 

Conveniently performed using the generating function S  p ' , q , t 

such that   
p=∂ S  p ' , q , t 

∂q

q '=∂S  p ' , q , t 
∂ p '

and H  p ' , q ' , t =H  p ,q  ∂S
∂ t

Example

x , y  2
, ?  2

=x2 y 2 x=2
− y2=

∂ S 2
, y 

∂ y

hence S= 1
2 {y 2

− y22
arctan  y

2
− y 2 }

and 
∂ S 2

, y 

∂ 2 = 1
2

arctan y
x

=

2

The couple of new conjugate polar coordinates is 2
,

2



III.2 Canonical change of variables
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An Hamiltonian is integrable if there are N  invariants of motion
including the Hamiltonian itself if it does not depend on time.

Trajectories are then restrained to a torus of dimension N
in the phase space of dimension 2N

H. Löffelmann 

III.3 Integrable Hamiltonian

Stationary 2D flows
are integrable
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When an Hamiltonian system is integrable it is possible to find a set of

coordinates p={ pi }  and q={qi} such that ∂ H

∂ qi

≡0.

Such a set of (action-angle) coordinates I ,  can be obtained

choosing I i=
1

2
∮i

p.d q  for each irreducible contour on the torus.

[ In 2D, I  is just a relabelling of by the area of each -contour.]

In this case, 
d I i

d t
=0  and 

d i

d t
= ∂ H

∂ I i
=i  I 

 and i  increases by 2   for each loop along i

Example: =x 2 y2

2 , thus I= 1
2



x= X


= ∂ S

∂ y
 with X =2

− y2

and S= 1

2
 y X 2 arctan  y

X  
Hence :=

∂ S

∂ I
=arctan  y

 x 
and 

d 
dt

= 2



A system is quasi-periodic with
N  frequencies if there is no

integer vector m={mi}

such that ∑
i

mi i=0

III.3 (contd) Action-angle variables
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Let us make a pause to introduce the Poincaré map

 If  x , y , t  is periodic of period T ,

time t  can be transformed into

an angle =
2  t

T

 x , y , t 2

 x , y , t 1

x
x

yy

t1

t 2

=
2  t

T

The Poincaré map is defined from time sections
at  ,−2T ,−T , ,T ,2T ,
Map: R x t  , t =x tT 

The Poincaré map is area preserving or sympletic
in dimensions larger than 2

Ottino

III.4 Poincaré map

If ψ does not depend on time,
T is arbitrary. 
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Let us return now to our integrable Hamiltonian, consider that it is 
time-independent and apply some small perturbation, also time-
independent assuming, for the moment, that it remains integrable 

Using the non-perturbed action-angle coordinates, the perturbed Hamiltonian is
H  I ,=H 0  I  H 1  I ,

If it is integrable, there are new action coordinates I '  such that
H  I ,=H '  I ' 

Here we use again the trick of the generating function S  I ' ,  such that

I=
∂ S I ' ,

∂ 
 '=

∂ S I ' ,

∂ I '

and we try to solve pertubatively the Hamilton-Jacobi equation

H  ∂S

∂
,=H '  I ' 

with S=⋅I 'S12
S 2

At order 0 : I '= I  and = '

The perturbed problem writes 

H 0  I ' ∂ S 1

∂
2 ∂S 2

∂ 
H 1  I ' ∂S 1

∂
 ,=H ' I ' 

At order 0:  H 0  I =H '  I ' 

At order 1: 
0⋅∂S 1

∂ 
H 1 I ' ,=0  with 0  I ' =

∂ H 0

I
 I ' 

III.5 Perturbed
Hamiltonian
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At order 1: 
0⋅∂S 1

∂
H 1 I ' ,=0  with 0  I ' =

∂ H 0

I
 I ' 

Let us know expand H 1  I ' ,  and S1  I ' ,  as a Fourier series in 

H 1=∑
m

H 1,m  I '  exp i m⋅

S1=∑
m

S1,m  I ' exp im⋅

Hence
S 1,m  I ' =

i

m⋅0  I ' 
H 1,m  I ' exp  im⋅

Clearly, the convergence of the pertubative series requires that
there is no integer vector m  such that m⋅0  I ' =0

The Kolmogorov-Arnold-Moser theorem says that there are
plenty of surviving tori such that ∣m⋅0∣K 0∣m∣−N1

,∀m

Unbroken tori are transport barriers (in 2D)
There are, however, a large number or resonant tori.
Their ensemble is dense but of Lebesgue measure 0

III.6 KAM theorem



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

68

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

What happens to resonant tori 
(Poincaré-Birchoff theorem) ?

n

n1

n

n1 The only case we will consider is that of the
Poincaré section of a 1 degree time-independent
system  x , y   with an added perturbation of period T
The non perturbed map R  is such that

r
n1

=r n

n1=n2 rn 

T

[ 2 ]

with T=
2
T

If the torus r  is resonant, then   r  /T= p/q  rational
and Rq  is identity over the cercle r :nq  r =n  r 
Now the perturbed map R '  is

r
n1

=r n g r n ,n

n1=n2 r n

T

 h rn ,n [ 2]

which means nq  r =n  r  k  r ,n 

If in addition 
∂ 
∂ r

≠0, q elliptic points and q

hyperbolic points are generated along the tori r

III.7 Breaking of resonant tori

Notice that the period of the 
Poincaré section is chosen according 
to the period of the applied 
perturbation. This is  equivalent to 
increase the dimension of the problem 
to accommodate the time-dependent 
perturbation.
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Generation of elliptic
and hyperbolic points
by breaking tori

Width of the broken zone

In I  is ~∣∂
∂ I ∣1/2

In  is ~∣∂ 
∂ I ∣−1 /2



   
   

 T
R

A
N

S
P

O
R

T
 A

N
D

 M
IX

IN
G

 I
N

 G
F

D

70

   
   

   
   

   
   

   
B

. 
L

E
G

R
A

S
   

 N
U

S
   

6-
8/

12
/2

00
6

Two important degenerate cases

Hyperbolic points already in the unperturbed map
Example  x , y = y2−cos x 

This corresponds to a case where separatrix=0

Those tori break very easily.
Leads to mixed layer.
(critical layers in the fluid mechnaics literatrure)

The non-twist condition 
∂
∂ I

=0

is met on some tori.
Such tori, if non resonant, are very robust
because resonant tori in the vicinity break over

width ∣∂
∂ I ∣1 /2

This case is relevant for jets and meandering
currents.
Leads to transport barriers
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Ottino
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Generation of 
an invariant curve from
a fixed hyperbolic point

H. Löffelmann 

III.7 Invariant
stable and 
unstable
hyperbolic manifolds
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t

x

y

W
u

W
s

Trajectories contained in the 
stable manifold  Ws converge 
to the hyperbolic point as time 
-> ∞ and trajectories contained 
in the unstable manifold W

u
 

converge to the hyperbolic 
point as time  -> -∞.

They are tangent to linear 
stable and unstable directions 
of the hyperbolic point
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Stable or unstable manifolds can 
fold but cannot cross themselves 
(due to symplectic properties).

The stable and unstable manifold of 
an hyperbolic point, or of two 
adjacent hyperbolic points, can cross 
and, worse, if they cross once, they 
must cross infinitely many times.

Homoclinic point

Heteroclinic point

Dots are images and pre-images of 
the homoclinic point by the 
Hamiltonian mapping.

III.9 Hyperbolic tangle
and chaos
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Ottino
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Hence,
chaos
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Relation with Lyapunov exponents:

The Lyapunov exponent (calculated in the t-> ∞ limit)
is zero for integrable orbits of an Hamiltonian system.

Non zero (positive) Lyapunov exponents characterizes
chaos.

Ergodic theorem (Oseledec) says that the Lyapunov
exponent is unique within  a chaotic domain except for 
a set of (Lebegue) measure 0.
This leaves the possibility of lines of high or low Lyapunov
embedded within the chaotic domain.
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x
a x

b

x
c

D(0)

T(x
c
)

T2(x
c
) T-2(x

c
)

T-1(x
c
)

E(-1)

D(-2)

D(-1)

D(2)

D(1)

E(1)

E(0)
E(-2)

E(-3)Turnstile trasport
per period T
E(-1): in     D(0) :out
can be used readily to 
calculate mass fluxes
Limitations : needs to take 
into account islands and 
lobe intersections

W
s
(x

a
)W

u
(x

b
)

III.10 Lobe dynamics
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Part III Summary

- Advection by 2D incompressible flow is readily put under Hamiltonian 
form
- Stationary 2D flows are integrable
- In a general integrable system of degree N, motion is restricted to tori 
of dimension N in the 2N phase space
- Tori are characterized by a set of N frequencies with are said non 
resonant when they are incommensurate
- A generic perturbation breaks resonant tori but many non resonant tori 
remain unbroken (KAM)
- In 2D stationary flows, resonance is possible with a periodic perturbation.
- Unbroken tori in 2D are barriers to transport.
- Most easily broken tori are separatrices if the streamfunction 
- Most robust tori lie near the core of jets satisfying non-twist condition.
- Chaos is generated by intersecting hyperbolic stable and unstable 
manifolds.
- Lyapunov exponent is positive only in chaotic regions.
- Lobe dynamics can be used to calculate transport whenevr it is relevant to 
consider hyperbolic manifolds as frontier boundaries.
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Part IV Stirring and transport barriers real flows

IV.A Hyperbolic skeleton of non periodic flows
● 1 Stable and unstable invariant lines and surfaces
● 2 Local criteria
● 3 Finite size Lyapunov exponents 
● 4 Distinguished hyperbolic trajectories
● 5 Numerical and laboratory example
● 6 Transport in the Mediterranea – Lagrangian 

coherent structures
● 7 Hyperbolic skeleton of the polar vortex – lobe 

dynamics at work, mixing layer and transport barrier

IV.B A quantitative measure of exchange across barriers
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Part IV Stirring and transport barriers real flows

IV.A Hyperbolic squeleton of non periodic flows

IV.B  A quantitative measure of transport across barriers
● 1 Effective diffusivity
● 2 Effective diffusivity in the atmosphere
● 3 The failure in comparing effective diffusivity and 

Lyapunov exponents
● 4 The solution to the failure: the transverse 

Lyapunov exponent
● 5 Applications
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s

Hyperbolic trajectories are non 
stationary and frame independent 
extensions of stagnation points. 

Trajectories contained in the stable 
manifold  Ws converge to the 
hyperbolic trajectory as time -> ∞ 
and trajectories contained in the 
unstable manifold W

u
 converge to 

the hyperbolic trajectory as time  -> 
-∞.

IV.A.1 Stable and unstable hyperbolic 
invariant lines and surfaces
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Definition of hyperbolic lines and surfaces
Haller and Yuan, 2000

Finite-time instability requires exponential separation on arbitrarily short 
time intervals

M is an unstable material surface, in  x , y , t , on the time interval I u
if there is a positive exponent u  such that for any close enough
initial condition p =x  ,  and for any small time step h0

we have, for   and h  from I u
dist p h , M dist  p  , M exp u h

or ∣N  x h ,h⋅DF h  x0 N  x0, ∣expu h
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A stable material surface is a smooth material surface that is unstable backward 
in time.

An unstable (stable) material line is the t=constant section of an unstable (stable) 
material surface.

Both referred as hyperbolic material surfaces (lines)

If the flow is incompressible, trajectories 

must converge to each other on M .
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Okubo-Weiss criterion for Eulerian hyperbolicity

detu  < 0 : hyperbolic region, particles separate exponentially
det u  > 0 : elliptic region, particles circle around

This interpretation requires, however, the flow to be frozen along a
material trajectory. Not true generally.

Using strain coordinates

Introduce the rotation rate of of the strain axes. The effective
rotation is eff = /2 -  ( vorticity). Then define r=eff/swhere
s is the strain rate, then: 
|r| < 1: hyperbolic region
|r| > 1: elliptic region           (Hua-Klein-Okubo-Weiss)

HOW TO BUILD A CRITERION SEPARATING HYPERBOLIC REGIONS
FROM ELLIPTIC REGIONS

IV.A.2 Local criteria
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Generalised criterion in the strain basis 
(Lapeyre, Hua & Legras, 2001; Haller, 2001b)

Transform the dispersion equation from the fixed frame to the frame of the strain axis using
the rotation matrix R defined by the orthonormal basisof the eigenvectors of the strain matrix
∇ u ∇T u .
If the line element satisfies ̇=∇ u  in the fixed frame, the rotated element  '=R−1 satisfies

̇ '=R−1 ∇ u R−R−1 Ṙ   '=[ ∇ u ]strain  ' ,
where the matrix [∇ u ]strain is a function of the strain rate  and the effective rotation.

Defining r=effective rotation
strain

=vorticity - strain axis rotation
strain

, the relative orientationof 

the line element with the strain axis satisfies
̇= rcos 

while the length of the line element satisfies
1

∣∣
2

D
Dt

∣∣
2
= sin

Lapeyre , Klein&Hua ,1999 ; Klein , Lapeyre&Hua ,2000
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Generalised criterion in the strain basis 
(Lapeyre, Hua & Legras, 2001; Haller, 2001b)

Transform the dispersion equation from the fixed frame to the frame of the strain axis using
the rotation matrix R defined by the orthonormal basisof the eigenvectors of the strain matrix
∇ u ∇T u .
If the line element satisfies ̇=∇ u  in the fixed frame, the rotated element  '=R−1 satisfies

̇ '=R−1 ∇ u R−R−1 Ṙ   '=[ ∇ u ]strain  ' ,
where the matrix [∇ u ]strain is a function of the strain rate  and the effective rotation.

Defining r=effective rotation
strain

=vorticity - strain axis rotation
strain

, the relative orientationof 

the line element with the strain axis satisfies
̇= rcos 

while the length of the line element satisfies
1

∣∣
2

D
Dt

∣∣
2
= sin

Lapeyre , Klein&Hua ,1999 ; Klein , Lapeyre&Hua ,2000
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Assuming that r is slowing varying
∣r∣1defines the hyperbolic region H where the line element is growing exponentially
∣r∣1defines the elliptic region E where the line element does not grow or grows weakly

¿

2

1

E1E2

E1 and E2 eigendirections of the

strain operator ∇ u∇T u
1 and 2 directions of zero extension
('zero strain set') (G. Haller, 2001)
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Detection of hyperbolic lines by finite-time statistics

Local extrema of patchiness (average displacement in one direction) 
[Malhotra et al., 1998; Poje et al., 1999]

Local extrema of Lyapunov exponents

Local extrema of relative dispersion or finite-size Lyapunov exponents 
[Bowman, 2000; Joseph & Legras, 2001]
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The definition of finite-time hyperbolic material lines 
implies non uniqueness. Two nearby unstable surfaces are
such that                                         where 

u
 is the length of Iu.

(Haller and Poje, 1998)

Material lines that are hyperbolic for long enough time 
intervals will appear to be locally unique up to exponentially 
small errors.

Repelling material lines <--> stable manifolds of hyperbolic 
trajectories 

Attracting material lines <--> unstable manifolds of 
hyperbolic trajectories

dist t∈I M ,M ' C e−uu
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Finite size Lyapounov exponents (FSLE)

IV.A.3 Finite size Lyapunov exponents
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Pair separation or FSLE do not distinguish any line for purely 
linear flows (e.g. u =  x, v = -g y) for which all trajectories have 
the same stability properties. 

Conjecture: Lines of maximum separation coincide with the 
repelling and attracting lines of the strongest hyperbolic 
trajectories. These lines form the hyperbolic skeleton of the 
flow.

IV.A.4 Distinguished hyperbolic trajectories
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Pair separation versus 
FSLE. 
x0: absissa of the initial 
pair center. Initial 
separation: 0.1

Pair separation versus 
FSLE. 
: streamfunction at the 
initial pair center. 

Example I: Locally hyperbolic flow (x,y) = -tanh(x) tanh(y)

Example II: Pendulum flow (x,y) = 1/2 y2 - cos(x)
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Example I

Unstable manifold of the forced 
Duffing equation

IV.A.5 numerical and 
laboratory experiments
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Detection of the hyperbolic 
lines for  Duffing system
(Haller, 2000)

(a) separation
(b) hyperbolic persistence Tu 
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Unstable manifold Finite-size Lyapunov exponents
(Joseph and Legras, 2001)
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Example II:2-D experimental  periodic flow
 (Voth, Haller & Gollub, 2001)

Experiment in a stratified electrolytic  
flow forced periodically. Parameters
Re = UL/n,  p = UT/L (mean path length)

Map of one component of 
velocity at two different times
(Re = 45, p=1)

Poincaré map
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A.  Lines of maximum finite-time Lyapunov exponents for
the backward map (compression or 'unstable manifold') 

B. Concentration after 30 periods in the same phase as A

C. Superposition of the images A and B
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Intersection of stable and 
unstable material lines indicating 
the hyperbolic trajectories of 
the flow;

Superposition of the 
compression  lines and the 
concentration, Re=115, p=5
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Mesoscale Lagrangian structure of the Mediterranean surface

Initial separation of 0.02 deg. (approx. 2.2 km), 
final separation of 1 deg. (aprox 110 km)

1/day

D'Ovidio et al., 2004, GRL, 31, LI7203, doi:10.029/2004GL020328.

Ex
am

pl
e 

II
I
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Forward  and backward
FSLEs (enlargement)

Incompressible field 
(statistically, backward and 
forward structures are 
similar) 

The filaments in the 
backward-FSLE picture 
appears as the forward-in-
time ones but rotated 90 
deg. 

Structure below the data 
grid spacing! 
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Intersection of stable and unstable material lines: hyperbolic trajectories



  

day 1

day 5day 3

day 2



  

day 7

day 20day 11

day 9



  

Mixing activity: time and space averages

●The time average FSLE (1 year) 
divides the sea in regions of 
different mixing activity.
●The space average (whole 
basin) shows seasonal 
variations.
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An example of two regions with different 
mixing behaviour:  north and south of the 
Balearic Islands
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Comparison
between 
chlorophyll 
distribution, the 
FSLE lines and 
Okubo-Weiss 
criterion (black 
lines)
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7 July 1996

OW FSLE
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ExampleIV: The Antarctic 
polar vortex
(Joseph & Legras, 2001)

Attracting material lines (unstable 
manifold) and repelling material 
lines (stable manifold) shown as 
points with largest FSLE after 
backward and forward time 
integration over 9 days.
25 October 1996, 450K.

IV.A.7 Hyperbolic skeleton of 
the polar vortex 
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FSLE
large ratio
r=100
October 1996

attracting 
line (unstable 
manifold) 
and
repelling line 
(stable 
manifold)
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Backward FSLE Forward FSLE

Local stirring time for FSLE with r=5
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Local stirring time for FSLE with r=5

Backward FSLE Forward FSLE
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The intersection of stable and 
unstable lines generate lobes. 

IV.A.7 Lobe dynamics
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forward integration backward integration

Turnstile process
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Lobes can be detected 
and followed in aperiodic 
flows and induced 
transport can be 
calculated. 
However, the turnstile 
mechanism  applies only 
when relevant 
boundaries are 
hyperbolic lines. It 
cannot be used for 
transport barriers 
created by KAM 
invariant tori. 
In the case of the 
stratospheric polar 
vortex, lobe dynamics 
explains the exchanges 
between the mixing zone 
surrounding the vortex 
and the extra-tropics. 

Koh and Plumb, 2000, 
Phys. Fluids, 13, pp. 1518-1528
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Effective diffusivity
- detection of barriers
- estimation of cross-contour mixing

Finite-size Lyapounov exponents 
- detection of the hyperbolic structure
- local stirring times
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IV.B.1 Effective diffusivity
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Nakamura, JAS, 1996
Haynes & Shuckburgh
JGR, 2000
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Subtropical jets and polar vortex jets
as minima (barriers) in effective diffusivity

Increased mixing in the summer
lower stratosphere

IV
.B

.1 
Ef

fe
ct
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Distribution of the points on 
the unstable and stable 
material surfaces as a 
function of equivalent latitude

effective 
diffusivity

PV
gradient

Densities ds and du of the
stable and unstable lines 
versus PV gradient and 
effective diffusivity.

The stable or unstable
material lines are NOT 
the boundary of the 
polar vortex.

ds
du
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Finite-size Lyapunov exponent
and PV in the subtropics of
southern hemisphere.
Patterns associated with 
travelling baroclinic perturbations. 
Barrier effect? 

Red: large forward Lyapunov <=> unstable (past) material line
Blue: large backward Lyapunov <=> stable (future) material line

Failure of the 
comparison
between Lyapunov 
coefficient
and turbulent
diffusion
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latit
ude

la
ti

t
ud

e

longitud
e

longitud
e

FSLE
versus
effective
diffusivity
at 350K

la
ti

t
ud

e

Averaging FSLE 
along contours 
leads to the 
paradoxical 
conclusion that 
there is 
anticorrelation 
rather than 
correlation with 
effective 
diffusivity.
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latit
ude

time 
(day)

time 
(day)

Anticorrelation of 
FSLE with 
effective 
diffusivity 
persists even 
after time 
averaging. 
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Effective diffusivity in practice

● Keff (Leq) is well defined from 
contour averaging on isentropic 
surfaces

● Measures mixing as the amount of 
foldings beared by a given 
contour.

● Pro: Is a diffusivity. Easily 
calculated. Depends weakly on the 
quantity being contoured. Usable 
as a turbulent parameterization in 
2D vert-lat models.

● Con: Limited to isentropic motion. 
Does not diagnose variation of 
diffusion along contours.

Subtropical jets and polar vortex jets
as minima (barriers) in effective diffusivity

Increased mixing in the 
summer
lower stratosphere
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Stretching rate  
-  Lyapunov exponent

● Finite-time (FTLE) or finite-size (FSLE) 
Lyapunov exponent measures stretching 
experienced by a parcel during a time 
interval.

● Pro: Easily calculated and physically 
sound. Standard tool in the theory of 
dynamical systems. Not limited to 2D. 
Provides maps of dynamical barriers.

● Con: Complicated patterns when short 
lived structures. Is usually dominated 
by shear and hence is not a measure of 
mixing for distributed tracer. Does not 
correlate with effective diffusivity

t

x

y

W
u

W
s

Over a time interval [ t 0,t 0]: xt 0=M t 0, t 0 xt 0  ∇ t 0=−MT t0, t0∇ t 0

Finite-time Lyapunov exponent    ,xt 0=1


ln
∣M x∣

∣ x∣
= 1


ln

∣MT ∇ ∣
∣∇ ∣

Red: large forward Lyapunov <=> unstable (past) material line (manifold)
Blue: large backward Lyapunov <=> stable (future) material line (manifold) 
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Blob mixing mixing is diagnosed by 
FTLE/FSLE,
either done by             or 

Gradient amplification

does not change the gradient on

bu
t

Hence, mixing cannot be directly diagnosed by finite-time 
or finite-size Lyapunov exponent


C
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Assumption: tracer
gradient is orthogonal
to the local stable material line.
(exponential convergence)

α: angle between
local unstable 
and
stable material
lines

Future gradient growth 
over interval t is provided 
by Transverse Lyapunov 
Exponent (TLE) 
λλTT==forward FTLEforward FTLE  x sin(x sin(αα))
-> measure of mixing 
(assuming irreversibility)


C
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Backward Lyapunov Forward Lyapunov 

Mixing γ 

Large shear regions where stable 
and unstable material lines are 
parallel are expelled from mixing 
(gradient intensification) which 
concentrates where stable and 
unstable material lines are 
crossing.Transverse 

Lyapunov
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Isentropic surface 350K  -   July 1999Isentropic surface 350K  -   July 1999Isentropic surface 350K  -   July 1999Isentropic surface 350K  -   July 1999Isentropic surface 350K  -   July 1999Isentropic surface 350K  -   July 1999

 backward Lyapunov exponent (ratio 5)                   forward Lyapunov exponent (ratio 
5)
 backward and forward Lyapunov (ratio 100) + PV        transverse Lyapunov exponent
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day-1

day-1

Isentropic surface 350K: January, average over ERA-40  (1963-2002)

saddle=(forward FSLE x backward FSLE)1/2

Mixing γ           TLE 
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day-1

TLE 

Isentropic surface 350K: January, average over ERA-40  (1963-2002)
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day-1

day-1

TLE DJF 1997/1998 (El Niño) 350K

TLE DJF 1998/1999 (normal) 350K
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Lyapunov exponent against 
effective diffusivity

Transverse Lyapunov exponent 
against effective diffusivity
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Revised comparison of Lyapunov exponent
and effective diffusivity

Deff =0

Leq
2

2a cose
2

where  Leq  is approximated by contour length

and e  is the equivalent latitude

Leq≈eT T k

where T k  is a characteristic time after which
3-D turbulent diffusion becomes dominant and
balances the exponential growth
Hence, the Lyapunov diffusion

logD=A2T kT

where A  and T k  are calculated to match Deff

Deff

Dλ

La Niña
El Niño
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PDF of the FSLE at 
350K
January average

PDF of the angle 
between the local 
stable and 
unstable lines.
Solid blue for all FSLE
Dashed curves for 
FSLE above a threshold 
(largest for black 
curve)  

Large FSLE are 
associated
with shear regions that
contribute weakly to
gradient intensification.Courtesy of G. Lapeyre
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Summer stratospheric
mixing in southern
hemisphere at 430K

Backward
Lyapunov

Forward
Lyapunov

Transverse
Lyapunov
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Distance between the stable manifold and the unstable manifold at time 

=∫−∞


 g X S t  , t−× f X S t dt−∫∞


 g X S t  , t−× f X S t dt

distance W U  / separatrix
.

distance W S  / separatrix
.

=∫−∞

∞
g X S t  , t−× f X S t dt

The metric distance M=


∣∂
∂n ∣

=


∣ f X S ∣

M =0 ⇔ X   homoclinic point
width of the stochastic band M  or  

Distance between the stable manifold and the unstable manifold at time 

=∫−∞


 g X S t  , t−× f X S t dt−∫∞


 g X S t  , t−× f X S t dt

distance W U  / separatrix
.

distance W S  / separatrix
.

=∫−∞

∞
g X S t  , t−× f X S t dt

The metric distance M=


∣∂
∂n ∣

=


∣ f X S ∣

M =0 ⇔ X   homoclinic point
width of the stochastic band M  or  

W U

W S

t=∞ t=−∞
t=

Poincaré map


