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ABSTRACT

We consider regimes of low-frequency variability in large-scale atmospheric dynamics. The model used for
the study of these regimes is the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere, with
simplified forcing, dissipation and topography. Twenty-five modes are retained in a spherical harmonics
expansion of the streamfunction. Solutions are studied as a function of the nondimensional intensity of the
forcing and dissipation.

Multiple stationary solutions are obtained as a result of nonlinear interaction between waves, mean flow
and orography. The number of modes retained in the analysis permits these multiple equilibria to appear for
realistic values of the forcing. The equilibria exhibit blocked and zonal flow patterns bearing a marked
resemblance to synoptically defined zonal and blocked Northern Hemisphere midlatitude flows.

Wave-wave interactions influence strongly the stability properties of the equilibria and the time evolution
of nonequilibrium solutions. Time-dependent solutions show persistent sequences which occur in the phase-
space vicinity of the zonal and blocked equilibria. Composite flow patterns of the persistent sequences are
similar to the equilibria nearby, which permits the unambiguous definition of quasi-stationary flow regimes,
zonal and blocked, respectively. The number of episodes of blocked or zonal flow decreases monotonically
as their duration increases, in agreement with observations.

The statistics of transitions between the two types of planetary flow regimes are computed from the
model’s deterministic dynamics. These transitions, called breaks in statistical-synoptic long-range forecasting,
are shown to be influenced by changes in model parameters. This influence is discussed in terms of the effect
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of anomalous boundary conditions on large-scale midlatitude atmospheric flow and on its predictability.

1. Introduction

The global atmosphere is probably the fluid system
for which the most detailed sets of observations are
available on a routine basis. In many fluid systems
on the laboratory and industrial scale, it suffices to
know, describe and explain the mean state of the
system and perhaps the statistics of its fluctuations.
In the atmosphere, an individual fluctuation is a
cyclone or hurricane which may affect the life and
well-being of millions. Observing and understanding
such a fluctuation is therefore of great importance.

The success of baroclinic instability theory (Char-
ney, 1947; Eady, 1949) in explaining many features
of extratropical cyclones has led to a flourishing of
meteorological literature concerned with elaborating
the details of the theory. The development of this

! Partial results of our investigation were reported at the Third
and Fourth Conferences on Atmospheric and Oceanic Waves and
Stability of the American Meteorological Society, held in San
Diego, January 1981, and in Boston, March 1983, and at other
scientific and professional meetings during this period.
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classical theory has proceeded, however, in two sep-
arate directions: the study of the individual growth
and life cycle of the most important fluctuations
(Pedlosky, 1979, Ch. 7) on the one hand, and the
contribution of the ensemble of these fluctuations to
the maintenance of the mean flow (Lorenz, 1967) on
the other.

The dual character of meteorological research sug-
gested above was accompanied by a natural tendency
to consider mathematically the individual fluctuations
as unstably growing perturbations on a mean flow.
This flow is usually taken as steady and zonal, i.e.,
as parallel to circles of latitude. In reality, the observed
finite-time average atmospheric flow is neither truly
steady, nor zonal, nor is it a solution of the full,
nonlinear equations of motion. These facts have not
prevented the already mentioned successes in studying
certain types of short-term atmospheric fluctuations
as solutions to the flow equations linearized about a
steady mean zonal state.

Recently, attention has turned again to the fact
that deviations from a climatological mean state
occur that have life spans of weeks to months (Namias,
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1982; Rasmusson and Wallace, 1983), and thus exceed
considerably the average life span of cyclones, of
three to five days. Some of these persistent anomalies,
moreover, have a recognizable quasi-stationary spatial
pattern and a statistical distribution of life span which
is exponential in character, like that for rapidly
propagating cyclones, but is numerically distinct from
the tail of the latter distribution (Dole and Gordon,
1983).

Among persistent anomalies, the blocking pattern,
as documented by Rex (1950a,b), consists in the
appearance of a quasi-stationary center of high pres-
sure, located at about 50°N in certain preferred areas,
off the western margins of the continents. This block-
ing high may persist for longer than ten days. It
deflects the traveling cyclones from the usual storm
tracks and produces a strong southward advection of
polar air on its eastern flank, inducing severe cold
episodes in winter. The occurrence or the nonoccur-
rence of this feature determines to a large extent the
distinctive character of an individual season; it is
therefore of great importance to weekly and monthly
mean weather prediction.

During the 1950s, very limited progress was made
in providing a theoretical explanation of blocking,
and no consensus was reached among synoptic me-
teorologists concerning its definition and description.
The problem attracted little attention in the 1960s
and early 1970s, while progress in other parts of the
field was rapid.

In the late 1970s, the economic 1mpact of a number
of blocking episodes, together with the availability of
extensive observations and of new theoretical and
computational tools, brought a renewed interest in
the topic. The onset of certain persistent anomalies,
like the initial growth of cyclones, could be explained
now by more sophisticated /inear wave theories. Res-
onant forcing of stationary Rossby waves by topog-
raphy (Tung and Lindzen, 1979) or propagation of
wave trains produced by tropical sea surface temper-
ature anomalies (SSTAs) into midlatitudes (Hoskins
and Karoly, 1981) were able to produce the strong
zonal asymmetries of flow associated with some quasi-
stationary, persistent anomalies. The problem with
the linear approach is that the duration of atmospheric
anomalous events is often shorter than that of SSTAs
and much shorter than that of topographic features.
The duration of atmospheric anomalies depends
moreover on the persistence of the mean flow itself,
which is undetermined in the linear approach.

Egger (1978) was the first to suggest that internal
atmospheric variability, modeled by nonlinear wave-
wave interactions, could account for the finite ampli-
tude and duration of blocking events. Charney and
DeVore (1979) took the more general view that
blocking and near-zonal flow could be associated
with two distinct, stable stationary solutions of a
quasi-linear, spectrally truncated barotropic vorticity
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equation governing the flow. Transitions between
these two preferred regimes might occur in the at-
mosphere as the result of fluctuations not explicitly
modeled in their system. Similar results were obtained
with different methods by Pedlosky (1981), who also
studied a baroclinic extension of the model. Finite,
exponentially-distributed residence times for two dis-
tinct nonstationary regimes appear in the fully non-
linear baroclinic model of Reinhold and Pierrehum-
bert (1982).

The purpose of the present article is to attempt a
description of large-scale atmospheric flow in terms
of multiple regimes, each of which has a characteristic
spatial pattern and a characteristic mean residence
time. An important objective of this approach is to
associate the characteristic length of the exponentially- -
distributed residence times for each regime with its
predictability in an operational weather forecasting
model, whether numerical, statistical or hybrid.

The model studied in this paper is governed by the
equivalent-barotropic form of the potential vorticity
equation on the sphere, with simplified topography,
a forced midlatitude zonal jet, and Ekman dissipation.
In Section 2 we describe the model, which has certain
similarities with that of Killén (1984), and its discre-
tization into 25 spherical harmonics, with 132 non-
linear triad interactions among them.

In Section 3 we present the stationary solutions,
and their dependence on the model’s two main
nondimensional parameters:- the Rossby number of
the forcing, and the dissipation coefficient. Multiple
equilibria for the same parameter values and two
types of nonlinear resonance are obtained. Some

_results on how equilibriumn solutions change with the

modeled topographic height are also included. The
relative realism of some of the spatial patterns of
these solutions, blocked and nearly-zonal, is stnkmg
for such a simple model.

This realism suggests that our simple model, used
here mainly for illustrative, methodological purposes,
might have some relevance to the actual behavior of
large-scale midlatitude atmospheric flow. The spatial
structure of this flow’s low frequency part is known
indeed to be to a large extent barotropic (Blackmon
et al., 1979; N.-C. Lau, personal communication,
1983), although some of the mechanisms leading to
the maintenance of this structure, or to changes in
it, are probably baroclinic (Itoh, 1985).

In Section 4 we investigate the stability of the
stationary solutions, most of which are unstable for
realistic parameter values. The transition to periodic
and aperiodic solution behavior is outlined briefly.

The article’s main results are contained in Section
5. The persistence of aperiodic solutions near certain
unstable equilibria is studied in detail.

The time-mean-flow pattern during the persistent
episodes is shown to resemble closely the neighboring
equilibrium pattern, whether nearly-zonal or blocked.
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The persistence times are distributed almost exponen-
tially with characteristic decay time depending on the
regime and on external parameters. These times are
typically longer than those obtained by Dole and
Gordon (1983) from observations, presumably due
to the limited resolution and to the absence of
baroclinic, short-lived fluctuations from the model.

The algebraically largest eigenvalue of the model
equation’s right-hand side, linearized about the in-
stantaneous position of the solution in its phase
space, is computed as a function of time. This
eigenvalue’s sign and size are correlated in certain
cases with the persistent episodes, thus providing
some hope of obtaining an a priori measure of a flow
pattern’s predictability in operational models.

The results are discussed in Section 6, and com-
pared with observations on the variability of the
atmosphere’s general circulation: A number of exten-
sions and applications of the present approach are
outlined.

Two appendices provide details on the analytic
and numerical methods for studying stationary solu-
tions of a model with a relatively large number of
degrees of freedom. A third appendix analyzes the
behavior of linear resonances when the meridional
structure of the flow becomes more complicated, as
it is in our second nonlinear resonance.

2. Model description

The model is governed by the equivalent-barotropic
form of the equation for the conservation of potential
vorticity (Charney, 1973, Sec. 6; Pedlosky, 1979, Sec.
3.12) on the sphere:

a%(A ~ LA + Jl:gl/, Ay + f(l + g)]
= ad@* —¥). (1)

Here y is the streamfunction, A the horizontal Lapla-
cian, J the Jacobian operator, fthe Coriolis parameter,
h the topographic height and H the scale height of
the atmosphere. The right-hand side induces a relax-
ation towards the forcing streamfunction y* with a
characteristic time o'. The external radius of defor-
mation is Lg; it represents to first order the effects of
compressibility associated with small displacements
of the equivalent free surface.

In spherical geometry, the natural horizontal co-
ordinates are the longitude ¢ and the sine of the
latitude u = sinf. All variables are scaled by the
radius of the earth q, its angular velocity Q and a
characteristic speed U, yielding the nondimensional
variables :

Lg=a\, h=Hh', t=1/2Q; (2ab,.c)

(‘l&’\‘l-b*) = aU(W: ‘V‘" )’ a = ZQIX’,f= 29[1.
(2d,e,f,g)
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The nondimensional form of the equation, dropping
the primes, is thus given by:

2 (&= N+ pIs B9 + T, w1l + )

= al(* —¥), ()

where the nondimensional number p = U/2Qa is
similar to a Rossby number and measures the intensity
of the forcing, cf. (2e). It multiplies [cf. (2d)] the sole
nonlinear term in (3) and, as we shall see, plays the
role of a critical parameter for the behavior of the
solutions. We note that the use of the same scaling
for ¢ and y*, Egs. (2d, €), is consistent and is also
justified a posteriori by the fact that the energy of the
response ¢ is always of the same order as or smaller
than that of the forcing y*, for stationary as well as
for time-dependent solutions.

Equation (3) is discretized through a truncated
expansion is spherical harmonics Y7(¢, p) = PT'()
X eim¢’

L 1
W, m, ) = 2 2 YOYT(4, p),

1=0 m=-1

“

where PJ(u) are associated Legendre functions, and
L = 9. We assume equatorial symmetry of the flow,
as well as a sectorial periodicity (mod =) in longitude.
The resulting N = (L + 1)*/4 = 25 real modes are
circled in Fig. 1. They allow 132 triadic nonlinear
interactions. Each triad conserves energy and potential
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FIG. 1. Spectral truncation of the model, Egs. (1)~(7), in spherical
harmonics: m is the zonal and / the total wavenumber. Modes
retained in the flow fields ¢ are circled. Topographic modes are
crossed and forcing zonal modes are indicated by a double circle.
Note symmetry about equator implied by / + m odd and invariance
under rotation by 180° longitude implied by m even.
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enstrophy, and so. does the whole truncated system
in the absence of forcing and dissipation. In particular,
the topography acts solely as a catalyst transferring
the energy between different scales.

The topography (Fig. 2) is depicted as the most
coarse representation of the Northern Hemisphere,
with two equal continental masses separated by two
equal oceans:

h = 4hou*(1 — p?) cos2é. (5a)

The multiplication of # by the nondimensional Co-
riolis parameter u leads to the term ph consisting of
the modes marked by a cross in Fig. 1. We shall use
ho = 0.1, except in connection with the series of
results reported in Fig. 4 and further analyzed in
Appendix C.

The topographic contour map in Fig. 2 and all
subsequent maps of the stream function ¥ = (¢, u)
use a conformal conical projection of ratio 2/3 (Cotter,
1966, Ch. 8). This projection maps a sector of the
Northern Hemisphere located between 0° and 270°
longitude onto the half disk shown in the figure. The
advantage is that one-half of the continent and one-
half of the ocean are repeated, making the two-
periodic pattern easier to perceive, without requiring
the additional space that would be taken up by the
full disk.

The mean forcing is a zonal jet, expanded in the
first two zonal components marked with a double
circle in Fig. 1,

Y* = —kp’ = a¥u) + bYY(u); (5b)

k is a nondimensional constant chosen so that the
maximum forcing speed, which occurs at 50°N, has
a dimensional value of 60 m s™! for p = 0.20.

The truncation above allows an exact representation
of the direct interaction between the forcing and the
orography. The forcing ¥* models, in the absence of
explicit baroclinic effects, the mean thermal wind
which would be observed in the case of an idealized

Topography

FIG. 2. Contours of the effective orography uh, u = sinf. This is
a conformal conical projection of ratio 2/3. The two half-circles in
the figure correspond to the equator and the 45°N parallel. Topo-
graphic maxima and minima are indicated by H and L, respectively.
The same projection is used in all subsequent flow-field maps.
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purely zonal circulation, with no meridional mass
transfer. ,

The right-hand side of (1) models, at the same
time as the forcing by ¢*, the dissipation across a
hypothetical Ekman layer. The characteristic relaxa-
tion time o' in midtroposphere, at the equivalent
barotropic level, is usually taken to be of the order
of 10 days (Charney and DeVore, 1979).

The energy of the flow E is the sum of the kinetic
energy K = — [ [ YAydud and of the potential energy
P = [[ X% dud¢ associated with the free surface
displacement. The constant —\~2 in the deformiation
term of (3) has the same sign as the eigenvalues of
the Laplacian and therefore, its presence reduces the
phase speed of free Rossby waves in the model
[Pedlosky, 1979, Egs. (3.18.6, 3.18.9)]. This reduction
brings the interaction between planetary waves closer
to nonlinear resonance. The effect discussed is purely
dynamic, since the deformation term A2y disappears
from the steady-state version of (3).

The dimensional radius of deformation Ly is taken
equal to 1100 km throughout, except at one point in
Section 5, where Lz = oo. The value of 1100 km is
a heuristic interpolation between an internal, baro-
clinic radius of deformation and the external barotro-
pic one.

Substltutmg the truncated expansion of the variables
(4, 5) in Eq. (3), we obtain a system of N = 25
ordinary differential equations for the N-vector W(¢)
with components {7*(¢). To write this system explicitly
would be tedious and uninformative, so we give it in
compact vector-matrix form:

1\1/=p\IrTB\Ir+A\If+C,
v dr
where ¥7 is the row-vector transpose of the column-
vector W, while B is a third-order tensor and A a
usual, second-order tensor. The first term on the
right-hand side contains the quadratic terms coming
from the truncated Jacobian Jr(¥, Ar¥), the second
term groups the linear terms from the Coriolis effect,
orography and dissipation, and the last term represents
the zonal forcing. Notice that the truncated Laplacian
AT acts on each component of ¥ exactly like A 1tse1f
i.e., as multiplication by -l + 1).

System (6) is the object of this study. It is autono-
mous, i.e., the right-hand side '

G(¥; p, «) = p¥'BY + A¥Y + C @)

depends on time only through the dependent variables

= ¥(f). The system is also forced, C # 0, and
dissipative, i.e., X’AX < 0 for arbitrary vectors
X # 0. '

It can be shown that the solutions of (6) exist for
all times —oo < ¢ < +o00 and are unique for arbitrary
initial conditions -(Arnold, 1978, Sec. 7.7). Further-
more, as t — o0, the flow in the system’s phase space

(6)
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is volume reducing, and tends to certain attracting
sets: fixed points, limit cycles, invariant tori, or
strange attractors (Lorenz, 1963; Ruelle, 1984). We
shall investigate the relationship between some detailed
properties of the system’s attractors and certain char-
acteristics of large-scale midlatitude atmospheric flow
discussed in Section 1. '

3. Stationary solutions
a. Methodology

We study first the nature of the model’s stationary
solutions and follow their behavior as the parameters
o and p change. This will help us éxamine later the
nonstationary flow regimes.

For « large, tending to infinity, and p fixed, the
stationary solution of (3) is clearly unique and tends
to y*. For p large, tending to infinity, and « fixed,
there still exists a stationary solution tending to y*,
which is not necessarily unique. In the limit p — 0,
an equilibrium is reached which stays near y* if « is
at least of the same order as A. It may be shown
(Legras and Ghil, 1983, hereafter LG1; also Appendix
A) that these three asymptotic forms of the solution
are stable with respect to time-dependent perturba-
tions. The same results hold for the discrete sys-
tem (6).

Between these limits lies the interesting domain of
the parameter space. In the model of Charney and
DeVore (1979; CDV hereafter), and other quasi-
linear models with a very small number of degrees
of freedom (three-six), the algebraic system corre-
sponding to our v

G(¥;r)=0

could be solved analytically to yield the stationary
solutions ¥ = ¥(r), for all parameter values r. In the
present model, (8) represents 25 nonlinear algebraic
equations, r = (p, «), and one has to take recourse
to numerical methods of solution.

The basic idea of the method used systematically
here belongs to the class of continuation methods.
Knowing a solution ¥, for a given parameter value
ro, G(¥o; ro) = 0, one searches for solutions ¥(r) near
the point (¥, rp) by using

oG oG
5“1,'(‘1’_‘1’0)"‘5('_1’0):0, )]
where 0G/0¥ and 0G/dr are matrices of partial
derivatives evaluated at

(¥, 1) = (Yo, ro).

The particular method employed is pseudo-
arclength continuation (Keller, 1978). It solves (9) as
an ordinary differential equation in the arclength s
given by ds? = ||[d¥|? + |ldr||?, using a predictor-
corrector method. Here ||X| stands for the length of
the vector X, in the appropriate dimension of Euclid-
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ean space, namely N = 25 for the phase space of ¥
and p = 2 for the parameter space of r. The correction.
step uses a Newton-type technique for Eq. (8).

This continuation method allows one to explore
completely a one-parameter solution branch of sta-
tionary solutions. It eliminates the difficulties encoun-
tered in other methods at regular turning points of a
branch, where the rank of the matrix dG/d¥ in (9)
is less than maximal. A simple exposition of this
method and technical details on its application to the
present problem are given in Appendix B. Still, no
method provides automatically the entire picture of
all possible stationary solutions for the full N X p-
dimensional phase-parameter space. The picture may
be filled in by carrying out a large number of explo-
rations following different directions in parameter
space. This approach, given some empirical ingenuity,
provides redundant information and allows one to
connect sheets of solutions which may appear as
separate branches in certain one-parameter cross sec-
tions of the parameter space.

b. Dependence on parameters

In order to describe the distribution of stationary
solutions as a function of the parameters, we have
plotted in Fig. 3 the square root of their total energy
E = K + P as a function of p for different values of
a. For ™! = 1.1 days (curve A in Fig. 3a) we are in
the asymptotic domain of large « and the unique
solution branch differs little from ¢* for all p. In the
sequel, o will always be given in day™!, while p is
nondimensional.

As « decreases, the relaxation no longer compen-
sates for the destabilization of the mean flow by the
orography, and waves are produced which interact
with each other and feed back energy to the mean
flow. As a result, the solution branch above is contin-
uously distorted into a family of stationary solutions
which has notably smaller energy than ¢* and is
characterized by a strong flux of energy extracted by
the waves from the mean flow (curves B and C).

For o! ~ 5.25 days, a fold develops in this
solution branch near p = 0.5, analogous to the one
observed in the CDV model. This fold leads to the
existence of three stationary solutions for the same
value of the parameters (curve D of Fig. 3a). Such a
fold was also observed in Killén’s (1984, Fig. 1)
extension of the CDV model to the sphere.

As o decreases further, we see (curve E, Fig. 3b)
an isolated closed branch, or isola, which detaches
itself from the main branch for ™' > 8.5 days and
is present for 0.18 < p < 0.20, down to small values
of a. Next, another fold appears for o' ~ 11 days
at p ~ 0.20 and develops for ¢! = 15 days (curve
G, Fig. 3c, and curve 1, Fig. 3e) into a complicated
structure. '

In order to compare these results with those of
CDV, we performed a similar analysis on a quasi-
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FIG. 3. Total energy E of stationary solutions as a function of the forcing parameter p for several fixed values of the dissipation parameter «, and for 4, = 0.1 [see Egs. (2b, 5a)).
The stability of the solutions is denoted by the following symbols: cross, stable solution; open circle, plus, asterisk, closed circle, unstable solutions for which the eigenvalues of the

linearization L, with positive real part are respectively: open circle, one real eigenvalue; plus, two complex conjugate eigenvalues; asterisk, two real eigenvalues; closed circle, at least

10.0, quasi-linear model (¢) G, o' = 20.0 (d) H, ™'

20.0, quasi-linear model (e) I, «~' = 33.0. The labeling of various branches is explained in the text. Stars indicate stationary solutions for which the flow patterns appear in Fig. 5

(curves E and F) and Fig. 7d (curve H).

three eigenvalues. Values of a ' in days: (a) A, a' = 1.1, B,a' =3.3;C,a' =5.0; D, a' = 6.7. ®) E, «”! = 10.0; F, o!

FiG. 4. Total energy E of stational-'y solutions as a function of the forcing parameter p for «™' = 20 days and several fixed values of the orographic amplitude 4. Stability symbols

0.01; K, Ay = 0.02; L, hy = 0.05. The solid pointers on the abscissa indicate linearly resonant values of p for vanishing 4.

are as in Fig. 3. Values of A are: J, A

B. LEGRAS AND M. GHIL 441

linear version of our model, in which all wave—wave
interactions were suppressed. In this new system, the
nonzonal components of a stationary solution satisfy
a linear system with coefficients depending on the
zonal state. This system shows nonlinear resonances
for some values of the zonal flow due to the existence
of small denominators.

For arbitrary parameter values, the quasi-linear
stationary solutions obtained have all components
with zonal wavenumber m = 4 equal to zero. Time-
dependent integrations of the quasi-linear model show
that perturbations with m = 4 in a nonstationary
solution decay to zero in time. Since the only forced
modes have m = 0 and m = 2, and since no
interactions between m = 2 and m = 4 are present,
it follows that in the quasi-linear model the mean
flow is barotropically stable.

Figures 3b (curve F) and 3d (curve H) show the
cross sections E = E(p) of the quasi-linear model for
a~!' = 10 and 20 days. The large resonance observed
in both figures for p = 0.5 is the image of the CDV
orographic instability mechanism in the present
model.

The difference between the upper branch of the
resonance (marked by ub!l in Figs. 3b and 3e) and
the main branch (marked mb1) consists essentially of
a decrease of the zonal component of the flow.
Between the upper branch (ub!) and the lower branch
(Ib1), on the other hand, there is little change in the
zonal component, but a global westward phase shift
of the energy containing components (/, m) = (3, 2)
and (5, 2) without modification of their amplitude,
as in CDV and in Killén (1984, Fig. 3). Similar
results were also obtained by Davey (1981) with a
quasi-linear model in an annular geometry.

Notice that the exact value of the phase shift
depends on « in this model, as well as in the three
preceding ones. It is also clear that, in the fully
nonlinear model, wave-wave interactions limit further
the p-extent of the quasi-linearly resonant fold (com-
pare curve E with curve F in Fig. 3b).

The second resonance, noticed already for the fully
nonlinear model, is also visible, especially in Fig. 3d.
It can be shown (Appendix C) that this second
resonance, appearing at more realistic values of p, p
< 0.30, is due to the addition of more degrees of
freedom in the meridional direction: the number of
folds in the resonance pattern increases with the
number of meridional modes, but most of them
accumulate near p = 0.

This resonance is different in character from the
first one. In the quasi-linear model, a uniform west-
ward phase shift between its upper branch (#b2 on
curve H) and its lower branch (/b2) affects the modes
(5, 2), (7, 2) and (9, 2), but the largest-scale mode (3,
2) remains unchanged. This indicates that the reso-
nance develops on a basic flow which, far from being
zonal, possesses a strong wave component.
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FIG. 5. Contours of the streamfunction ¥ for stationary solutions; a« = 0.1.
Projection as in Fig. 2. Contour intervals are 10 nondimensional units {see Eqs. (2d,
¢)]; to obtain ¥ in geopotential meters, the plotted values have to be multiplied by

- 61.9p. (@) p = 1.25; (b) p = 0.5, upper branch of the first resonance; (¢) p = 0.5,

lower branch of the first resonance; (d) p = 0.35, main branch between the first and
second resonance; (€) p = 0.6, upper branch of the first resonance, quasi-linear
model; (f) p = 0.6, lower branch of the first resonance, quasi-linear model.
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In the fully nonlinear model (Fig. 3c), the first structure where, as a decreases, new folds develop on
resonance keeps the appearance of a unique distorted the already existing ones in a seemingly endless
‘fold. The second one exhibits a more complicated cascade. The p-extent of the folds grows considerably
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as a goes to zero (Fig. 3e). Comparing Fig. 3¢ with
Fig. 3d, we see that the isolated branch, associated
with the second resonance in the nonlinear model, is
presumably due to the reconnection of branches mb2
and ub2 of the quasi-linear model.

To study further the genesis of both resonances in
the nonlinear model, we show in Fig. 4 the E = E(p)
curves for «”! = 20 days and for several values of
hg, taken here as a third parameter of the problem.
For very small values of A, and «, we solve in
Appendix C the stationary problem assuming that ¢
is a small perturbation of y*. Three linear resonances
are found at the values p§ = 0.65, pf = 0.21 and pf
= (.07 of the forcing parameter. They are directly
associated with the three resonances observed for Ag
= 0.01 (curve J, Fig. 4).

As hg increases, the resonances develop towards
lower energy and nonzonal flows. For 4, = 0.025
(curve K, Fig. 4) the p§- and pf-resonances become
connected, leaving a big isola of relatively zonal flow.
For hy = 0.050 (curve L, Fig. 4), we have recovered
a large part of the picture shown in Fig. 3c, where 4,
= 0.1.

The pp -resonance does not lead to a fold; connected
with the pf-resonance, it produces the knee of the
branch mbl. The pR- and p%-resonances lead to the
first and second resonances in the nonlinear model,
respectively.

For Ay = 0.05, the first fold has smaller p-extent
than for s, = 0.1, and the second resonance is not
yet folded. The big isola for 4, = 0.025 has split into
a twin system for Ay = 0.050. When A, increases
further, these two isolas decrease in size and eventually
collapse. The isola obtained for 4y = 0.1 (Fig. 3c) is
the trace of a larger branch generated between h,
= 0.05 and A, = 0.1. It in turn disappears for /g
= 0.2 (not shown).

As the topographic height parameter A, increases,
it induces more coupling between the modes of the
model, resulting in more nonlinearity. The sequence
of curves E = E(p) as a function of increasing /g is
quite similar to the sequence observed as the dissi-
pation parameter o decreases. The connection with
linear resonances at small A, demonstrates in the
" present case the continuity between linear and non-
linear models. It shows also that the complete behavior
of the nonlinear model can hardly be inferred from
a linear analysis (see also Itoh, 1985).

¢. Flow patterns

The spatial resolution prov1ded by the model allows
comparatively complex flow patterns to appear. The
description of the ensemble of patterns appearing as
stationary solutions is facilitated by the fact that these
depend relatively little on « along a given sheet of
solutions. This result was expected for large and for
small values of p (cf. Appendix A), but holds also
true for intermediate values.
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Figure 5 shows the most important flow patterns
appearing for large values of p, near the CDV reso-
nance: panels 5a-d follow the changes along curve E
in Fig. 3b, while Se-f represent points on curve F.
The flow in Fig. 5a, for p = 1.25, differs only very
slightly from y*. The nonzonal part of the flow is
dominated by the directly forced wavenumber m
= 2, which is in phase with the orography. The
dependence on a (o = 0.1 day™' for all panels in the
figure) is negligible.

As p decreases, the deviation of the solution from
¥* increases rapidly between p ~ 1.0 and p = 0.7.
The nonzonal component is slightly shifted westward
and becomes stronger, leading to the appearance of
a closed pressure center above “mountains,” i.e.,
above the positive orographic heights (LG1, Fig. 5b;
compare also our Fig. Se).

Changes are small between p =~ 0. 7 and p =~ 04,
where the turning of the main branch mblI into the
CDV resonance occurs. The dependence on a consists
in an eastward shift of the high-pressure center
(marked H in the figures) relative to the mountains
as a decreases, causing less energy to be drawn from
the mean flow [see also Eq. (A3)]. Among nonzonal
modes, m = 2 is still most prominent.

For both branches of the CDV resonance, m = 2
is also dominant. The upper branch ubl of this
resonance (Fig. 5b) has a zonal flow only half as
strong as that of the main branch mbl1 above it, while
the nonzonal part of the flow is intensified, keeping
the same phase. The lower branch /b! (Fig. 5¢) shows

.a pattern similar to that of the upper branch, but

shifted westward by 60°, which produces a strong
northerly flow into the western half of the “‘conti-
nents.” These flow characteristics allow one to asso-
ciate the solutions_on the main branch mbl for p
2 0.5 and on the lower branch /bl of this first
resonance with the solutions called ‘“zonal” and
“blocked” respectively by CDV.

The main features of the lower branch are un-
changed for smaller values of p, down to p = 0.20,
where the second turning point occurs. Figure 5d
shows this flow pattern in a region of parameter space
where it is the unique stationary solution (p = 0.35
and o”! = 10 days). When « decreases, the pattern
is shifted further westward, until the low-pressure
center (marked L in the figure) is at the same
longitude as the maximum topographic height.

The stationary solutions of the quasi-linear model
{curve F in Fig. 3b) are shown in Fig. 5e for the
upper branch and in Fig. 5f for the lower branch of
the CDV resonance. They exhibit the same features
as the corresponding solutions of the full model, due
to the dominance of wavenumber m = 2 in the
solutions of either model. The fact that the corre-
sponding features here are somewhat more pro-
nounced than in the full model is due to the total
absence of High wave number energy in the quasi-
linear model.
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We saw already in Section 3b that a second reso-
nance occurs in our model at lower, more realistic
values of the forcing parameter p. This second reso-
nance has a more complicated structure than the
CDY resonance, involving mostly the modes of degree
! = 5. The detailed structure of the enlarged E'/?
versus p curve for a~! = 20 days (curve G in Fig. 3c)
is shown for the neighborhood of p = 0.20 in Fig. 6.
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In this region of parameter space, the solutions’
flow patterns can be classified into four families—
Blocking, Zonal 1, Zonal 2 and Double Block—
which correspond to the various branches as denoted
in Fig. 6. Representative examples of the solution
families identified in Fig. 6 are shown in Fig. 7. Inside
each family there exist amplitude and phase variations,
but the general pattern of the solution remains un-

T

! A XX T A AT T AT T T
R : % stable branch i
- Lo
+ 2)6 ’):((B ~ ]
+ A b4
= + -
1 Zonal 1
- 1
.20 T
I Zonal 2 T
E% ...oo.oooo...*.
B ++++ C ! ‘ ¥ + + 1
+
+
+
| +
o.;:.. -
151 ‘-‘,. ] "ot _
‘0.. *0'.:.'
I Double block™ ™ |
(non persistent) "
- 1 2 3 4 5 RPN
L 1 v, Y Y. X 0 W )
15 .20 .25 .30
P

" FI1G. 6. Blow up of a portion of Fig. 3c. Stationary solution branches associated with the
second resonance for a~' = 20 days. Stability symbols as in Fig. 3. Branch segments circled
show rapid transitions between Blocking, Double Block and Zonal 2 type flow patterns.
Numbered pointers on the abscissa indicate values of p for which time-dependent model
solutions are investigated in detail. The flow patterns of stationary solutions marked by stars
appear in Figs. 7a—c.
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changed. Transitions along branches between Block-
ing, the Double Block and Zonal 2 occur quite
sharply in the circled segments of Fig. 6.

The Zonal 1 flow (Fig. 7a), associated with the
isolated branch, has a high energy level: the maximum
intensity of its zonally-averaged jet is 50 m s™!. The
Zonal 2'flow (Fig. 7b) is less intense, with a 35 m s™!
jet in zonal average. Both of these zonal flows exhibit,
in fact, a ridge on the west side of the orography and
a trough on the east side, similar to the averaged
winter circulation of the Northern Hemisphere. They
may thus be associated with the regular weather
regime, and we shall do so in the sequel.

The west coast ridge is strongly intensified in the
blocking solution (Fig. 7¢), which shows a well de-
veloped high center on the west side of the orography,
splitting the zonal flow into two jets. The averaged
zonal wind is reduced to 18 m s~ and the geopotential
height difference between the trough and the ridge is
about 1000 m. The exaggerated amplitude of this
flow feature would presumably be reduced by thermal
damping and by interactions with higher wavenum-
bers to the correct order of magnitude of 500 m.

We show also in Fig. 7d one solution of the quasi-
linear model (curve H, Fig. 3d), located on the lower
branch of the second resonance for the same value
of the parameters as in Fig. 7c. Both patterns are
quite similar, although the quasi-linear solution is
shifted eastward and exhibits a weaker zonal wind.

Zonally-averaged zonal wind profiles as a function
of latitude were calculated for all stationary solutions
discussed in this section (not shown). The flow patterns
apparent for p =~ 0.2 all have easterly winds in the
tropics. The maximum easterly speed occurs at the
equator and lies between 2 m s~ and 8 m s~'. This
maximum speed is higher for the zonal than for the
blocked stationary solutions, in qualitative agreement
with the observations of Namias (1950, Fig. 5), for
instance.

In the following section, we shall discuss the stability
of the stationary solutions, and the role they have in
organizing the model’s phase-space flow. The double-
block type of solutions (Fig. 5¢ in Legras and Ghil,
1984, LG2 hereafter) seems to play no role in the
model’s dynamics and hence is not shown here. The
blocking solution and both zonal branches, on the
other hand, will turn out to be important for time-
dependent model behavior.

4. Stability and dynamics

a. Stability of stationary solutions

Linear stability of a stationary solution ¥, is deter-
mined by the spectrum of the linear operator L,
associated with the perturbation problem of time-

dependent evolution in an infinitesimal neighborhood

of ¥,. For any one of the stationary solutions above,
Ly = L(¥) is given by
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Lx = (Ar = N pJr(¥s; Arx)
+ Jrlx, pAr¥s + p(1 + h)] + aArx}. (10a)

The operator .L; is easily obtained as an N X N
matrix from Eq. (6),

Lx = p(¥Bx + x™¥,) + Ax. (10b)

Eigenvalues are then computed by a standard algo-
rithm (see Appendix B). If all eigenvalues are in the
left half of the complex plane, the solution ¥ is
linearly stable. Otherwise it is linearly unstable.

Let ¥, be a stationary solution for which .L; has
no eigenvalues with zero real part. Then the quadratic
character of the nonlinearity in Eq. (6) insures that
there exists in phase space a finite, small neighborhood
U= (¥ — ¥l < ¢ of ¥, such that the following
dichotomy holds: if ¥ is stable, then solutions W¥(z)
of (6) with initial data in U, [|[¥(0) — ¥,|| < e, stay
in U and tend to ¥, as t — oo; if ¥, is unstable, then
almost all solutions, of (6) starting in U will leave it
in finite time, so that there exist times 0 < ¢; < ¢
< 1, for which | ¥(f) — ¥, > e. The excluded set of
initial data in the latter case refers to the stable .
manifold of ¥, which has, by the definition of ¥, as
an unstable fixed point, dimension s < N and hence
volume zero; s being just the number of eigenvalues
with negative real part. Details and proofs of these
and related statements on the qualitative theory of
ordinary differential equations, dynamical systems
and bifurcation theory can be found in Arnold (1978,
1983) and Guckenheimer and Holmes (1983).

We shall see in Section 5 that trajectories of (6) do
leave the neighborhood of a linearly unstable station-
ary solution. More interestingly, they can return after
some time, ¢ > I,, to this neighborhood by following
closely the stable manifold of the solution, and dwell
there for long times. The persistence properties of
such neighborhoods in phase space, and of the asso-
ciated planetary flow regimes in physical space, will
be explored numerically in Section 5.

As a first analytical step in this exploration, we
return now to the linear stability properties of sta-
tionary solutions. These are shown in Figs. 3a—e and
in Fig. 4: stable solutions are marked by a cross;
unstable solutions are labeled to indicate the number
u of eigenvalues with positive real parts (see captions).

This number is important for the nonlinear dy-
namics. The eigenvectors associated with the unstable
eigenvalues span the solution’s unstable tangent space,
and s + u = N for almost all points in phase-
parameter space. The nonlinear extension of this
tangent space is the unstable manifold, which has the
same dimension u in a finite neighborhood of the
solution. If ¥ < s, then one may hope that the given
unstable solution plays a significant role in the global,
nonlinear dynamics.

The case in which ¥, = ¥(r) is such that some
eigenvalues of .L; have zero real part, and hence s
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+ u < N, corresponds to lower-dimensional manifolds,
i.e,, to points or curves in our two-dimensional
parameter space, with r = (p, a). The set of r for
which s(r) + u(r) < N has in general zero volume, or
measure, in parameter space and is known as the
bifurcation set.

Turning points on solution branches (Figs. 3 and
4), also called saddle-node bifurcations, are associated
- with a real eigenvalue passing through zero. Likewise,
stationary solutions lose their stability to periodic
solutions at points of Hopf bifurcation, where a pair
of complex conjugate eigenvalues crosses the imagi-
nary axis from the left into the right half-plane. The
presence of three or more unstable eigenvalues indi-
cates the possibility of aperiodic solutions (Lorenz,
1963; Ruelle, 1984).

As a rule, we found that the most stable solution
of (6) at a given value of the parameters is the one
with the highest energy. Solutions associated with
resonances exhibit a relatively large number of unsta-
ble eigenvalues. This number increases along the
resonant branches and as « decreases. The dimension
u of the unstable manifold may exceed 10 on certain
branches for a < 0.05 day ™.

Figure 8 shows the linear stability of the most
stable stationary solution in the (a, p)-plane of param-
eters with /, = 0.1. Due to the remark above, this
figure can also be seen as a plan view from the top
of the E = E(p, a) surface whose cross sections
appear in Figs. 3 and 6.

For & > 0.205, a zonal solution, close to the
forcing. flow ¥*, is unique and stable. Solutions at

very small and very large p are also stable for all «,

P,
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0.8
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in agreement with the asymptotic analysis of Appen-
dix A.

As « decreases, instabilities associated with Hopf
bifurcation develop for 0.1 < p < 0.75. Each one of
these instabilities gives rise to one of the. hatched
lobes in Fig. 8. These lobes grow in the (a, p)-plane
in the direction of decreasing «, and eventually merge
into one large hatched area, where no stationary
solution is stable. The fact that stability decreases
with decreasing dissipation is in accordance with our
general fluid-dynamical intuition, and should hold
for the continuous Eq. (1), as well as for the discrete,
truncated model (6). ,

Within the hatched instability area, the turning .
line of the main branch mbl into the upper branch
ubl, and the two boundaries of the isolated, Zonal 1
branch are shown as solid lines, for p =~ 0.4 and near
p =~ 0.2, respectively. The folding of the first resonance
(solid) merges at point S with a Hopf bifurcation line
(dashed in the figure). According to our numerical
evidence, S is a triple bifurcation point, or critical
point. The chaotic behavior in the neighborhood of
this point will be discussed further in Section 4b.

The isolated branch with Zonal 1 flow patterns is
always more stable than the other solutions which
coexist with it at the same parameter values and at
lower energies. We shall not discuss here the compli-
cated bifurcation patterns to which the second reso-
nance, lying under the isola, gives rise. Heuristically,

_the multiple folds of this nonlinear resonance seem

to be related to the accumulation of linear resonances
discussed in Appendix C. .
Finally, we notice that multiple stable equilibria

______

//

G
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FIG. 8. Stability domain of the most stable solution as a function of p and a.
Solid lines: regular turning line of the sheet of stationary solutions. Dashed lines:
Hopf bifurcation of a stable stationary solution. Dotted lines: second Hopf bifurcation.
Dash-dotted- lines: the onset limit of chaotic regimes. The instability domain where
no stable stationary solution exists is hatched. See text for discussion of point S.
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occur in this model only in a very small parameter
range, near p = 0.18 and a = 0.07 (see Fig. 8). This
situation has to be contrasted with the fact that
multistable solutions are characteristic of wide pa-
rameter ranges in simpler, more highly truncated or
quasi-linear models (cf. CDV; Killén, 1984; and Figs.
3b, d here).

For multiple flow regimes to exist in the present
model over a wider range of parameter values, they
must therefore be related to the existence of higher-
dimensional attractors. The discussion of stable and
unstable manifolds following Eq. (10) and the study
of bifurcation patterns in Fig. 8 lead us to expect that
parts of such complicated attractors might lie close
to unstable fixed points or even contain such points
(as in the case of the Lorenz attractor; cf. Lorenz,
1963). We shall also see in Section 5 that very
persistent flow pattern evolutions in physical space
can be explained by the proximity of a turning point
on a stationary solution branch in phase space.

b. Periodic and aperiodic solutions

In the previous subsection, we have seen how
stationary solutions lose their stability by bifurcations
which give rise in general to periodic and aperiodic
solutions. To study such solutions and the flow
patterns associated with them in detail, a large number
of numerical integrations of the evolution equation
(6) were carried out. Numerical solutions were com-
puted for hundreds of values of the parameters and
various initial data, each solution being computed
for thousands of. simulated days. This numerical
study, while not exhaustive in all parts of parameter
space, provides a reasonably good qualitative picture
of model behavior in certain regions of this space;
these regions are either physically most realistic or
else are relevant to completing the global knowledge
of possible types of behavior.

The transition from stable stationary solutions to
stable periodic solutions occurs by supercritical Hopf
bifurcation along most of the boundary of the hatched
area in Fig. 8. Inside the hatched area, the stable
limit cycles arising at the boundary grow in size and
keep their stability for a finite distance in parameter
values.

Above the turning line of the first resonance, at p
=~ 0.4 in Fig. 8, there exists a limit cycle arising from
the (now unstable) main branch solution mbl. This
limit cycle, which is stable in a large region of
parameter space, has small amplitude throughout, so
that the flow pattern associated with it always resem-
bles closely the pattern -of the stationary solution
mbl. Transition from this periodic solution to ape-
riodic solutions occurs for a < 0.07 along the dash-
dotted line in Fig. 8. The aperiodic solutions to the
left of this line have much larger amplitude and
hence greater variations in flow pattern than the
periodic solution manifold from which they arise.
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Below the first turning line at p ~ 0.04, transition
from periodic to chaotic behavior occurs much closer
to the boundary of stability of stationary solutions.
We have presented in LG1 a detailed study of solution
behavior in the neighborhood of the triple bifurcation
point S. The behavior of solutions along the line p
= 0.35 for 0.16 < a < 0.18 was shown in Fig. 8
of LGl.

Power spectra of the solutions (not shown here)
exhibit, for o decreasing, a cascade of period-doubling
bifurcations from the originally stable limit cycle
(Feigenbaum, 1978). Chaos begins at the accumulation
point of the sequence of successive bifurcation values,
which is ¢ =~ 0.1624. Windows of regular behavior
and associated intermittency phenomena are also
observed inside the chaotic domain, in agreement
with the full period-doubling scenario (Kadanoff,
1983).

On the other hand, direct transition from stationary
to chaotic behavior is observed numerically at point
S itself, in agreement with the scenario of Shilnikov
(1965), investigated also recently by Arneodo et al.
(1982) and by Gaspard and Nicolis (1983). This
transition, which occurs over a very small distance
in parameter space, is also localized in phase space:
the energy of the deviation in the aperiodic solution
from the unstable stationary one does not exceed
15% of the energy of the latter, and the planetary
flow regime remains unchangéd throughout the tran-
sition.

At lower values of «, transition to chaos appears
to be more complicated. At « = 0.05 day”}, and
starting with small values of p, the chaotic regime ‘is
entered along a branch of stationary solutions with
blocking-type flow patterns (see Figs. 6 and 7c). Hopf
bifurcation occurs at p =~ 0.123, leading to a stable
limit cycle with initial period of approximately 40
days, and with rapidly increasing amplitude. As p
increases further, period-doubling bifurcations occur,
along with the growth of background noise and with
intermittency.

Figure 9 shows, for &~' = 20 days and p = 0.149,
the time evolution of one diagnostic flow quantity
Dg(t), the distance of the given, aperiodic solution
from the stationary blocking solution E (see Fig. 6
and Section 5a for details). Throughout the time-
dependent evolution, a nearly recurrent sequence of
fixed duration appears over and over again. This
sequence, labeled S1 in the figure, is about 140 days
long and is not repeated identically from one occur-
rence to another, due to the presence of a significant
amount of spectrally-continuous noise. Still, each
occurrence is easily identifiable by the similar evolu-
tion of several diagnostic variables. The S1 sequences
can succeed each other one or more times (three and
five successive appearances in the figure), or be inter-
rupted by other sequences, such as S2 in the figure.

As p increases above 0.149, the sequence S1 un-
dergoes period doubling, the noise level increases and
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FiG. 9. Tlme evolution of the deviation Dg from the stationary solution on branch E for ™! = 20 days and
p = 0.149. Recurrent sequences are identified by segments marked S1.

more intermittency is observed, i.e., longer separating,
nonrecurrent sequences occur. Above p =~ 0.16,
solution behavior seems completely chaotic. Unlike
the transitions near. point S, significant changes in
flow pattern appear for the time evolution represented
in Fig. 9.

Inside, the chaotic regime which has dash-dotted
boundaries in Fig. 8, new instabilities obtain, leading
system trajectories to visit new regions in phase space.
At this point, the trajectories exhibit sequences of
-flow patterns associated in succession with different
planetary flow regimes familiar to synoptic meteorol-
ogists, such as a zonal regime and more meridional
regimes (Namias, 1950; Rossby, 1939).

This type of behavior appears to be characteristic -

of large-scale atmospheric dynamics. Relatively little
is known theoretically about transitions between cha-
otic regimes, or crises (Grebogi et al., 1983). To
explore the multiplicity of flow regimes which suggest
themselves to our attention, we shall study the main
features of these regimes numerically, guided by
existing theory of phase-space structure on the one
hand, and by our synoptic-predictive concerns on the
other.

Before doing so, however, it scems at least worth
mentioning that an approximate periodicity of 30-
50 days has been associated with global fluctuations
in the atmosphere’s angular momentum (Hide et al.,
1980; Krishnamurti and Subrahmanyan, 1982; Mad-
den and Julian, 1971). Oscillations with a period of
~40 days and with a significant barotropic component
have also been observed in rotating annulus experi-

"'ments in the presence of simplified bottom topography-
with azimuthal wavenumber 2 (J.-C. André, and
G. Q. Li, R. L. Pfeffer and R. Kung, personal

communications, 1984). The intermittent character
of flow sequences (Fig. 9) associated with a continuous
spectral component might account for the width of
the peak in the spectrum of the observed fluctuations

~ (see also Section 5a and discussion of Fig. 13a there).

For a more precise interpretation of our barotropic

.model’s results in terms of naturally occurring, mixed

barotropic and baroclinic phenomena we refer to
Section 6.

5. Persistence and predictability
a. Persistent regimes

We study here the existence of recurrent, persistent
flow-pattern sequences in the evolution of chaotic

~ solutions. The closest analogy between such persistent

sequences and actual planetary flow regimes is ob-
tained in our model for the region of the second
resonance, at relatively small values of «. Therefore,
we shall investigate the question of persistent flow
patterns for the parameter domain shown in Fig. 6
and indicated by a two-sided arrow in Fig. 8: 0.13
< p < 0.35, with o = 0.05 day™! and 4, = 0.1. In
this domain, .the only stable stationary solutions lie
on the isola, and most numerically observed solutions
are aperiodic.
As a measure of persistence, we adopt the quantity
),
||‘I'(t +7)—

T

¥l

@) = (11)

which measures the speed of the solution point ¥(z)
along its orbit in phase space. Here 7 is a sampling
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time interval, taken equal to two days in dimensional
units, and the numerator equals the root-mean-square
difference between the two successive stream function
fields (see also paragraphs following Eqgs. (9) and (10)
for the definition and use of || - {|). When C(¢) is small
for a given length of time, the evolution of the flow
pattern in physical space is observed to be slow, and
the pattern persists for that length of time.

Figures 10a-e show the evolution of C(¢) for several
solutions computed at p = p;, p2, * -+, ps, With p
increasing from Fig. 10a to Fig. 10e, as indicated in
the caption (see also Fig. 6 for orientation). Notice
first that the total range of variation in C{(f) increases
from AC =~ 0.10 in Fig. 10a to AC =~ 0.50 in Fig.
10e. Hence the irregularity of the motion in phase
space increases with p.

The minima of C(f) are not as sharp as the
maxima. The width of the minima is larger and their
flatness more pronounced for larger values of p, both
width and flatness being most striking for p = p4. It
turns out that all persistent sequences belong to the
blocking family of flow patterns for p = p; and p
= p,. They have exclusively zonal patterns for p
= py and p = ps. Persistent sequences with either
pattern are present for the intermediate value p = p3.

‘A more precise definition of persistence can be
given by choosing an offset value Cy. Averaging the
flow patterns during a given sequence where C(f)
remains below the offset, C(f) < (,, produces a
composite pattern. Such a composite is shown in Fig.
11a for numerical experiment 2 at p = p, and the
sequence centered at ¢ = 2640 days with an offset
value C, = 0.0045. It possesses strong similarities to
the stationary blocking solution shown in Fig. 7¢c. All
other composites obtained in this experiment are
very close to the one shown. The same results hold
for experiment 1 at p = p;.

In both experiments 1 and 2, two consecutive
sequences are separated by rather complicated epi-
sodes. Most of these episodes possess zonal transients.
One of them, marked by an arrow in Fig. 10b, is
shown in Fig. 11b. These transients, however do not
bear any similarity with the Zonal 1 family, since
they remain at low energy.

We must mention here two points which will be
developed later. First, all along the two experiments
at p = p; and p = p,, the time-evolving solution
remains closer to the blocked branch of stationary
solutions than to Zonal 1 or Zonal 2-type solutions.
Second, Zonal 1-type solutions are seldom observed

numerically in the parameter range where they exist

as stable stationary solutions. The basin of attraction
of this branch appears to be very small in volume
and limited to the immediate vicinity of the branch
in distance. We shall see how this feature is modified
by changing the deformation radius A.

The Double-Block type of solution is also hardly
apparent in time-dependent model behavior. The
numerical experiment just discussed, at p = p,, had
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initial data close to such an unstable stationary solu-
tion, but never returned there. )

The persistence behavior in Fig. 10d, ¢ is rather
different from Fig. 10a, b. The minima of ((f) are
quite flat compared to the maxima, thus defining
sequences of very persistent flow patterns. But sharp
instability peaks are in evidence, showing that the
solution-point in phase space is violently expelled
from the region of persistence. It then relaxes slowly
to a quieter evolution, producing a reversed, irregular
sawtooth profile in the C(f) time series. Furthermore,
the. observed flow characteristics are reversed with
respect to the previous experiments 1 and 2; persistent
sequences show zonal patterns and transient blocks
occur during episodes of rapid flow evolution, together
with other complicated types of highly meridional
circulations.

This succession of events is strongly reminiscent
of the description given by Namias (1950) of an
individual “index cycle.” During such a cycle, high-
index flow with strong midlatitude westerlies and
long superimposed waves is followed by a shortening
of the upper-air wavelength pattern, then by a sudden
and complete breakup of the westerly flow into
north—south oriented pressure cells, with occlusion of
stationary cyclones and strong anticyclogenesis, and
finally by a gradual reestablishment of the zonal flow.
The low-index portion of the cycle, where meridional
flow is strong, includes blocking patterns, but their
duration varies between a few days and a few weeks.

The whole sequence of events is called a cycle
because a high-index pattern occurs at its beginning
as well as at its end; however, no exact periodicity,
i.e., no constant duration of the cycle, is implied by
Namias or by any other observations. Furthermore,
the occurrence of marked cycles is favored at certain
seasons, but is not the same from year to year,
suggesting a dependence on thermal forcing; such
forcing is represented in our model by the param-
eter p.

To study in further detail the character of flow
patterns in our model for this index-cycle-like evo-
lution, we composited persistent sequences as before.
Figure 12a shows one composite pattern obtained
from the sequence centered at ¢ = 2330 days in Fig.
10e with the offset value Cy = 0.009. This value of
Co is equivalent to the one used in experiment 2, at
p = p3, after normalization by the mean value of
C(?) in either experiment.

Surprisingly, this composite is more similar to the
Zonal 1 type of solution, which does not exist as a
stationary solution at this value of parameters, than
to the stationary solution on the Zonal 2 branch at p
= ps. The same observation holds for all composites
obtained from experiment 4. In experiment 5, on the
other hand, some composites are found to be closer
to Zonal 2 stationary solutions. '

One transient solution, marked by the right-pointing
arrow in Fig. 10e, is shown in Fig. 12b. This dipole
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their synoptic nature, as well as some transients, are indicated in the figure.
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FiG. 10 (Continued)

block resembles the modon pattern studied by
McWilliams (1980) in an atmospheric context. In
our model, it appears only as a very transient, unstable
flow pattern. But the question of stability of isolated
local structures in realistic large-scale flows is under
active investigation (Leith, 1984; Malanotte-Rizzoli,
1982; Pierrehumbert and Malguzzi, 1984), and the
interplay between the two points of view, local and
global in physical space, will certainly contribute
greatly to a better understanding of the question of
atmospheric persistent anomalies. Notice in fact that
blocking events with a similar structure are sometimes
quite short-lived (Sumner, 1954).

The intermediate experiment 3 (Fig. 10c) exhibits
both types of persistent sequences, zonal and blocked.
The flow pattern characteristic of each sequence,

easily identifiable by visual inspection of microfilm

output (not reproduced here), is indicated in Fig.

10c. Four zonal sequences and two blocking sequences

appear in the numerical solution segment displayed

in the figure, but the relative frequency and length of
the sequences depends on the exact value of p and

on the segment of aperiodic solution chosen.

The persistent sequences discussed here, like the
stationary solutions they resemble (Section 3c), exhibit
easterlies in low latitudes. For persistent zonal flow,
at p = ps, the maximum easterly speed at the equator
is 8 m s~!, while the maximum westerly speed is 50
m s~ at 60°N and zonal flow is nearly null between °
7 and 20°N. For persistent blocked flow, at p = p,,
the maximum easterlies are 3 m s™!, the maximum
westerlies 25 m s~ !, and a more sharply defined



454

Exp.2

JOURNAL OF THE ATMOSPHERIC SCIENCES

.VoL. 42, No. §

Persistent composite

h

H ©
9.35

‘o

FiG. 11. Two streamfunction fields from experiment 2 at p, = 0.191: (a) composite
of the persistent sequence centered at 1 = 2640 days in Fig. 10b, based on an offset
value Cy = 0.0045; (b) instantaneous field taken during the transient Zonal episode

labeled in Fig. 10b.

critical belt of near-zero mean zonal wind speed
occurs near 10°N.
.. In general, the critical line of null zonal wind speed
is ill-defined. Its latitudinal position changes with a
characteristic time comparable to that of all other
changes in low wavenumbers, more slowly in a
blocked regime and faster in a zonal regime. The
distribution of zonal momentum with latitude in the
model changes in qualitative agreement with observed
changes between high-index and low-index situations
~ (Namias, 1950). But the profiles of mean zonal wind
are not good indicators, by themselves, of transitions
between persistent episodes and more transient ones.
We have seen in Figs. 10-12 that persistent se-
quences of flow patterns exist and that their compos-
ites tend to resemble certain stationary solutions,

which are unstable for the given parameter values.
This suggests an important role for such unstable
solutions in the flow dynamics (see also Section 4a).
In order to check more directly the connection be-
iween persistent sequences and stationary solutions,
we computed for all experiments the deviations D{t)
= ||¥(f) — ¥;|l to a prescribed stationary solution ¥;.
Each label i corresponds to one particular branch of
stationary solutions as indicated in Figs. 6 and 13.
For each experiment at a given value of p, we
consider stationary solutions present at this value of
p. An exception is made for Zonal 1 type solutions:
for values of p where this branch does not exist, we .
consider the solution located at the nearest turning
point of the isolated branch, marked by a star in Fig.
6. The correlation coefficient between the pair of time
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FIG. 12. Streamfunction fields from experiment 5 at ps = 0.272: (a) composite of
the persistent sequence centered at ¢ = 2330 days in Fig. 10e with an offset value G
= 0.009; (b) instantaneous snapshot taken during the transient Block instability at ¢

= 2220 days in Fig. 10e.

series C(f) and Dgt) is also computed and indicated
in Fig. 13.

Figure 13a shows the variations of D) for exper-
iment 2 at p = p,. The trajectory remains close to
both blocked branches D and E, with some preference
for branch E. Larger distances are maintained to the
Double-Block solution (F), Zonal 2 solution (C) and
to the Zonal 1 point closest to the solution (B). A
general modulation of period close to 40 days contains
a significant part of the autocorrelation power spec-
trum (not shown here) of all deviation time series,
D(?). This modulation is reminiscent of the original
limit cycle which develops along the blocked branch
D when it loses its stability at.lower p (see also end
of Section 4b and Fig. 9). '

The deviations from branches B, C and F are
poorly correlated with C(f). There is better correlation

with blocked branches D and E, although not as
good as expected from persistent composite patterns
and examination of the detailed microfiche film of
the experiment. The reason for this imperfect corre-
lation is that our measure of deviation D(¢) does not
distinguish between phase displacements of a given
synoptic pattern and actual change in pattern. Essen-
tially the same results with respect to D{f) and
correlation with C(f) hold for experiment 1 (not
shown here).

Figure 13c shows the variations of D{?) for exper-
iment 4. The trajectory is now closest to the Zonal 1
(B) and Zonal 2 stationary solutions (C), while the
blocked solution (E) remains at larger distances. The
deviation from the Zonal 1 solution is strongly cor-
related with C(2); cf. Fig. 10d. The weaker, but still
apparent correlation with deviation from the Zonal
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FIG. 13. Variations in time of the deviations D;(¢) of the tra]ectory in phase space from various branches of stationary solutions.
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2 branch comes entirely from episodes of rapid
variations, during which the trajectory is actually far
from any stationary solution. The deviation from the
blocked branch (E) is now clearly anticorrelated with

C(¢) during persistent sequences. However the overall

correlation between Dg(f) and C(2) is close to zero

due to the positive contribution of transients.
For experiment 5 (Fig. 13d) the average deviations
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FIG. 13 (Continued)

from stationary solutions increase. The correlation
between C(f) and the deviation Dg(f) from Zonal 1
solutions is very good (see also Fig. 10e), and remains
higher than between C(f) and the deviation Dc(z)
from the Zonal 2 solution. However, D.(f) is also
well correlated now with C(z). There is still no cor-
relation between ((f) and deviations from the blocking
branch (not shown here). As p increases beyond ps,

the deviations from the Zonal 1 and Zonal 2 branches
tend to correlate equally well with C(¢), until new
weather regimes appear due to the CDV resonance.
Finally, for experiment 3 (Fig. 13b), the analysis
of deviations D{) confirms our previous observations.
The minima of deviation from Zonal 1 solutions are
well correlated with minima in C(f) during episodes
designated zonal in Fig. 10c, while persistent sequences
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of blocking, as indicated: in Fig. 10c, are associated
with closer proximity to the blocked branch of sta-
tionary solutions (E). The overall correlation is better
between Dg(f) and C(¢) than between Dg(¢) and ((z),
being again a function of the exact value of p and of
solution segment.: »

For all zonal regimes, we have seen that the Zonal
1 type of solution plays a very special role in attracting
the trajectories into its neighborhood. On the other
hand, there is an apparent paradox in the fact that
Zonal 1 regimes are observed for parameter values
for which Zonal 1 stationary solutions do not exist,
while blocking regimes obtain when Zonal 1 solutions
do exist. A few qualitative arguments may help us
understand, at least roughly, this behavior.

The first part of the paradox is probably a conse-

quence of the saddle-node bifurcation, which termi-
nates the isolated branch of Zonal 1 stationary solu-
tions at p just below p; = 0.211. In such a bifurcation,
illustrated in Fig. 14 (see also Ghil, 1976, his Fig. 7),
two stationary solutions, one stable, the other one
unstable, coalesce and leave behind an arc of one-
-dimensional manifold along which the motion in
phase space is slow (null at the bifurcation point
itself) compared to the rapid convergence onto this
arc from other directions.

This topological structure traps the trajectory along

the slow manifold, leading to persistent sequences of
Zonal 1-like flow patterns. However, the efficiency of
this mechanism to generate such sequences depends
on the ability of the entrance funnel into the neigh-
-borhood of the given arc to span a large -portion of
phase space, in order to ensure recurrence of the
phenomenon. Further consequences of the action of
this mechanism on the model’s predictability prop-
erties are presented in the next subsection.

The explanation of the paradox’s second part is
somewhat more complex. In addition to .the two
saddle-node bifurcation points at its p-extremities,
several Hopf bifurcations from the branch of Zonal
1 solutions occur along the most energetic, upper
part of the isola; the number of unstable eigenvalues

bl c) L

adac a=ac ayag

FIG. 14. Saddle-node bifurcation in which two branches of
stationary solutions, one stable and the other unstable, coalesce at
the parameter value a = q.. For a < a,, the flow in phase space
close to the pair of stationary solutions looks as it appears in panel
(b), with rapid contraction in the two transversal directions sym-
bolized by double arrows. At @ = a, (¢), a neutrally stable point
obtains when the previous two fixed points merge. For a > a. (d),
slow motion occurs along the “ghost” of the orbit previously
connecting the two fixed points, with rapid transversal contraction
resulting in a funneling effect.
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for L, varies there from 0 to 4. At least one of the
Hopf bifurcations is subcritical, leading to an unstable
limit cycle which surrounds the stable solution when
it exists and repels most of the incident trajectories
(compare Ghil and Tavantzis, 1983, their Figs. 7a
and 9f). This may explain the smallness of the
attracting basin for stable Zonal 1 stationary solutions
and the nonexistence of stable attractors like limit
cycles in the vicinity of the entire isolated branch.

On the other hand, there exists numerically for p
< 0.205 a stable attractor associated with the blocking-
type branches of stationary solutions. Almost all
trajectorles converge rapidly to this attractor, so that
no return is observed to the Zonal 1 branch. In the
neighborhood of p =~ 0.205, a complicated transition
occurs, after which the preceding attractor loses its
stability and trajectories are allowed to return recur-
rently close to the Zonal 1 branch. Arneodo et al.
(1982) suggest a possible link between such transitions
and the existence of heteroclinic orbits connecting
the different branches of stationary solutions.

Several results seem to corroborate this hypothesis.
We show for instance in Fig. 15 the evolution at p
= (0.204 of deviations Dg(f) from the Zonal 1 station-
ary solution, starting from the neighborhood of the
stable upper branch of the isola. Instead of going
directly to the stable zonal solution nearby, the
trajectory is first ejected to a large distance, displaying
an episode of transient block, which is out of phase
with the unstable stationary blocking solution; only
after this large excursion does the trajectory return to -
the stable zonal solution near its starting point. Since
heteroclinic orbits are structurally unstable, it is dif-
ficult to provide further numerical evidence for their
existence and a detailed analytic study would be
required.

Previous results are sensitive to the value of the
Rossby radius of deformation Lg. Although Lg has’
no effect on the distribution of stationary solutions,
it influences their stability and the dynamics of time--
dependent solutions. A small value of Lg favors the
excitation of a large-scale stationary response to oro-
graphic forcing, like blocking, since it reduces the

- phase speed of planetary waves.

On the other hand, we may expect for L, = o to
observe a more zonal circulation. This is actually the
case: the Zonal 1 branch of stationary solutions is
then globally attracting. Throughout the domain of
existence of this branch, all trajectories end up on it
or on a stable limit cycle in its close vicinity.

No permanent blocking regime has been numeri-
cally observed for L = oo except at small values of
p close to the first Hopf bifurcation. However, a

metastable blocking regime persists in certain param-

eter ranges for a very long time; in practice this is
equivalent to the coexistence of multiple regimes.
The situation is illustrated below.

Figure 16 shows the time evolution of the deviations
from stationary solutions for p = p3 and Lg = oo.



1 MARCH 1985

OEVIATION
o ¥ B B R B B 3 B B B

<00
TINK (DATS)

FIG. 15. Time evolution of the deviation D3 for an experiment at
o' = 20 days and p = 0.204, started in the vicinity of branch B.

Initial data were taken in a blocking regime from the
previously shown experiment for p = p; and Ly
= 1100 km. This regime persists for 1500 days, after
which the flow follows a stable limit cycle of large
amplitude with strong persistence in a Zonal 1 regime
- and a sequence of rapid evolutions which span Zonal
2 and Blocking solutions. Here again, the existence
of a heteroclinic connection for a nearby parameter
value is strongly suggested. At higher values of p,
only zonal regimes obtain, with flow patterns between
Zonal 1 and Zonal 2. Pure Zonal 2 reglmes are also
observed for some values of p.

b. Regime-dependent predictability

So far, we have seen the connection between the
persistence of certain flow patterns in physical space
and the proximity of the trajectory in phase space to
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stable or unstable stationary solutions with similar
flow patterns. We now investigate the potential use-
fulness of this connection in determining the predict-
ability of the associated planetary flow regimes.

This first leads us to examine the statistics of
persistent sequences in the numerical experiments
described above. Figure 17 shows the number of
events per simulated year plotted against the. duration
of events, for solutions computed at p = p;, p3, * * *,
ps. In order to obtain a sufficiently high confidence
level, long-time integrations were performed over
time intervals 24 times as long as those displayed in
Figs. 10a—e. For p = 0.20, this corresponds to roughly
65 years of dimensional time, a record over four
times as long as the 15-year data set at the basis of
current observational studies (Blackmon et al., 1979;
Dole and Gordon, 1983; Shukla and Mo, 1983), and
used here for each separate experiment. The sampling
interval is 1.5 nondimensional time units, or three
days at p = 0.20.

The offset value for each experiment is taken as
the time average of C(f) minus one-half of its standard
deviation. This choice of offset means that we compare
here properties of persistence relative to the prevailing
regime imposed by the parameter values. It is clear
from Fig. 10, and was mentioned already in Sec. Sa,
that flow evolution in the blocking-dominated param-
eter range of p;, < p < p, is on the average much

-more persistent than in the zonal-flow dominated

range ps < p < ps. Nevertheless, the minima and
maxima of C(t; p) for given p still correspond to
persistent and rapidly changing flow patterns respec-
tively.
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FIG. 16. Time evolution of deviations from the B, C and E branches for an experiment
at a' = 20 days and p = 0.211 with Lz = ©
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FI1G. 17. Number of persistent sequences per year whose duration exceeds the number of days indicated
on the abscissa, for extended experiments 1 to 5. The offset value for persistence C, is taken for each
experiment as the average of C minus one-half of its standard deviation: Cp, = 5.0 X 1073, Cp, = 5.0
X 1073, Co3 = 7.0 X 1073, Cys = 8.8 X 1073, Cys = 12.6 X 1073, Each curve is labeled with the number

of the corresponding experiment.

All curves in Fig. 17 exhibit a smooth decrease in
the number of persistent sequences with the duration
of persistence. The lack of a maximum, or even of a
pronounced plateau at a given duration, indicates
that neither zonally-dominated sequences, ps < p
< ps, nor blocking-dominated sequences, p; < p
< p,, have a preferred duration.

In the log-linear coordinates of the figure, the
duration of runs, or persistence of a given sign for a
linear first-order Markov process with mean zero, is
given by a straight line. The slope —» of such a line

indicates the exponential relaxation time or e-folding

time 7 of the process, often called red noise for short,
with 7 = 1/v. We have fitted a straight line by least
squares to the curves in Fig. 17, ignoring the first few
points where uncertainty is due to the finite sampling

interval, and the last few which are uncertain due to

the finite length of each experiment. The results are
shown in Table 1.

The exact values of 7 vary somewhat with the
offset criterion chosen, but the relative ordering 7,
< 73 < T4 < 75 is always the same. This shows in
fact longer persistence times for zonal sequences than
for blocking sequences.

TABLE 1. The characteristic exponent A, its inverse A,~', and the
e-folding time 7 for experiments 1 through 5.*

Experiment
1 2 3 4 5
P 0.149 0.191 0.211 0.228 0.272
AL (day™) 0.028 0.033 0.058 0.087 . 0.095
A (day) 36 30 17 11 10
T 14 25 42 47

* The estimated precision of )\,_.is +5%, based on using different
initial data and different segments of the same orbit (compare Grebogi .
et al., 1983).
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It is interesting to compare these results with Fig.
8 of Dole and Gordon (1983). They present the same
type of statistics for regional anomalies of 500 mb
geopotential fields from 15 winters of Northern
Hemisphere atmospheric data. The general character
of the curves is very similar. Positive anomalies of a
given duration occur more frequently than negative
ones in both PAC and ATL regions, as defined by
Dole and Gordon, with PAC positive being most
persistent of all. The synoptic character of the flow
across the continental margin for PAC positive and
ATL negative anomalies is zonal, being blocked for
PAC negative and ATL positive.

Thus we obtain reasonable qualitative agreement
with atmospheric behavior as described by Dole and
Gordon (1983). The actual values of 7 for our model
are considerably higher than those reported from
observations. This discrepancy is most likely due to
the limited resolution and absence of baroclinic tran-
sition mechanisms between regimes in our model,
and we shall return to this problem in the concluding
remarks, where related results of Reinhold and
Pierrehumbert (1982) will also be discussed.

Curves 1 and 2 deviate actually from a straight
line by being convex, except near the origin, while 4
and 5 are rather concave up to very high persistences.
More precisely, one can define separately the least-
square slope of each curve for durations between 5
and 30 days, »{", and between 35 and 60 days, »{®.
The corresponding slopes satisfy the inequalities "
< v; < ¥? for blocked regimes, j = 1 and 2, and the
opposite inequalities for zonal regimes, »{" > v;
> s for j = 4 and 5. Thus for instance 75" = 35
days, 7, = 25 days (see Table 1), and 7 = 20 days,
where 70 = 1/1{%).

The curve for experiment 3, at the transition
between zonal-flow dominated and blocked-flow

dominated regimes in parameter space, is more com-

plex. This is due to the fact that each of the two
coexisting regimes actually has a different character-
istic distribution of persistence times, with distinct
means and hence distinct threshold values. Curve 3
is thus the weighted superposition of two separate
curves (not shown), and no single, well-defined value
of 73 exists.

The deterministic dynamics of our model thus
produce waiting times for exit from a given flow
regime which have an approximately exponential
distribution, i.e., linear in semilogarithmic coordinates.
For a pure, linear red-noise process, this distribution
is exactly log-linear and its slope gives the probability
of continued persistence of the given flow pattern,
with the probability of exit being proportional to the
absolute value of the slope ». _

We suspect, therefore, that the local slope of the
distribution in our nonlinear, deterministic model is
also proportional to the probability of exit from a
given flow regime for persistent sequences of given
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length. These considerations suggest introducing the
concept of regime predictability of a flow pattern, in
model and nature. This concept depends on the
persistence properties of a finite region of phase space,
be it an isolated attractor set, coexisting with other
attractors, or a subset of an attractor which is only
weakly connected to other portions of the attractor,
and which is close to an unstable fixed point.

Regime predictability must be distinguished from
the more familiar concept of pointwise predictability,
which arises from the growth of small errors, at each
point in physical space or in phase space, and at each
moment in time. Pointwise predictability can be
estimated by computing the mean rate of divergence
of two trajectories starting close to each other in
phase space. Predictability studies of the atmosphere
by the three distinct methods of i) naturally-occurring
analogs, ii) the statistical theory of turbulence and iii)
numerical experiments with general circulation models
(Lorenz, 1984) all show that small errors, on the
average, grow exponentially. This fact is in agreement
with the results of dynamical system theory.

The exponential growth of small errors in a system
with chaotic dynamics like ours is given by the largest
characteristic exponent ;. This number, also called
the largest Liapunov exponent, provides the appro-
priate generalization to nonlinear systems of the
familiar concept of instability exponent for a linear
system (Grebogi et al, 1983; Guckenheimer and
Holmes, 1983, pp. 283-288; Ruelle, 1984). The values
of A\, for the trajectories of (6) are given in Table 1,
for experiments 1 through 5. )

The characteristic exponent increases monotonically
from p = p, to p = ps, in agreement with the
observations about p-dependence of the maximum
value of C(f; p) made in discussing Fig. 10. The
inverse AZ' measures the average e-folding time of
small errors, and decreases by a factor of 3 from p
=pyt0p = pg Or p = ps.

It is clear from Table 1, by comparing the mean
e-folding time r with the e-folding time of small
errors A\7', that their order of magnitude, O(10 days),
is the same, but their behavior is quite different: Az’
decreases with p, while 7 increases with p. Actually,
T characterizes regime predictability, as defined earlier,
while Az' characterizes pointwise predictability, as
usual. Thus their comparable magnitude is somewhat
fortuitous, and probably misleading in the analysis

of atmospheric data. This assertion could be tested

by computing the correlation between forecast skill
verified at two days or less and skill at fifteen days or
more in a number of advanced numerical weather
prediction models (A. Hollingsworth, personal com-
munication, 1984), The former skill is presumably a
measure of small error growth, the latter of regime
predictability.

In our model, A;' decreases with p and, moreover,
is larger than 7 for blocked regimes, p; < p < p»,
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and less than 7 for zonal regimes, p; < p < ps.
Hence, persistent sequences carry considerably in-
creased pointwise predictability in a zonal, but not
in a blocked regime, when compared to all trajectory
segments of the same length in the same regime
Since Az! is largest in blocking regimes, p; < p < pa,
it follows that in such a regime, all flow patterns, not
only the blocked ones, lead to pattern evolutions that
are more predictable on the average than those in a
zonal regime. On the other hand, the zonal regimes,
ps < p < ps, are characterized by a distribution of
predictability properties that is very inhomogeneous

in phase space, i.c., that depends very strongly on

initial data. A zonal flow pattern in such a regime is
much more likely to persist than a blocked pattern,
while the reverse is less true in a blocking regime.
Whether these results actually apply to large-scale
midlatitude flows is still an open question and we
shall touch upon it in the last section.

To verify the effect of numerical errors, and hence,
more generally, of small modeling errors, on the
persistence results discussed here, we have repeated
experiment 5 with different initial data, as well as in
the presence of additive random noise with a standard
deviation of 10° times the machine accuracy, i.e.,
comparable to the truncation error of the scheme.
The corresponding realizations of curve S in Fig. 17
(not shown) have the same qualitative properties, and
the ordinates at each duration differ by at most 2-
. 3% from the realization shown in Fig. 17.

The effect of pseudo-random errors in discretization
is thus reproducible in our system, and one would
hope the same might hold for sufficiently small
modeling errors in a complex, high-resolution nu-
merical weather prediction model (cf. Balgovind et
al., 1983). The numerically or randomly perturbed
orbits of a dynamical system are called pseudo-orbits.
We recall that when a portion of the boundary of an
attractor basin of the time-continuous model system,
e.g., (6), comes very close to the attractor itself, its
pseudo-orbits may leave the attractor, with mean
waiting times for exit depending on the size of the
basin and the structure of the boundary. Moreover,
for any given mean exit time, the distribution of
actual waiting times may be exponential or nearly so
(Grebogi et al., 1983). This is in complete agreement
with Fig. 17.

Hence our results suggest the following picture: for
p1 < p < p, there exists a single chaotic attractor,
partially coexisting with the Zonal 1 stable or unstable
fixed points, but lying near the Blocked, unstable
fixed points. This attractor carries flows which resem-
ble synoptically blocking patterns and are, on the
average, quiescent relative to the grand-ensemble
behavior of all atmospheric flows. For ps < p < ps
there also exists a single, chaotic attractor, carrying
flows which resemble Zonal 1 or Zonal 2 stationary
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solutions, and are on the average more agitated. Near
p = p3 a crisis occurs, the two types of chaotic
attractors exchange their stability, and pseudo-orbits
can switch from the neighborhood of the one to the
other.

The probability of exiting from the blocking-dom-
inated regime increases with the length of residence
time (Fig. 17, curves 1 and 2). For the zonal regime,
this probability decreases with residence time (Fig.
17, curves 4 and 5). In both cases, the fact that this
probability is not constant, as it would be for a
Markov process, suggests that the basin boundaries
are rather complicated and might have fractlonal
rather than integer dimension.

At this point we inquire whether the divergence of
trajectories on the attractor is approximately constant
in phase space. For this purpose, we consider the
largest real part o,(f) of the eigenvalues of .L(?),
where L is given by Eq. (10) as the instantaneous
linearization of the equations of motion about a
time-dependent solution W(¢), rather than a stationary
solution W,. Thus o,/ is a local rather than global
measure of the divergence of trajectories, while the
average a,s of ap(t) over a trajectory is at least AL.

" The fact that o, = AL, rather than g = Az, is due

to the solution of the perturbation equations x(Z) not
being aligned at each point ¥(¢) with the eigenvector
of L(#) which corresponds to aa(?), so that x(#) grows
at most as fast as this elgenvector

In Figs. 18a, b, o)) is plotted for experiments 2
and 4, respectively. It shows large variations over
short time intervals when compared with other func-
tionals of the flow field ¥(¢; p) for the same values
of the parameter p (compare Figs. 10b, d and 13a, c,
respectively). This large variability. is due at least in
part to the contribution to oy, of rapidly varying,
small-amplitude fluctuations in the spatially smallest
scales of motion. Such fluctuations do not appear in
C(9), D{1) or other “smooth” functionals, due to the
small total energy of the small scales. Another part
of the fluctuations in o,(¢) might be due to the high
sensitivity of eigenvalues to small changes in the
matrix, a sensitivity whlch increases with the order
of the eigenvalue.

The average value o of a,?) is approximately 0.07
day™! for p = p, and 0.11 day™" for p = ps4. In either
case, A\, is smaller than ¢, but of the same order.
Occasionally, values of o(?) as large as 0.26 and 0.47
day™', respectively, obtain.

Negatlve values of o) obtain also, 1nd1cat1ng that
at such times all eigenvalues of L(¢) are in the left-
half plane, and the trajectory W(f) at such points in
phase space is attracting in all directions. Comparison
of Figs. 18a and 10b shows that negative values of
os(l) precede quite systematically minima of (1),
and large values of o, precede maxima of C. This
lagged correlation between a,{?) and C(¢) only exists
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FIG. 18. Variations in time of the local rate of divergence of trajectories o, in experiments 2 (a) and 4
(b). Units of days™ on the ordinate. The average value ¢ of: g, over the time interval shown in the figure,
and the Liapunov exponent A, for the extended experiment are indicated on the ordinate.

at the onset of persistent or rapidly varying sequences;
otherwise one type of sequence does not differ signif-
icantly in mean divergence rate from the other.
These observations confirm the previous picture of
the relation between chaotic attractors and nearby
unstable fixed points, as well as the discussion in
Section 5a. Persistences are associated with gradual
capture of the trajectory into a contracting phase-
flow region near the stable manifold of the fixed
point, and rapid transients with strong instabilities
along the latter’s unstable manifold. This interpreta-
tion is consistent with the inverted saw-tooth aspect
of all curves which plot distance between a time-
dependent solution and unstable equilibria nearby

(Figs. 9, 13, 16) or quantities correlated positively
with such a distance (Fig. 10): rapid growth of the
distance occurs along the unstable manifold of the
stationary solution in question; slow decrease occurs
as the unstable equilibrium is approached again along
its stable manifold. .

The role of phase-space localized instabilities in
global transitions also helps explain the relative success
of Frederiksen (1983) in obtaining blocked as well as
cyclonic patterns as instabilities on suitably chosen
mean flows. The point is that in the present approach
the mean flows choose themselves, together with the
corresponding stable and unstable wave components.

The phenomenon of approach to and quiescent
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behavior near a stable or otherwise slow manifold
appears even more clearly in experiment 4, where
~ the total correlation between o,(¢) (Fig. 18b) and C(2)
- (Fig. 10d) is much larger. Here the minima of a,41)
are all associated with those of C(¢), previously iden-
tified as persistent zonal sequences, and large diver-
gence rates occur throughout the transient episodes.
Hence the contracting properties near the slow-man-
ifold “ghost” of a Zonal 1 fixed point appear to be
even more efficient at times than for the actual stable
manifold of the Blocked-fixed point in experiment 2.
This agrees with the funneling mechanism suggested
in Section 5a. In LG2 this mechanism already led to
recurring sequences of zonal flow as long as 525
simulated days (Fig. 12 of LG2) for Ly = co.

Finally, it is interesting to mention another aspect
of predictability associated with time intervals of
rapid evolution. During such intervals, we have ob-
served in all our experiments some reproducible
sequences of events. These events are quite easily
recognized by visual inspection of the time series of
streamfunction fields. The identifiable events occur
in the same sequence within each episode, but they
do not last the same amount of time from one case
to the other. This variation in relative duration makes
such a recurrent sequence difficult to analyze by any
known objective methods.

These results suggest the following interpretation:
trajectories tend to visit certain portions of the attrac-
tor in a preferred order but dwell for variable intervals
of time in each. One could thus distinguish between
pattern predictability and phase predictability.

The situation is somewhat similar to numerical
forecasting of frontal passages. The spatial structure
of fully-developed, mature cyclone waves and asso-
ciated warm and cold fronts is relatively well under-
stood, and hence the sequence of temperature changes
and precipitation events at a given location along the
trajectory of the traveling disturbance is predictable
with high confidence. The exact time of occurrence
of each event at the given location is, however, more
difficult to determine,

The only distinction is that while a synoptic-scale
sequence might last 24-72 h, the planetary-scale
rapid-evolution sequences discussed here can last as
long as 20 days. It is still possible, however, to apply
to the analysis of our global sequences the techniques
used by Reed and Recker (1971) in the study of
easterly waves in the equatorial Pacific, i.e., compos-
iting observed sequences according to the phenome-
nological “phase” of the event in the sequence rather
than according to elapsed time into the sequence.

6. Summary and discussion

We have shown that a nonlinear barotropic model
of the atmosphere, spectrally truncated to 25 spherical
harmonics, possesses a large variety of behavior pat-
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terns, according to the values of the forcing and
dissipation parameters. Wave-wave interactions
among the nonzonal modes were shown to destabilize.
the stationary solutions previously obtained in quasi-
linear models, and lead to the existence of additional
solutions, both stationary and nonstationary. Realistic-
looking blocked and zonal flow patterns are obtained
as coexisting, unstable stationary solutions. The syn-
optic realism of the blocked and zonal stationary
solutions might be due to the predominantly barotro-
pic nature of low-frequency variability in the atmo-
sphere. '

Recurrent, persistent sequences, zonal or blocked,
are observed near the corresponding unstable station-
ary solutions in time-dependent integrations of the
model. The persistence properties of solutions depend
on the intensity of the forcing and on the Rossby
radius of deformation. There is a demarcation in
parameter space between a region where zonal flow
is more persistent and one where blocked flow is
more persistent. In either case, there appears to be
no preferred time scale of persistence; the number of
episodes of blocked or zonal flow of given duration
decreases monotonically with the duration.

One can imagine that the forcing and dissipation
in this barotropic model represent certain types of
boundary conditions for the midlatitude baroclinic

- atmosphere. These conditions, such as equatorial sea

surface temperature and pressure anomalies, may
change from one season or year to another. As a
result, episodes of blocked or zonal flow will occur
predominantly at middle and high latitudes during
the corresponding period, while transitions on shorter
time scales between the two types of flow can still
take place.

Such transitions are called breaks of a persistent
pattern in classical, synoptic-statistical long-range
forecasting (LRF). The timing of their occurrence is
one of the major questions of LRF (Namias, 1982).
Our results indicate that there are two types of causes
for breaks—external and internal.

‘External causes such as sea surface temperature
anomalies (SSTAs), snow-cover anomalies or soil-
moisture anomalies will set up a certain regime that
dominates over another one. In our model, they may
correspond, for example, to a selection of the value
of the forcing parameter p. For p small, the model
possesses a single chaotic attractor, which carries
predominantly blocked, quiescent flows. For p large,
another chaotic attractor is the only one present,
carrying predominantly zonal flows, which are more

*agitated on the average. Either attractor has a nearly

constant probability of exit from the predominant
regime; but this probability actually increases with
length of persistent flow pattern for the blocked flows,
while it decreases slightly with persistence length for
zonal flows. These probabilities of exit, i.e. of breaks,
can be computed from the global aspects of the
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model’s deterministic, nonlinear dynamics, given the
known properties of numerical and modeling errors.

Internal, purely atmospheric causes for breaks have
been discussed by the classical practitioners of LRF,
but have not found a suitable place yet in the modern,
dynamical and numerical studies of large-scale flows.
The first steps in this direction are probably the
articles of Egger and Schilling (1983) and of Reinhold
and Pierrehumbert (1982), both of which introduce
synoptic-scale waves as perturbations on the planetary-
scale patterns whose persistence one wishes to forecast.
These perturbations, whether deterministic or sto-
chastic, destabilize the respective model’s equilibria
and lead to transitions between coexisting equilibria
in finite time.

In our model, internally caused breaks correspond
to the exchange of stability between two coexisting
chaotic attractors, which obtain in an intermediate
range of p values. In this range, the distribution of
duration of persistent sequences results from a super-
position of exit time distributions from either the
zonal or the blocked attractor. An equivalent situation
can arise if two concentrations of invariant measure
occur on a single attractor, separated by a region of
low measure density.

When interpreting these results for LRF, it is
important to realize that boundary conditions may
also change slowly due to atmospheric effects and
other processes. Thus the distribution of exit times
from a flow regime (i.e., of breaks) should not be
considered as fixed on the slow time scale of a month
or a season, but rather as slowly changing itself, due
to atmosphere-biosphere—cryosphere-hydrosphere
interactions (Ghil et al., 1984).

To be more specific, we compare our results with
certain observed characteristics of Northern Hemi-
sphere atmospheric flow patterns over the Pacific and
Atlantic Oceans. This separate comparison is legiti-
mate when considering the localizing effects of rela-
tively high boundary-layer friction on large-scale flow,
which produce distinct wave trains behind major
orographic features, namely the Himalayas and the
Rockies, rather than a zonally-periodic flow (Held,
1983; Kalnay-Rivas and Merkine, 1981). With such
an interpretation, our model suggests that the Atlantic
is, climatologically, in a blocking-dominated regime,
since Dole and Gordon (1983) find that over the
Atlantic, blocking episodes of a certain length out-
number zonal-flow episodes of equal length. Over the
northeastern Pacific, the observed situation is reversed,
longer zonal episodes being more likely. The latter
fact has not received much notice, since the history
of the subject (see Section 1) made practitioners
expect mean zonal flow at all times.

Our results indicate that persistent zonal sequences
are a priori neither more nor less likely than persistent
sequences of blocking. Which ones occur more fre-
quently depends simply on the boundary conditions.
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These boundary conditions change from one year to
the other, most spectacularly so in the equatorial
Pacific (Bjerknes, 1969; Namias, 1982; Rasmusson
and Wallace, 1983). The climatologically exceptional
situation there is associated with upper-ocean El Nifio
events (Cane, 1983). ,

It has often been assumed that the impact of El
Nifio SSTAs on midlatitude atmospheric circulation
is unique and relatively straightforward. In fact, the
El Nifio event of 1976 was associated with the
particularly long and strong blocking episode of the
1976-77 North American winter, while the 1982-83
El Nino event was associated with the exceptionally
persistent and intense zonal circulation of that winter
(see also discussion in LG2). More generally, the nine
El Nino events during the forty-year period 1945-84
were associated with six distinct seasonally-averaged
temperature patterns over the United States (D. Gil-
man, personal communication, 1984; Namias and
Cayan, 1984).

This variability in atmospheric response to the
largest known boundary forcings appears to be more
easily understood with the present results in mind.
Changes in boundary data only select a preferred
atmospheric regime or the coexistence of two such
regimes. Neither regime precludes long flow episodes
of the opposite character; it only renders them more
unlikely (see also White and Clark, 1975). The per-
sistence of either atmospheric regime will in turn
affect and eventually modify boundary data, thus
bringing about yet another change in flow regime
(McWilliams and Gent, 1978; Philander et al., 1984).

We have seen that the relative persistence of blocked
and zonal episodes in our model corresponds roughly
to observations. The absolute value of these persis-
tences is, however, too large. There are two possible
causes of this excessive persistence in the model:
insufficient resolution and lack of baroclinic processes.
As far as the resolution is concerned, a number of
numerical experiments were carried out by us with
100 real modes (unpublished) and by R. Benzi (per-
sonal communication, 1983) with approximately 250
modes. Our experiments kept the same truncation at
total wavenumber 9, but removed the two symmetries
of the flow ‘fields with respect to the equator and to
a rotation by 180° longitude. Those of Benzi used a
higher truncation at wavenumber 16, no symmetries,
and a rigid lid (Lg = o).

Both sets of experiments showed roughly the same
flow patterns and stability properties as those reported
here. Moreover, the removal of sectorial symmetry
permitted the appearance of blocked patterns over
one ocean, while the other ocean exhibited zonal
flow, in agreement with observations and with the
discussion here. Statistics of persistence were insufhi-
cient due to increased computational cost, but indi-
cated in general shorter persistences, as expected.

In general, given a finite-dimensional dynamical
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system obtained by spectral truncation from a set of
partial differential equations governing fluid flow, the
qualitative and quantitative behavior of such a system
seems to stabilize as the number of modes N retained
in the truncation increases. Theoretical upper bounds
on the number N sufficient to determine the quali-
tative long-term behavior of the Navier-Stokes equa-
tions in two space dimensions, and in certain three-
dimensional cases, are reviewed in Barenblatt et al.
(1983, Chapters 8 and 17). Numerical results for the
two-dimensional, doubly-periodic case indicate sta-
bilization of qualitative behavior at N =~ 50 and of
quantitative behavior, i.e., of the critical parameter
values at which pitchfork and Hopf bifurcations
occur, at N ~ 100 (Franceschini et al., 1984). This
order of magnitude for N is consistent with the
approximate stabilization we observe at 25 < N
< 250 and with various estimates of the actual
number of degrees of freedom of large-scale atmo-
spheric flow, namely N = O(10°-103) (see discussion
in LG2).

Baroclinic processes were explicitly included in the
model of Reinhold and Pierrehumbert (1982), which
was, however, more severely truncated, with only ten
horizontal modes, and had zonal channel geometry.
Their persistence times, like ours, were continuously

distributed and had an excessively large mean value. .

This overestimate can be attributed to the severe

truncation and constraining geometry of their model. -

On the other hand, they also noticed changes in the
slope of the distribution of exit times, which occurred
at lower persistences than ours and were associated
with the distinction in mean life time between baro-
clinic and barotropic processes. In our case, the
changes in slope might be an indication of inherent
distinctions between two or more low-frequency bands
of barotropic dynamics.

In the context of our discussion, baroclinic processes
affect not only the stability and persistence properties
of long-lived, predominantly barotropic flow patterns.
Baroclinic eddies also act in the atmosphere to trans-
mit low-level orographic and thermal forcings to the
upper levels. The way this transmission occurs is
interesting in its own right and may affect to some
extent the equivalent-barotropic planetary flow pat-
terns themselves, as well as their stability (Buzzi et
al., 1984; Itoh, 1985; Roads, 1982).

Ideally, the study of planetary flow regimes and
their persistence characteristics should be pursued
with models of increasing complexity, including higher
spatial resolution, baroclinic processes and explicit
interactions with surface processes, such as changes
in vegetation cover and upper-ocean dynamics. In
“this pursuit, it is important to remember that the
dynamic behavior of the relatively simple model
presented here could only be understood by exploring
a large domain of parameter space around the phys-
ically most likely parameter values. The presence of
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solutions with certain attracting properties for some

_remote parameter values has important consequences

for the persistence characteristics of solutions at the
parameter values of interest. Hence, such explorations
can often provide more physical insight and practical
results than an increasingly detailed study of atmo-
spheric flows restricted to a narrow domain of metic-
ulously chosen parameters.

The message is to think globally, in both physical
space and phase-parameter space. This does not mean
neglect of local properties, in either space, but rather
the opposite: spatial localization and suitable linear-
ization are indispensable to an adequate description
of global, nonlinear dynamics. The global and local
points of view complement each other and only
together allow for the study of low-frequency atmo-
spheric variability. -
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APPENDIX A

Asymptotic Study of Stationary Solutions

In the limit @ — oo, the unique stationary solution
of Eq. (1) tends to ¢¥* and this remains true for the
truncated problem (6). For p large and finite a, one
stationary solution of (6) is

1
¥ =¥+ ¢,
p
where ¢, satisfies to first order in 1/p
Li¢) = Jr(¥*, Ardy) + (P, ArF™)

= —Jr(¥*, ph). (Al)
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Here Jr is the truncated Jacobian and Az is the
truncated Laplacian of (6).

The kernel of .L, is composed precisely of all zonal
modes (see also Appendix C). Hence (A1) defines
uniquely the nonzonal part of ¢,, ¢, which does not
depend on «, and leaves undetermined the zonal part
¢,. The indeterminacy is removed by the solvability
condition to second order in 1/p,

2x  p+1
: J; J:l WUr(e1, Ardy + u + uh)

+ aAr$i1Y{dudp = 0, (A2)

which has to be satisfied for all zonal modes Y9 of
the truncated solution. The solution thus determined
by (Al, A2) is not necessarily the unique solution of
(6) in this parameter range, and in fact other solutions
exist at large p and sufficiently small « which are well
separated from W*,

For p tending to 0, we assume ¥ = ¥* + ¢,.
When « and 4 are small with respect to unity and of
the same order, the nonzonal part ¢5 of ¢, is O(h ¥*).
It is determined to leading order by the balance
between the planetary advection and the orographic
forcing, which we write for simplicity in continuous
form as

L) ™ oh .
on M ou an- (A3)
- W ‘
The zonal part ¢, in this case is O(—- 1#*) and
determined by @

—alr¢; = Jr{ds, uh},

where the overbar indicates zonal averaging.

If o is small with respect to h, other solutions, like
¥ =~ c(p + ph) appear, but the preceding one remains
valid. For 4 still small with respect to 1, but a > A,
(A3) is replaced by the balance between dissipation
and orographic forcing,

(A4)

W ah

aAd)Z M a”' I s

in continuous shorthand. When a — oo, ¢, = ¢,

+ ¢5> — 0, and we recover the statement at the

beginning of this Appendix, which holds for finite p
as well.

The stability of the solutions above depends, in the
limit p — oo, on the eigenvalues of the operator
—A7'L; — @, and for p — 0 on the eigenvalues of
the operator —A7' L, — a, with

Lox = Jrx, u(1 + h).

The eigenvalues of both A7! L, and A7! L, are always
equal to zero or purely imaginary for « = 0 (cf.
Appendix C). It follows that, for « > 0, all asymptot-
ically valid stationary solutions discussed in this
Appendix are stable.

(A5)
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APPENDIX B
Numerical Study of Stationary Solutions

The numerical methods used in integrating the
evolution equation (6) were given in LG1, Section
5.1. In this Appendix, we describe therefore only the
details of the continuation method (9) used to com-
pute stationary solutions and their stability.

The pseudo-arclength continuation method de-
scribed here is due to Keller (1978) and allows one
to follow a solution (¥, r) of

G(¥,n=0, (B1)

where G is a continuously differentiable map, or C'-

. map, from R"” X R into R”. We suppose that a

particular solution (¥, ro) is known and we want to
obtain all other solutions (¥, r) which are accessible
by continuous variation of r. These solutions form a
C'-manifold T of dimension 1 in R" X R, and T is
parameterized by a curvilinear coordinate s.

Then the problem can be written

Gr+ Gy ¥ =0, (B2a)
2+ ¥l =1, (B2b)
G(\I,O’ rO) = 0’ (B3)
where
. d¥ dr
(¥, n= (E , ds) .

This represents a system of (n + 1) differential
equations (B2) for ¥ and r, with initial condition
(B3). The essential feature of (B2, B3) is that the
nondegenerate singularities of the n X n matrix Gy
can be treated in this formulation as regular points.

System (B2) is discretized to obtain a series of
stationary solutions (¥,, r,) which approximate the
manifold I" to be explored. The algorithm is divided
into two steps. The first step is a first-order forward
approximation,

Fa = £[1 + |G3' (¥, 1) - GA¥,, )17, (Bda)
W, = = (G5 (W, 1) GA ¥, 1), (B4b)
Xno = ¥, + oW, (B5a)
Eno = In+ 0Fn, (B5b)

where ¢ is a step in curvilinear coordinates. The sign
of r, defines the direction of exploration on the
manifold T'; its initial choice is arbitrary. The Gg
above is assumed at first to be nonsingular and G4 ™!
is its inverse. We shall see that in practice no difficulty
arises from this hypothesis.

The first step, if applied repeatedly by itself, would
generate rapidly cumulative errors, and the approxi-
mate solution would move away from I'. This is
prevented by the use of a corrector step, which
projects the approximation (X0, £n0) back on I' by
using Newton’s method to find a solution of (B1).
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We solve the problem
G(¥ 115 Fnv1) = 0,
N(¥ 11, Tnir, 0) = ‘i’Z'[q’n+l = ¥,
+ Foltner — 1] — 0 =0 (B6b)
by a series of iterations of the form
Gu(Xnis End0Xni T Gr(Xni> Enid0ni = —G(Xni» En)s

(B6a)

(B7a)

YT+ 8Xni + Fadlini = —NXnis nis @)y (BTb)
Xnist = Xni + i, (B8a)

Eniv1 = Eni + 08n. (B8b)

The iterations are continued until a convergence
- criterion is satisfied. The criterion used was that for
i = I, |G(xns1, £n0)|l < €, with € prescribed. The new
values of (¥, r) on T are then ¥,,, = x,; and 7,
= En,l . -

The constraint (B6b) requires that the projection
onto I' be orthogonal to the direction (¥, 7). This is
a crucial feature of the algorithm, which permits in
effect the exploration of T' to pass through regular
turning points of G. Figure Bl illustrates the procedure
by comparison with a projection at constant r.

The crossing of a regular turning point must be
identified in order to change the sign of 7, in (B4a)
and to avoid a perpetual movement of the algorithm
steps to and fro. This. was easy to do in our study
since all eigenvalues had to be computed anyway in
order to study the stability of the solution. The
eigenvalue computation was performed by the QR
algorithm as implemented and documented in the
International Mathematics and Statistics Library of
scientific subroutines (IMSL package).

The required information was thus given by a
change of sign of an eigenvalue. More generally,
when only the number of eigenvalues with positive
real part is needed, Routh’s criterion (Guillemin,
1949) may be applied to see whether this number
changes by one, as it does at a turning point, or by
two, as it does at a Hopf bifurcation point.

A

vTa vt o

» »
—> .

r T

FIG. B1. Successive iterations of a continuation method (B4, 5).
(a) With parallel projection only, leading to divergence of the
algorithm at a turning point; (b) with a Newton correction (B6-8),
equivalent to perpendicular projection from the prediction onto
the solution branch. ) :
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The value of the step length ¢ determines the
performance of the algorithm. Too small a value
needlessly increases the computation time, whereas
too large a value may cause divergence or a jump
from one branch of solutions to another. Keller
(1978) gives an estimate of ¢ that depends on second
derivatives of G.

We have used a single value of o, fixed for each
exploration. A set of values, suitable for all situations,
has been established by trial and error. Among other
possible strategies, Li and Yorke (1980) propose to
control the angle between two consecutive tangent
vectors on I' limiting it to an empirically predeter-
mined maximum and reducing o if the limit is
exceeded during one arclength step. This procedure
allows simultaneous control of the crossing of regular
turning points.

The application of the algorithm implies the non-
singularity of Gg, which seems to contradict the
crossing of turning points. But if the turning point is
nondegenerate, the probability is very small that an
iteration of the algorithm fall sufficiently close to the
turning point for Gg to be numerically singular.
Should this occur nonetheless, a slight modification
of ¢ suffices, in practice, to eliminate the singularity.

It may be advantageous in order to improve the
conditioning of Newton’s method (B7) to replace the
L, norm by another one in the condition (B2b). We
have used in fact for the cross sections in p:

P2+ aV -Vl = 1, (B9)
with @ = 10 and Vr the spatial gradient of the
truncated field ¥. This induces a- straightforward

- modification of the other steps, where the old norm

is replaced by the new one. With this new norm, the
curvature of I' is smoother than with the L, norm
and larger values of o can be used.

Several variations and improvements on the method
have been proposed. Li and Yorke (1980) replace the
first-order forward predictor step by an explicit Runge-
Kutta scheme. Glowinski (1984) replaces Newton’s
method by a conjugate-gradient algorithm. Kubicek
and Marek (1983, p. 39) do not correct the predictor
step by an orthogonal projection, but keep fixed one
component of the state vector ¥ chosen by a maxi-
mum pivoting criterion.

From the point of view of further applications of
this method to meteorological problems, it is impor-
tant to realize that the method is in extensive routine
use for the solution of nonlinear partial differential
equations depending on one or more parameters in
fluid dynamics, elasticity and other areas of continuum
physics. Studying the stability of stationary solutions
and nonlinear resonance for spatially two- and three-
dimensional models of large-scale atmospheric dy-
namics is thus entirely feasible on .currently available
computers or on those expected within a decade.
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It is also noteworthy from this point of view that
exact Newton iteration in (B7) can be replaced by
quasi-Newton (QN) iteration, i.e., the Jacobian ma-
trices of partial derivatives Gy and G, can be replaced
by partial difference matrices (Dennis and Moré,
1977; Kubicek and Marek, 1983, p. 51). The latter
are much easier to program for large, three-dimen-
sional atmospheric models such as general circulation
models.

APPENDIX C
Linear Resonances for Small Topography

In the limit of vanishing topographic amplitude,
hy = 0, ¥* is a stationary solution of (6) for all values
of p and a. When Ay is small enough, a perturbed
solution ¥ = ¥* + ¢, obtains, with ¢ satisfying to
first order in Ay and a = O(h)

Lips = pJr(¥*, Ards) + pJr(ds, ArT¥)

+ Jr($3, p) = —Jr(¥*, ph). (Cl)
Equation (C1) defines the nonzonal part of ¢;. All
zonal modes are in the nullspace of .L;. This part of
the kernel does not induce a singularity in general
since the right-hand side does not possess a zonal
part. However, such singularities may occur for special
values of p, for which .£; also possesses a nonzonal
null vector. Therefore in this Appendix we derive the
solution of the zero eigenvalue problem for .[;,
concentrating on the modes with zonal wavenumber
m =2, which contain the orography and the right-
hand side of (Cl).
From the definition (5b), we have y* =
x = 0.2598. Two useful relations are then

Ap® = 6u(1 — 24%) (C2)

and the three-term recursion proberty (see also Bal-
govind et al., 1983)

WPT'(i) = al'PP(p) + bI'PTia(u) + c["PTio(w), (C3a)
with

—xu’ with

21 —2m? + 20— 1

et (€30)
= L+ D2 [+ 17 — mP]' (L + 2 — m?)'”
LT+ sy 40+ 172 -1 ’
(C3c)
o = bp,. (C3d)

With (C2) and (C3), one obtains
LYT = imep[(X + G7Y7 + BPYT, + EPY Tl
(C4a)

using the auxiliary variables X = (1 — 6xp)/kp, d
=36 — 34/ + 1) and

{ar, by, &ry = di{al’, by", c'}.  (C4b)
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For a given zonal wavenumber m, the matrix A of
—iL3/mpx is tridiagonal, since only odd values of /
are present, and has real coefficients. The resonances
of .L; are given by the values of X which cancel the
determinant of A. Moreover, A is of the form A
= XI — A; the problem thus reduces to finding the
eigenvalues X of a tridiagonal real matrix A.

Since the entries of A are nonnegative, the largest
eigenvalue in absolute value is necessarily real and
positive. Moreover, A is diagonally dominant,

lar| = byl + ler,

so that its eigenvalues have the same sign as those of
its diagonal entries, —a7}", i.e., nonnegative.

For m = 2 and the truncation scheme shown in
Fig. 1, we have .
i B o0 o0
& & B o
0 & a3 b

A= )
7
0 0 & aj

(C5)

Since a3 = b} = ¢ = 0, Xo = O is an eigenvalue of
A. The three_other solutions of the characteristic
equation for A are X; = 12.08, X, = 48.75 and X;
= 136.3, so that all eigenvalues are indeed real and
nonnegative.

These values of X lead respectively to the linearly
resonant parameter values p& ~ 0.6145, pR ~ 0.2129,
pX = 0.07030 and p¥ ~ 0.02705, which are indicated
on the abscissa in Fig. 4. They initiate clearly the
nonlinear resonances apparent in the figure at finite
values of 4. :

As a by-product of this analysis, we can also derive
properties of the operator A7!'.L, defined in Appendix
A, since .L, and .L; differ only by a diagonal term.
Each m-block of the matrix —A7!'.L; has the same
structure as that of —i.L;/mkp.

From this we deduce immediately that all eigen-
values of A7'.L, corresponding to zonal modes are
zero, while they are purely imaginary and nonzero
for nonzonal modes. For m = 2, the eigenvalues are
respectively a9 = *12i, oy = £36.6i, 6, = +109.5i
and o3 = *£284.6i, conjugate values appearing when
one considers L, Y7 and L, Y;™.

The results above allow us to explore the behavior
of resonances when one extends the truncation in
total wavenumber / at a given zonal wavenumber m.
We preserve here the same symmetries as in the basic
truncation scheme and thus consider only odd values
of [

Let A7 be the matrix associated with the truncation
at [ = L. We have the following recursion relation
for its determinant D, :

Dy = (@7 + X)Dy—; — bPETPDy 4.

It is more convenient at this point to return to the
matrix A with entries (C3b-d), yielding the recursion
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E, =(al + X/d)E;-; — b[-2cTEL-1, (C6a)
where E, is the determinant of A} and
1 2 ~3y
m — _ — +
at =3 + 8L2 (1 —4m?) + O(L™), (C6b)
— am o — 1 2 3
bE 5 = cf 2 16L2(1+4m)+O(L ) (C6c,d)
To simplify notation, we consider the recursion
Py(x) = (an — bpx)Pp-1(X) — CaPr—2(x), (CTa)

where n = L, the superscript m has been omitted, x

= X(p), and
=a+0m?), b,=0(m?, c=c+0Om?,
: (CTb,c,d)

with gy = 1/2 > ¢, = 1/16 > 0 and b, > 0.

Intuitively, as n — o0, b, — 0 and the leading

term of P,(x) will behave like (II§h,)x", so that one
root of P,, call it X,,, will have to become very large,
X, — oo. More precisely, let us assume that the roots
xi(n) of Pyx), 0 < n < N — 1, lie between 0 and
Xn-1, 0 < xIP < Xy_y, with X, = x®. Then (C7)
implies that

an  cNPn-oXn)
Hw by baPn-(Xn) = Sl).
For large x, the second term in fy(x) behaves like
—cn/(byx), since by_a/by—, is bounded. Thus the
iterative solution x® = fy[x® "] of (C8), with x©
sufficiently large, will converge to the leading root
x{” = Xy of Py(x) and

(C8)

Xn = 4 0(1) = OV?). (C9)
o by

It is obvious that Xy > 0 and easy to verify that Xy

> Xy-, for N large enough.

It is true, but somewhat harder to prove, that all
zeros of P,(x) tend to an asymptotic distribution with
only finitely many zeros in any finite interval. The
technical tools required appear in Beraha et al. (1978)
and references therein.

Recall that x — oo is equivalent to p — 0. Thus
the linear resonances for small A, and «, studied
here, accumulate near p = 0 as the number of
meridional modes increases. A related mechanism
might be at work in creating the multiple folds of the
second nonlinear resonance observed numerically for
finite Ay, p and «a, especially as ¢ — 0 (curve I, Fig.
3e, a = 0.033), but the analysis is more difficult and
the relevant stationary solution is more complicated
than ¥*.

An excellent analysis of the continuous problem
on an equatorial §-plane was outlined by one of the
referees. We hope that it will be fully worked out and
published independently. As indicated in Section 6,
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the behavior of truncated models as the number of
modes retained in the truncation increases is a topic
of active research, which is certainly of great interest
in the present context.
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