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ABSTRACT

We present a new statistical-dynamical approach to the concept of weather regimes, including the effect of
transients, without any assumption other than scale separation. The method is applied to a quasi-geostrophic
channel model without topography and forced by a local baroclinic jet. Baroclinic perturbations grow and decay
along a storm track which is linked with a maximum of low-frequency variability towards its exit, in agreement
with the observations.

The weather regimes are searched within the subspace spanned by the large scales only. They are identified
through the resolution of a stationary problem in which the feedback of the transients is included as an ensemble
average over analogs of the large-scale flow. In this way, the feedback is a continuous function of the large-scale
flow only, and the system of equations is closed, taking into account the whole coupling. The solution is obtained
using a nonlinear optimization technique.

Several regimes are identified corresponding to zonal and blocking situations. The blocking flow is characterized
by a well-marked barotropic dipole at the end of the storm track of synoptic perturbations. The feedback term
is shown to act positively in both cases though there are major differences between zonal and blocking regimes.
In particular we show that the dipole of the blocking flow is essentially maintained against dissipation by the
small-scale fluxes. It is shown that full nonlinearity is required to explain'the observed behavior.

The efficiency of the method in this simple case allows us to discuss its extension to a more ambitious

diagnostic of regimes in atmospheric observations as well as GCM simulations.

1. Introduction

In Part I of this paper (Vautard et al. 1988; hereafter
referred to as Part 1), we investigate the dynamics of
a quasi-geostrophic flow forced by a localized baroclinic
jet. Although based on a rather simple design, the
model exhibits realistic behavior, and reproduces the
main features of the observed dynamics of synoptic
and large-scale waves. The persistence properties of the
large-scale flow are shown to be inhomogeneously dis-
tributed in phase space. Maximal probability of per-
sistence occurs for two different flows which resemble
respectively observed zonal and blocking circulations.
Compositing the potential vorticity fluxes over the
blocking cases shows that transients clearly tend to
reinforce the block.

The previous study is based on pure diagnostic anal-
ysis of the model data. It does not incorporate explicitly
any dynamical information about the balance of the
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analyzed fields, and thus cannot reach an accurate def-
inition of quasi-stationary weather regimes. In addition,
several subjective parameters are involved in -pattern
analysis which cannot be completely justified on a rig-
orous basis. The aim of Part 11 is to provide an objective
definition of weather regimes, using dynamical infor-
mation, and to show that it can be operationally used
and yield results in agreement with Part 1.

The main difficulty is that within a persistent se-
quence the quasi-stationary large-scale flow is coupled
with small-scale disturbances. On one hand, the syn-
optic activity depends on the large-scale flow and on
the other, the feedback of the transients onto the large-
scale flow is a factor of the maintenance of this latter.
The mechanism of this feedback loop has to be taken
into account and parameterized if one wishes to close
the formulation of the problem in terms of quasi-sta-
tionary modes only. It would not make sense here to
freeze the small scales and try to find the stationary
solutions of the original equations of motion as it can
be done within a pure barotropic framework (Legras
and Ghil 1985). Alternately, one may try to represent
the effect of the transients by the feedback of the most
unstable linear mode of the current large-scale flow.
Reinhold and Pierrehumbert (1982) found in this way
the quasi-stationary equilibria of a simple baroclinic
model with orography. However, in a more realistic
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formulation including many degrees of freedom, this
method is questionable as soon as we are not close to
marginal stability and as several instabilities compete
at finite amplitude. In addition, Itoh (1985) showed
that the average energetics of chaotic baroclinic dy-
namics differ significantly from the energetics of sta-
tionary states and their most unstable modes.

In this article, we develop a new approach for the
determination of quasi-stationary regimes. The feed-
back from small-scale transients is parameterized in a
diagnostic way using a long-term integration of our
model. The feedback is calculated as a continuous
function of the large-scale flow and is used to close the
statistical-dynamical equations of the quasi-stationary
flow. An optimization procedure then yields the so-
lutions of these equations. The resulting flow achieves
a nonlinear equilibration between dissipation, advec-
tion and transient feedback. '

In section 2, we briefly review the main character-
istics of the model and the results of Part I, and specify
our definition of weather regimes. In section 3, the
equilibration method applied for the recognition of
‘weather regimes is presented. The application to our
model is reported in section 4 with an accompanying
discussion on the statistical significance and the stability
of the obtained solutions. In this section, we also justify
our approach by measuring the role of transients in
the equilibration balance. In section 5, we compare
our results with the persistence properties measured in
Part 1. Section 6 shows the inadequacy of a linear pa-
rameterization of the transients. Section 7 contains a
summary and further discussion.

2. A quantitative approach to weather regimes
a. The model

In Part I, we investigate the behavior of a quasi-
geostrophic two-level model with a periodic channel
geometry. The basic state ¢ * (Fig. 1 of Part I) consists
of a mean zonal wind with an unstable vertical shear

superimposed on a local jet within the first quarter of -

the upper level. An appropriate forcing maintains y*
as a stationary solution. The baroclinic eddies are gen-
erated within the strong baroclinic jet and advected
downstream along a storm track. They tend to reduce
the baroclinity of the mean flow and to extend the jet
. further downstream. The storm track is shown to con-
nect the jet with a region of low-frequency variability
located near its downstream exit. The distribution of
large-Scale variance shows a preférence for some flow
patterns which can be classified into zonal and blocked
types of circulation. A detailed study of the persistence
properties (which will be further elaborated on in sec-
tion 5) shows that these patterns are associated with
extrema of the probability of persistence.

The potential vorticity equations (Eq. 2.2 of Part I)
are integrated with the same set of parameter values
as in Part 1. We restate the main ones here:
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upper radius of deformation R; = 500 km
lower radius of deformation R, = 707 km

upper mean wind U =18ms™!
lower mean wind Uy=6ms™!:
maximum local shear m=3Tms™
internal friction 23.1 days
Ekman decay 3.9 days

These values are such that the external barotropic mode
(3, 2) would be stationary in absence of the enhanced
jet. However, as seen in Part 1, a relatively large vari-
ation of U = (U, + U,) only slightly affects the be-
havior of the model, showing that sharp resonance is
not a key factor here. For a further discussion about
these parameters and the sensitivity of the circulation
to their values, the reader is referred to Part I. All no-
tations are identical in the two papers.

b. Deﬁniziqn of weather regimes

The notion of weather regimes originates from the
empirical observation that quasi-stationary persistent
large-scale anomalies repeatedly occur at some loca-
tions (Rex 1950). The long duration of blocking events,
often exceeding the spin-down time scale, inclines one
to think that a specific dynamical balance of the large-
scale flow is required. Advection and dissipation must
be equilibrated by a forcing either due to large-scale
instabilities or to transient feedback. The former pos-
sibility embodies both the orographic form drag
(Charney and DeVore 1979) and any kind of large-
scale baroclinic instabilities triggered by the orography
or heat sources. When considered alone, this family of
factors leads to weather regimes as muitiple stationary
solutions for the large-scale flow. Various barotropic
and baroclinic models have been studied for this pur-
pose in a number of recent studies.

When both large-scale instabilities and transient
feedback are taken into account, the problem is far
more complex unless one is able to calculate the sta-
tistical effects of the transients as a function of the sta-
tionary part of the field. If, as we show later, this dif-
ficulty is solved, the problem reduces to finding sta-
tionary solutions of a dynamical-statistical equation
for the large-scale flow. The first step to the solution is
to observe that a given large-scale flow may undergo
different instantaneous deformations depending on the
superimposed small-scale eddies. We then define the
statistical tendency as the average of the instantaneous
tendency (time derivative) over all physically realizable
situations having the same large-scale component. Two
observable realizations of a large-scale pattern only dif-
fer by the associated simultaneous small-scale flow.
Regardless of the evolution process for the latter, we
consider the small scales as well as the instantaneous
tendencies as random variables whose probability den-
sity distribution depends on the large-scale configura-
tion. Under the Gaussian approximation, it is well
known that the statistical tendency, so defined, is the
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best constant estimate of the instantaneous tendency.
Accordingly, we define the large-scale regimes as the
large-scale patterns whose statistical tendency vanishes.
Note that Dole and Gordon (1983 ) have used a similar
formulation for the variation of the geopotential
anomaly at one single geographical location.

The application of the above definition is made easier
by the observation that quasi-stationary and traveling
waves in the atmosphere (Fraedrich and Bottger 1978;
Hayashi 1982) and in our model (cf. section 4 of Part
1) separate rather well in the frequency~wavenumber
domain, In other words, there is, to a first approxi-
mation, an appropriate cut in wavenumber domain
which separates two ranges of low and high temporal
frequency variability with limited overlap. In this study,
the large scales include the Fourier modes of the chan-
nel with zonal wavenumber k < 3 and meridional
wavenumber / < 2 and the small scales embody the
remaining modes.

Accordingly, we can now formulate the problem in
a more quantitative way. The vorticity field ¢ = (g,
q.) for the two levels is split into a large-scale part L
and a small-scale part S:

g=L+S, 2.1

where L and S are two amplitude vectors in the sub-
spaces of large- and small-scale modes, respectively.

Since the quasi-geostrophic approximation only in-
volves quadratic nonlinearities, the evolution equation
for the component L reads

OL _ 4(1)+B(L, S) + C(S, S).

” 2.2)

The right-hand side is separated into three contribu-
tions. The function 4 groups all linear and constant
terms, and the nonlinear self-interactions of large scales.
In a classical low-order truncation, the model would
be closed by retaining only this contribution. The B
and C terms are bilinear and group the mixed L-S
interactions (B) and the S-S interactions (C). Actually,
nonlinear interactions are organized as triads in phase
space and the B and C terms are the projections of the
contributions of (L, L, S) and (L, S, S) triads onto
the large scales. As stated above, the average is taken
over observable transients for the current configuration
of the large-scale flow. Denoting this average (which
we will discuss later) as an overbar, the statistical ten-
dency for L reads

T(LY=A(L)+ B(L, S) + C(S, S), (2.3)

where A(L) = A(L), C(S, S) = C(L) and B(L, S)
=B(L, S)=B(L,S(L)) = B(L). Here all the terms
depend only on the large-scale part of the flow, thus
closing Eq. (2.2). The term C is a Reynolds stress and
B does not vanish since we allow the average S = S(L)
to differ from zero (yet it has to be small). In section
4, we discuss in detail all these terms.

Our approach is to approximate the average operator
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in a diagnostic way using the data generated by a long- .
term integration of the complete model. The statistical
tendency associated with a given large-scale flow is es-
timated by compositing over encountered situations
which exhibit close enough large-scale flows. We show
below how the small-scale fluxes can be computed as
continuous functions of the large-scale modal ampli-
tudes.

This formulation can be understood using dynamical
systems theory: the phase space is the sum of the or-
thogonal subspaces spanned by the small scales and
the large scales. The dynamical system given by the
full prognostic equations possesses an asymptotic cli-
matic attractor for each point of which the instanta-
neous large-scale tendency is the projection of the
“speed vector” onto the large-scale subspace. The sta-
tistical tendency of a point in this subspace is then
given by the average of these projections taken over all
crossings with the subspace parallel to the small-scale
subspace containing that point, as sketched in Fig. 1.
The possible discontinuities arising from this definition
can be smoothed out by a further average in a small
neighborhood of the considered point. Note that there
are, generally, infinitely many trajectories which project
on an arbitrary small neighborhood of L but the se-
lection is far different from choosing S at random be-
cause the attractor itself occupies an extremely small
fraction (of measure zero) of the a priori accessible
phase space.

Thus we call weather regimes the solutions of

T(L) =0, 2.4)
for which a statistical equilibration occurs between self-
interaction and feedback from the small scales, as de-
fined above. The mere significance of the equilibration
problem (2.4) relies on the fact that large scales gen-

>
Ly L

FIG. 1. In this phase-space representation, the large-scale modes
(L) are figured by the horizontal axis and the small-scale modes (.S)
by the two other axes. The statistical tendency for L, is obtained by
averaging over all the instantaneous tendencies of the solution tra-
jectories as they intersect the plane I, = L.
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erally vary over longer time scales than the small scales,
except for some unfrequent abrupt transitions.

Before we tackle the resolution of Eq. (2.4) in the
next subsection, we need to state precisely how .S and
C are, in practice, determined as a function of L. We
have already mentioned that the method consists of
using the archives of a long integration of the full model
to find the periods during which the large-scale flow is
an analog to the current configuration L, and to com-
pute the averaged transient terms for L over the selected
periods. More precisely, we archive N periods of du-
ration 7; for each, we compute a time-average large-
scale flow

l ir
Li == f L(t)dt,
(-7

T

and similarly an average small-scale pattern S; and an

average Reynolds stress C;, with i =1, « « -, N. Then
for a given L, we define

N :

S(L)= 2 w(L, L)+ S;, (2.5)

i=1

N
C(L)y=Z w(L, L))+ C;,

i=1

(2.6)

where w is a weight factor, actually a function of a
distance d(L, L;) between L and L;in phase space and
differing from zero only when d is sufficiently small.
For reasons that will be detailed shortly, w must be
continuous and differentiable in L.

In order to have a sufficient sampling of our attractor

we perform a long integration of 15 000 days of our
model. We actually use the first of the three 15 000-
day integrations described in Part I, and the second
one is used to estimate the significance of the solutions.
Vautard (1987) shows that the decay time of the spatial
correlation is about 10 days for the large scales and 5
days when all scales are retained. Thus, we choose to
take 7 = 5 days, so that N = 3000 periods are retained
from our integration. For each individual period, the
averages of the large scales L;, the small scales S; and
the Reynolds stress C; are computed using a primary
twice-daily archive.

The subspace wherein large-scale solutions are ex-
plored is somewhat restricted by keeping the antisym-
metric part of the streamfunction field only in L. This
simplification proceeds from the observation that these
modes largely dominate the coherent low-frequency
variability (see section 4 of Part I); it is formally equiv-
‘alent to solve Eq. (2.4) for antisymmetric solutions
only. Then the number of degrees of freedom reduces
to 14 with one zonal mode (0, 2) and six wavy real
modes (1, 2), (2, 2) and (3, 2) at each level. For the
consistency of the stationary hypothesis, the feedback
of symmetric large-scale transients onto the antisym-
metric large-scale flow is not taken into account. With
this choice, 4 reduces to a linear term in ¥, and the
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sole solution of A(L) = 0 is close to y¥. Still, it is
rather clear that ¥¥ is not a solution of Eq. (2.4) as
soon as transients induce a nonzero feedback onto the
large-scale flow. Neither is the average large-scale flow
over the whole experiment a solution of Eq. (2.4).
Though the tendency averaged over the 15 000 days
almost vanishes, as it is natural for a bounded flow;
the statistical tendency computed over the neighbor-
hood of the mean flow may not vanish. In other words,
the barycenter of an attractor is not’ necessarily a re-
markable point by itself and in most cases is not in
local balance. '
The following points are noted: -

1) When the large-scale dynamics is characterized
by quasi-stationary periods interrupted by abrupt tran-
sitions, we can deduce that the quasi-stationary patterns
are solutions of the equilibration problem since the
branches of the attractor that project onto their neigh-
borhoods are parallel to the small-scale subspace.

2) A difficulty in our definition of weather regimes
is that some nonpersistent patterns could be obtained
as solutions of Eq. (2.4). Indeed, several branches of
the attractor, oriented toward different directions, may
contribute by projection to a vanishing average ten-
dency. It is thus necessary to check for the persistence -
of the solutions of Eq. (2.4). This is done in section 5
of this study. Note, in addition, that the effects of su-
perimposed projections may more generally induce a
shift of the apparent solution from a persistent circu-
lation,

3) The spurious solutions due to the previous effect
are unlikely as the dimension of the phase-space in- -
creases. '

4) We exclude from our analysis nonpersistent reg-
ularities of the large-scale flow such as long-wave prop-
agation, which may occur as frequently as quasi-sta-
tionary events. In the final discussion we give insights
on how to extend our approach to this more general
case. :

5) A closely related definition of weather regimes is
used by Reinhold and Pierrehumbert (1982). These
authors first compute the most unstable eigenmode of
the current large-scale flow and then parameterize the
small-scale effects as the phase-average feedback of this
mode artificially assigned to a fixed amplitude. This
quasi-linear method bears the advantage of being
prognostic but contains more arbitrary settings than
ours. Furthermore, we show in section 6 that, at least
in our model, the transient feedback is not adequately
described by the behavior of the most unstable mode.

3. Equilibration method

Our aim here is to show how we can solve the non-
linear system of Eq. (2.4) with a minimum amount of
computations. This section presents some original de-
velopments but can be skipped by the reader who is
only interested in the obtained solutions. Since the
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number of modes retained in L is small, the problem
can be treated using Newton’s method, (Legras and
Ghil 1985). However, the C(L) and S(L) terms in
the tendency equation have to be differentiated with
respect to all components of L at each step of the
method, using Egs. (2.5) and (2.6). It is thus interesting
to first transform the problem into the minimization
of a scalar function for which a single gradient vector
is involved.
This is easily done by defining a cost function

F(L) = 5 {T(L), T(L)), 3.1

where (-, + ) is the inner product associated with the
energy. More precisely, if ¢ = (41, ¢;) and ¢’ = (4",
g>) are two potential vorticity fields, and (y;, ¥»),
(¥, ¥5) the associated streamfunctions, we read

(0. ¢) = [ [ (R0 90 + R299,- 9y
+ (41 — ) (Y1 — ¥2)]dxdy,

where the integral is computed over the channel.

Starting from a given distribution of large-scale
components L‘©, and using the quasi-Newtonian
method detailed in appendix A, we minimize F by suc-
cessive iterations of the algorithm. This calculation may
yield local minima, where F does not vanish. Solutions
of Eq. (2.4) are reached when the successive values of
F converge to zero.

At each step the method requ1res the knowledge of
the gradient V; F(L) of F with respect to L, defined
by

3.2)

dF = (VLF(L),dL) (3.3)

for the departure dF from F(L)induced by an arbitrary

“variation dL from L. Equation (3.3) shows that the
gradient depends on the chosen inner product in (3.1).
In an orthonormal basis for the inner product, the gra-
dient reduces to the set of the partial derivatives of F
with respect to the components of L. With the defi-
nition (3.1) one obtains

dF = <T(L), (L) dL> 3.9)
where DT/DL is the differential operator of 7. Using
properties of adjoint operators (Talagrand and Courtier
1987), we immediately obtain an expression for the
gradient

DT *
VR = (g ) Tw, 69
where the asterisk denotes the adjunction for the inner
product (-, «>.
It can be seen in the following examples that this
algebraic apparatus leads to a real simplification of the
computations. First, let 7(y ) be the truncated form of
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the Jacobian J(y, Ay) where ¥ and T are truncated
expansions of the streamfunction and the tendency in
wavenumber space. Let us also denote by M the pre-
scribed symmetric matrix or operator of the inner
product -, « ), such that

=1 S A VN
F=l¢rry=t17 p.1 =L [ [ TMraxay.

Using the orthogonal basis of eigenfunctions of the La-
placian, we can formally use the matrix product or the
continuous integral formulation at our convenience.
Then dF becomes

dr = _” T(WMJ(Y, Ady) + J(dy, AY)ldxdy.

Through integration by parts,
aF = - [ [ dvrary, mrey
+ J(MT({), Ay)]dxdy.

The gradient is in this case
V,F(¥) = ~M~'[AJ(Y, MT(Y))
+ J(MT®W), AY)]ldxdy. (3.6)

A second example arises when T(L) is truncated to
the C term in (2.3). The dependence in L is then en-
tirely contained within the weight factors, and we ob-
tain

dF = T™(L)+ M- E( (L, L) dL)

DL

where Dw/ DL is the vector of partial derivatives of w
with respect to the components of L. The adjoint is
now

VLF(L) = M~ E(T(L) C>( (L, L))

i=1

3.7
In both examples, the computation of the gradient

- requires a number of operations proportional to the

number N; of modes in L, as in the evaluation of T
itself. In Newton’s method, the number of operations
would grow much more rapidly as N;? and, practically,
the quasi-Newton’s method is interesting even for small
values of N;. With T(L) defined as in Eq. (2.3), the
calculation of the adjoint operator (DT/DL)* com-
bines the two above examples. Complete formulas are
given in appendix B.

Equation (3.7) for the adjoint requires that the
weight function w is differentiable in order to ensure
the smoothness of F. We define

O(d(L, L)
El $(d(L, L)

w(L,L;)= - (3.3)
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In (3.8), d(L, L;) is the Euclidian distance between L
and L;, and ¢ is the proximity function defined as

2
1 TX .
5(1+cos—d:2-) if |x|<d

0 if |x| > dy.

The weights thus vanish when d(L, L;) = d;. The
threshold was experimentally fixed in such a way that
about 100 weights do not vanish among the 3000 com-
puted. Vautard (1987) shows that dj is the average dis-
tance between two fields separated by a 2-day lag. We
expect that the composite obtained from the 500 re-
tained days provide a good representation of the large-
scale statistics. The ensemble-averaging operator de-
fined this way clearly satisfies the differentiability
condition for F. We now turn our attention to the
definition of the Euclidian distance. Part I shows that
the large-scale variance is concentrated within the sec-
ond quarter of the channel. It is also shown that this
variance is primarily due to vacillations between zonal
and blocking regimes. This suggests that the appropriate
proximity criterion must be based on the part of the
field contained within the second quarter. In addition,
since only antisymmetric large-scale solutions are
sought, the criterion should involve only the antisym-
metric part of the fields. Let us denote the antisym-
metric part of the large-scale streamfunction in the up-
per level (lower level) by ¥;' (¥,2). The distance be-
tween large-scale fields is thus defined as

L, Ly= [ [ - viyasay

o(x) = (3.9)

+ [ ], = viraxay, @0

where D, (D,) is the upper-level (lower-level ) second
quarter of the channel. The integrals are actually com-
puted over a finite number of grid points. A grid of 64
X 20 points is used for fast Fourier transforms (see
Part I) and the integrals are computed over the points
17,18, ...,32in the x—dlrectlon and 0, ..., 20 in the
y-dlrectlon

Figure 2 shows a general diagram of the whole pro-
cedure. A step of the algorithm can be outlined as fol-
lows: Let L™ be the large-scale field at the nth step of
the algorithm. We first compute the distances between
L™ and the L,’s, and select the 5-day periods of prox-
imity (d(L™, L;) < dy). The weights and the composite
tendency T(L'™) are then computed. The adjoint op-
erations are performed in order to compute the gradient
of F(L) with respect to L (see appendix B). Given
L™, F(L'™) and VF(L™), the quasi-Newtonian al-
gorithm estimates the next large-scale field L**V
which minimizes the cost F in a suitable direction.

4. Equilibrated regimes

a. Convergence and- stability of equilibration

A well-known difficuity of nonlinear optimization
is that there is no practical way to systematically explore
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~ ADJOINT
OPERATIONS

—»{ VF(L)

Ln+1

FI1G. 2. Sketch of a step of the iterative optimization algorithm.
Arrows from one box to another indicate that the source is needed
for the computation of the target. The step starts with only knowledge
of L,.

a phase space whose dimension exceeds a-few units
(here 14) and to make sure that all solutions have been
obtained. Moreover, we expect that by using arbitrary
first guesses and a finite dataset, the irregularities of
the cost function defined in (3.1) can lead the iterative
algorithm to irrelevant local minima where it does not
vanish, -or even to nonsignificant vanishing minima.
Owing to our statistical definition, these latter may be
numerous at the periphery of the attractor where the
number of observations is small and the fluctuations
are large. Relevant solutions may only. be obtained in
areas where the attractor possesses a high density of
trajectories, which drastically reduces the domam to
be explored.

As initial conditions for the equilibration we choose
a set of 50 5-day means randomly extracted from the
3000 archived. The typical magnitude of thc cost F
over the 50 points is about 6 X 10'* m® s™* and we
first iterate the algorithm to reduce F to one-thousandth
of this value. After this process, 30 points remain, the
other 20 having converged to local minima with F > 6
X 10'2 m® s™*. The optimization is carried on the
former group with a new stop criterion for F at 1078
times the typical value. Only 17 points reach this limit.

Figure 3 shows the projection of the 50 initial con-
ditions (dots), the 30 intermediate states (+) and the
17 convergent solutions (0) onto the plane of the nor-
malized coefficients of the first two EOFs as defined in
Part 1. Since several cases have merged in the course
of optimization, 18 different states are obtained at the
intermediate step and seven states as convergent so-
lutions. A clear gathering of the equilibrated states is
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FIG. 3. Projection of the 50 initial conditions (dots) onto the plane
of the two normalized first EOF coefficients. Plus signs show the 18
intermediate projections for a cost of 10~ times the typical initial
value, and zero signs are the projections of the convergent solutions
(1078 times the typical cost).

visible in Fig. 3, compared to the scattering of the 50
initial points. At the intermediate stage, one group sep-

arates with two states (three points) in the second

quadrant from a second group with positive first EOF
coefficients and characterized by a large scattering of
the second EOF coefficient. At the ultimate stage of
convergence, one solution remains isolated in the sec-
ond quadrant while six others are found in the second
group. A fast convergence of F towards zero is observed
for the seven solutions.

In order to test the significance of the equilibrated
solutions, we repeat the same computations with a sec-
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FIG. 4. As in Fig. 3, but for solutions arising from experiment A
(Al to A7) marked with zeros, and experiment B (B1 to B5) marked
with asterisks.

* ond independent 15 000-day dataset, originating from
the second integration described in Part I. Then, five
different solutions are obtained (denoted by B’s) which
are shown in Fig. 4 together with the solutions obtained
from the first dataset (denoted by A’s). At first sight
there is good agreement between the two datasets in
the distribution of solutions which cluster in two sep-
arate groups in both cases. But a two-dimensional pro-
jection of a 14-dimensional phase space might yield a
misleading perception. In order to allow a more quan-
titative discussion, Table 1 shows the Euclidian dis-
tances d between all pairs of solutions shown in Fig.
4, We decide that two solutions do not differ when
their distance is less than the threshold d utilized in

TABLE 1. Euclidian local distances d* (X107>) between pairs of solutions (Al to A7 and Bl to B5) and between
solutions and composites (CB and CZ, see section 5).

Al A2 A3

ZONALI ZONAL2 BLOCK A4 A5 A6 A7 Bl B2 B3 B4 BS
Al ZONALLI 0
A2 ZONAL2 3.9 0
A3 BLOCK 19. 15. 0
Ad 1.5 .57 15. 0
AS 72 65 12. 22 0
A6 45 22 15. 82 47 0
A7 12. 32 8.8 5.7 1.1 2.9 0
Bl 28 22 16 S3 48 27 9.1 0
B2 22. 16. 3217 12. 16. 79 19 0
B3 3.3 03 15. .36 92 09 37 18 16 0
B4 22 32 17. 12 18 48 54 1.1 18 16 0
BS 24. 23. 1.9 22. 22. 24, 18. 22. 32 23 25. 0
CB 17. 1. 58 12 82 1L 5.1
cz 1.1 1.3 13. 25 30 1.6 6.3
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the statistical average, and also that a solution is sig-
nificant only if there exists a solution obtained from
the second dataset within a distance less than dp. All
distances inferior to d, are underlined in Table 1,
showing that solutions AS, A7 and B5 must be rejected
as nonsignificant and that the remaining ones gather
into three sets. The first contains A1 and B1. The sec-
ond is the most crowded with A2, A4, A6, B3 and B4.
The third contains only A3 and B3. In addition, one
notes that the first two sets are not clearly separated
since the distance between Bl and A4 is less than .

b. Solution patterns

Figure 5 shows the spatial patterns of the various
groups, Al (Fig. 5a-b), A2 (Fig. 5¢c~d) and A3 (Fig.
5e-f). For Al and A2, the jet extends well downstream
from its driven maximum, and particularly for A1, the
zonal part of the flow dominates over the wavy part;
we refer to these solutions as ZONAL1 and ZONAL2.
- However, A3 displays a marked wavy structure at the
exit of the jet; thus, we refer to it as BLOCK since its
dipolar structure is reminiscent of the North Atlantic
blocking pattern. The presence of closed cells indicates
that the anomaly is strong enough to produce easterlies
at the central latitude as observed during blocking
events over western Europe. The three patterns do not
differ significantly in the first quarter of the channel,

suggesting that the shape of the jet alone does not de-
termine the structure of the exit region.

Differences between patterns are well marked within
the second quarter, and particularly in the lower layer.
For ZONAL2, the exit of the jet displays a diffluent
structure centered near the middle of the channel. This
is not the case for ZONAL1 where the flow remains
almost parallel. The anomaly patterns (not shown ) for
ZONAL1 and BLOCK exhibit maximal amplitudes
slightly downstream from the regions of maximum
variance (see Fig. 12 of Part I). The block is centered
at the longitude where the number of closed-cell block-
ing events is found to be maximum. ZONAL2 is as-
sociated with a positive anomaly in the northern part
near the central longitude of the channel and a negative
anomaly at the exit of the basic jet, complemented by
their images in the southern part. These anomalies are
not strong enough to produce easterlies. The weak wavy
structure observed in the second half of the channel
for all solutions is presumably due to the small number
of large-scale modes involved.

BLOCK has a barotropic structure with almost in-
phase upper and lower layers while for ZONAL1 and
ZONALZ2, the upper-layer jet maximum is tilted west-
ward with respect to the lower layer, an indication that
the energetics might be different in the two cases. Ac-
tually, this tilt is also seen for the time-average field
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FIG. 6. The total advection term AD and flux term FL (contours) in the two layers for ZONALL1
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(see Fig. 5 of Part I), and is also observed in the at-
mospheric mean flow (Oort 1983). The baroclinity is
strongly reduced in the three solutions with respect to
the basic flow ¢*: in the ZONAL1 and BLOCK cases,
the maximum shears are 29 and 24 m s}, respectively,
instead of 37 ms™".

¢. Balance of equilibrated solutions

We have, so far, spent a lot of effort in incorporating
the transient effects in the equilibration problem. It is
thus important to assess a posteriori whether or not
this effort was necessary. The simplest method of as-
sessment is to go through the detailed description of
the various contributions involved in the statistical
equilibration of the two solutions ZONAL1 and
BLOCK. Apart from some minor differences, the con-
clusions of what follows for ZONALI also apply to
ZONAL2. In order to discuss more physical quantities
than the terms 4, B and C of Eq. (2.3), we group the
terms as follows:

T(LY=G+AL+ AN+ DI+ FL. (4.1)

Here, G is the constant large-scale part of the forcing
term; and AL and AN group, respectively, the linear
and the nonlinear part of the mean advection. More
precisely, if ¢,%, ¢;5, ¢;* and ¢, ¥ are the large- and
small-scale parts of the vorticity and the streamfunction
in the upper layer, the upper-layer terms AL, and AN,
are given by

a L . L
AL, = -U, iR —[B+ R (U, — Uy)] ag)lc ,

dx
4.2)
AN = THg 't + a5 0E+ %), @3)
where J* denotes the projection of the Jacobian op-
erator onto the large-scale modes.
In (4.1), DI groups all the linear dissipation terms
acting on the large-scale flow, and FL is the transient

: part of the feedback of the small scales onto the large
scales:

FL, = JX(¢¥, ¥) (4.4)

where the primes denote the deviations from the en-
semble average (overbar). Here, FL slightly differs from
C by removing the small contribution J*(q,%, ¢,°) of
the mean small scales, now included in the mean ad-
vection term AN; y,° weakly depends on the large-
scale flow and closely resembles the small-scale part of
the mean flow averaged over the whole integration.
The self-coupling J%(g,%, ¥,°) is small compared to
other terms but the mixed couplings involved in term
B are significant. Since the term J*(q, %, ¥, L) vanishes
identically, owing to our choice of large-scale trunca-
tion, AN is close to B. We finally group the advection
terms and the forcing G (smaller than the former terms)
in the total advection AD:
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AD = G + AL + AN. (4.5)

The sum AD + FL + DI vanishes for equilibrated
solutions, so that we only need to consider the 4D and
FL contributions. Figure 6 shows these quantities for
the two solutions ZONAL1 and BLOCK, in terms of
their associated streamfunction field. More precisely,
the transformation g — v is applied before drawing,
in such a way that we can directly discuss the balance
of the streamfunction fields shown in Fig. 5. (see also
section 4 of Part I).

In ZONALLI, the advection AD clearly acts to main-
tain the jet in both layers since its pattern almost co-
incides with the anomaly pattern of the solution. In
the upper layer, the main in-phase component of AD
is provided by the linear advection AL, while in the
lower layer the main contribution is from the forcing
G. The FL term tends to propagate the jet downstream
in the upper layer, while in the lower layer it appears
to both propagate and reinforce the jet. Consequently,
baroclinity also tends to be reduced by FL since small-
scale baroclinic perturbations extract potential energy
from the large-scale flow. Baroclinity is restored by 4D
but an overall higher contribution is needed in the
lower layer to balance the Ekman damping.

A very different situation arises in BLOCK. In this
case, the jet is maintained by AD in the upper layer
and by FL in the lower layer. A similar contribution
is given by the three components of AD to the in-phase
component of the upper layer. The baroclinity is again
destroyed by FL and restored by 4D, with a higher.
contribution in the lower layer as in ZONALL. The
most important result concerning the blocking is that
the transient feedback FL plays a crucial role in the
maintenance of the blocking dipole in the BLOCK case.
It acts mainly against dissipation in both layers, but a
significant downstream shift is observed in the upper
layer to balance advection. The FL term is able to re-
generate the dipole within 7 days in the upper layer
and 4 days in the lower layer, thus showing that the
solution is strongly forced. Note also that AD weakly
contributes to the block itself but tends to reinforce
the downstream confluence.

We have also performed the same analysis on the
large-scale mean flow (for which the tendency does not
vanish, as mentioned in section 4a) and the results
(not shown here) are qualitatively similar to those ob-
tained for ZONALIL. The statistical tendency, even
though rather small, induces a bias towards reinforce-
ment and downstream extension of the jet.

As a final remark, we emphasize that the above re-
sults are very stable. They are almost identically re-

ccovered using the second 15 000-day dataset.

d. Variability of the balance terms

The previous results suggest that the BLOCK regime
separates from ZONALI1 and 2 and from the mean
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flow. Not only is it separated in space (Fig. 4) but it
occurs less often than the zonal counterparts. (With
the same offset dy2 = 6 X 1074, 99 analogs were selected
for BLOCK, 167 for ZONALI and 171 for ZONAL2.)

In order to measure the variability of the feedback
terms, we define the moments of B and C in terms of
the energy norm;

m,*(B) = (B, B), m*(C)={(C,C), (4.6)

3000
m*(B) = X w(L, L){B(L, S)), B(L, S})),

i=1

3000
m*(C) = Z w(L, LiXCi, Cy),

i=1

“4.7)
and the variances
o*(B) = my*(B) — m*(B),
a*(C) = m*(C) — m*(C). (4.8)

Thus the ratios

_ o @)
P =By
and
_ 2O
DO = m s 4.9)

provide a measure of the relative dispersion of the 5-
day means. The values of these quantities for ZONAL1
and BLOCK are given in Table 2, We have also cal-
culated as reference figures the corresponding values
for the mean flow and the global moments (without
weighting) over the whole experiment (for C only).
By comparing the moments of the mean flow and the
global moments, it is readily seen that the estimation
of the mean small-scale feedback with selective aver-
aging—about 200 situations are selected for the mean
large-scale flow—is close to the globally averaged value.
However, one sees that ZONAL1 is more likely to be-
have as the mean flow than BLOCK. The dispersion
and the variance are greater in BLOCK than in
ZONALI for the B term, while for the C term, the
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dispersion in the ZONAL1 and the mean flow case is
almost the double that of the BLOCK case. BLOCK
again appears as a rather well-defined isolated regime
while ZONAL1 behaves more like a continuum, as it
exhibits a spreading of small-scale activity comparable
to the mean flow. The mixed term B is less sensitive
than C to the large-scale flow. It has already been noted
that the stationary small-scale part of the flow which
leads to B is not dependent on the regime.

5. Persistence and equilibration

As pointed out in section 3, the equilibration
method, based on the balance of the statistical ten-
dency, does not a priori yield any information about
persistence of the balanced large-scale patterns. How-
ever, if the flow exhibits systematically persistent pat-
terns, confined within narrow regions in phase space,
such patterns should yield to small statistical tenden-
cies. In other words, recurrent persistent patterns are
solutions of the equilibration problem while the op-
posite is not necessarily true.

In Part I, we analyze the persistence properties of
the flow using a score based on the behavior of 15-day
sequences (see section 5 of Part I). Given the choice
of an offset score, sy, a set of persistent sequences is
defined and the histogram of the EOF coefficients of
this population is computed. A highly non-Gaussian
distribution of persistence is found although no mul-
tiple maxima emerge. Dividing the histogram of per-
sistent data by the histogram of the whole set of data
gives the probability distribution of persistence as a
function of the large-scale flow characteristics. This
distribution, shown in Fig. 7 (same as Fig. 19a of Part
I), is far from being uniform and exhibits two distinct
maxima, This result is a consequence of the fact that
preferred flows exist for persistence though they are
relatively rare, so that no separated maxima occur in
the raw histogram. Figure 7 also shows the positions
of the equilibrated solutions for the two analyzed da-
tasets considered here. There is a clear relation between
the significant solutions found in section 4 and the
regions of maximal probability of persistence. In par-
ticular, the points representing BLOCK and ZONALLI
solutions are found very close to the two maxima. Per-
sistent sequences crossing the dotted areas of Fig. 7 are
composited respectively in Figs. 20 and 21 of Part 1.
These two composites closely resemble BLOCK for the

TABLE 2. Moments and dispersion of terms B and C. The moménts are normalized by the standard value of F: 6.125 X 10" m% s,

mi(B) m3(B) o(B) D(B) mi(C) m3(C) (C) D(C)
ZONALLI 2.8 36 0.8 0.3 23 59 37 1.6
BLOCK 2.6 4.0 1.4 0.5 34 6.3 30 0.9
Mean flow 1.8 2.5 0.6 0.3 2.3 6.7 4.4 1.9
Global / / / / 20 6.4 4.4 2.2
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FIG. 7 . Contours of the persistence probability (dashed lines) in the same projection as in
Fig. 3 and 4. For details, see the text in Part I. Contours shown are 0.30, 0.35, 0.40, 0.45.
Dotted areas are used for compositing persistent blocking (second-quadrant) and zonal (fourth-
quadrant) sequences. The solutions of the equilibration are superimposed with the same symbols

as in Fig, 4.

first (CB) and ZONALI for the second (CZ), although
the amplitude of the blocking dipole in CB is somewhat
smaller than in BLOCK. We attribute the discrepancy
to the definition of the blocking periods of Part I which
run from the onset to the end of the phenomena though
here we only deal with well-established structures. The
local distances between CB, CZ and equilibrated so-
lutions are reported in Table 1. The distance between
CB and BLOCK and between CZ and ZONALLI is less
than the threshold dj. ;

Another way to establish the relation between per-
sistence'and equilibration is to compare directly the
5-day periods selected for.the BLOCK and ZONAL
solutions with the persistent 15-day periods. For this
purpose, we use only the first 15 000-day dataset. We
denote as P; the 15-day period beginning at day { which
corresponds to a score s; of persistence [the lower the
score, the more persistent the sequence, (see Part I)].
The scores are sorted into ascending order, so that the
sorted periods have scores satisfying

si<sh<... <S80

Among the 3000 5-day large-scale averages L, we
choose the patterns for which d(L, L;) < dy, where L
is either BLOCK or ZONALL. For each 5-day period

Uz, we consider all the overlapping 15-day sequences
(they can overlap over 1, 2, ..., 5 days), and we as-
sociate Uy to the most persistent of these latter, i.e.,
the one with the lowest score s. In this way, a one-way
correspondence table between 5-day and 15-day peri-
ods can be set up. This correspondence is described by
a function 4 such that h(Uy) = P.

Then, we count the number of periods Uy having
an h-image ranked among the 7 most persistent P;’s,
and denote it by K(n); K(n) thus provides a good idea
of the persistence quality of the periods during which
the large-scale flow resembles to L. The smaller 7, the
more persistent the sequences are. (Note that the value
do? is twice that of the threshold previously used, a
necessary feature in order to get significant figures.)

In the BLOCK case, 280 5-day periods are extracted,
and 358 in the ZONALI case. In order to see whether
these periods are significantly more persistent than a
“random” selection of 5-day periods, we perform a
Monte-Carlo calculation that estimates the “normal”
values of K(n). More precisely, for BLOCK, 100 tests
are performed using 280 randomly chosen 5-day pe-
riods, and K(n) is computed for each test. The 100
evaluations of K(n) are sorted and the 5th and the
95th values are taken as the bounds of the 90% con-
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fidence interval. The same procedure is applied to
ZONALI, now using 358 random periods for each test.
Figures 8a and 8b show K(n) for ZONALI1 and
BLOCK, together with the 90% confidence interval
(shaded area). In both cases, the curve lies above the
confidence interval, confirming that the local distance
d selects more persistent sequences in the vicinity of
the equilibration solutions than a random choice. It is
noteworthy that for BLOCK, the curve enters the con-
fidence interval near n = 4000, indicating that there
are relatively less persistent periods than for the zonal
case, but they are well ranked with the persistence cri-
terion, while for the zonal case, the persistence quality
of the periods is less since the difference between K(#)
and its normal value is larger and maximal near »
= 4000. We can conclude that blocking events are very
steady but they do not occur as often as zonal regimes.

The score used here and in Part I takes into account
the flow within the whole channel. Two other scores
are used in Vautard (1987) based on local persistence
properties, both of them giving a curve which falls
within the confidence intervals for BLOCK, but not
for ZONALL. This is an additional argument for the
choice made in Part 1.

It may finally seem paradoxical that a local proximity
criterion has to be used for equilibration and a global
proximity criterion for persistence, yielding similar re-
sults. Indeed, the equilibrated solutions are rather in-
sensitive to a variation of the domain used for the
proximity criteria. Close solutions may be obtained
with a global proximity criteria but at the price of com-
positing a lower number of cases, and thus with a lower
statistical significance. We also remark that though the
proximity criterion is local, the equilibration is per-
formed over the whole channel. A final reason is that
no temporal filtering is applied prior to persistence cal-
culations, rendering the local structure analysis sensi-
tive to high-frequency noise.

6. Linear parameterization of transients

Here we consider the evolution of small amplitude
perturbations superimposed with the large-scale pat-
terns of ZONAL1 and BLOCK. The purpose is to
compute the feedback and the secondary circulation
induced by the most unstable mode and to compare
them with the diagnosed transient feedbacks and the
equilibrated solutions. In other words, we test how a
quasi-linear theory, as Reinhold and Pierrechumbert
(1982) use, can parameterize the observed transients
during the equilibrated regimes. The linearized prog-
nostic equations read

o, o g gy A
ot UG+ (B4 RHU = 1)

+J(Yh, @) + I, 4)) = Ey (6.1a)
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993 99> 207 _ %)
3 + U, ax+(l3+R2 (U, - Un)) ax

\

+J(Wh, @) + J(¥a, 45) = Eb, (6.1b)

where the primes denote perturbation fields and the
tilde denotes one of the large-scale fields ZONALI or
BLOCK.

The eigenvalues and eigenmodes of Eqgs. (6.1a) and
(6.1b) are computed in the same way as in Part I for
the basic field ¢ *. Comparing with the unstabie mode
of the basic flow ¢*, it can be shown (Vautard 1987)
that significantly fewer unstable modes are observed
for BLOCK and ZONALI than for y*; the greatest
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FIG. 9. Instantaneous chart of the upper-layer streamfunction contours (arbitrary amplitude)
for the first unstable eigenmode of (a) ZONALI1 and (b) BLOCK.

growth is also less for the two former than for the latter.
This result is not surprising since the maximum shear
for BLOCK and ZONALI1 is significantly weaker than
for y*. The other important discrepancy lies in the

- existence of a barotropic unstable stationary eigenmode
for the basic field, whereas neither unstable or margin-
ally stable such eigenmodes are present for BLOCK
and ZONALL. In Part I, it has been shown (section 4)
that this mode accounts for the difference between ¢ *
and the observed mean flow. ’

Figure 9 shows an instantaneous chart of the upper-
layer perturbation streamfunction for the most unstable
modes of ZONAL1 and BLOCK., Counting the num-
ber of waves, an average zonal wavenumber 7 is mea-
sured in longitudinal direction. Figure 10 shows the
associated variance charts together with the phase gra-
dients (arrows), computed as in Part I, which point
towards the local direction of propagation and have an
amplitude proportional to the local wavenumber. Local
propagation lines roughly follow the isopleths of
ZONALI1 and BLOCK streamfunctions (see Figs. 5a
and 5c¢) except at the exit of the jet and at the lateral
boundaries where the local longitudinal wavelength
decreases dramatically leading to wave absorption. It
is also noteworthy that near the maximum of the jet,

arrows are twice as short as those in the second half of
the channel, but as pointed out in Part I, this is not
surprising since the zonal wind doubles within the jet
(and the phase speed is larger), while the period is
fixed. In both cases, the local wavelength turns out to
be about 5000 km in this region. The scattering struc-
ture of the phase gradients within the center of the
BLOCK shows that there is no propagation within this
region but rather that the eddies turn around the block.

The storm-track structure of the variance in
ZONALI differs considerably from the splitting of the
variance in BLOCK., The maximum amplitude of the
eigenmode is observed within the splitting region in
the latter case while it is located relatively upstream in
ZONALI. In Fig. 10b, the perturbations weaken during
the first part of their course around the block, but do
not weaken after, and a second maximum of the vari-
ance occurs in the second half of the channel. This
marks a noticeable difference with the results of Shutts
(1983), who shows that almost all the energy of the
eddies is contained upstream from the blocking region.
Since our vertical wind shear is globally unstable,
baroclinic perturbations draw their energy from avail-
able potential energy of the mean shear all along the
channel.
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However, it can be shown that as eddies propagate
downstream, they become less baroclinic. Simmons
and Hoskins (1978) associate this behavior with the
mature stage of the life cycle of nonlinear baroclinic
disturbances, and Pierrehumbert (1984) recovers it
through linear analysis of a nonparallel flow as well.

We now compare the feedbacks of the most unstable
eigenmodes onto the large-scale patterns, with the pre-
viously calculated nonlinear forcings (section 4c). Fig-
ure 11 shows the contribution J(¥/, ¢') (averaged over
-acycle) for the most unstable eigenmodes of ZONAL]I
and BLOCK, plotted after conversion to streamfunc-
tion, and with an arbitrary amplitude. The contribution
of the large-scale part of the eigenmode (which is not
removed here) is found to be negligible. Figure 11
shows all scales of the feedback; in Fig. 12, large-scale
filtering has been applied and we retain only the feed-
back onto the L modes. The latter can be directly com-
pared with the FL terms shown in Fig. 6c and 6g.
Rather good agreement is observed in the ZONAL1
case in the upper layer between Fig. 12a and 6c. This
is also true for the lower layer and confirms that in this
case linear theory gives a good account of the transient
feedback. Contrarily, Figs. 12b and 6g strongly differ
in the BLOCK case: the two patterns are out of phase.
Furthermore, a computation, performed as in Shutts

(1983), of the secondary flow induced by the pattern
12b shows a well-marked quadrupole structure but lo-
cated downstream from its position in BLOCK. In this
case, the fully nonlinear dynamics is not correctly ap-
proximated by linear theory and the prognostic pa-
rameterization of transients appears as a very difficult
challenge. Since several unstable modes merge with
comparable e-folding times, one may think that a
proper combination of these latter may give the right
feedback. The difficulty is that we do not know any
way to predict a priori this combination. One may add
that certain initial configurations can lead to quickly
growing instabilities, much faster than the most unsta-
ble eigenmodes (Reinhold 1986; Weng and Barcilon
1987).

7. Concluding remarks

The statistical-dynamical method introduced in this
paper provides a quantitative definition of quasi-sta-
tionary weather regimes based on an ensemble-average
balance of large-scale dynamics. It incorporates the
feedback of transients which may themselves depend
nonlinearly on the large-scale flow. Their dependence
is diagnosed from an observation dataset and is put in
the form of a continuous functional relationship used
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FIG. 11. Time-average (over a cycle) of the nonlinear feedback J(gq', ') after ¢ =  transform,
in the upper layer for (a) ZONALI1 and (b) BLOCK. Areas filled with plus and minus symbols
. are the same as in _Fig. (6¢) and (6g). Arbitrary units. .

to close the statistical-dynamical stationary equation
satisfied by the large-scale flow. We apply the method
to a quasi-geostrophic baroclinic model with locally
enhanced shear and we detect several regimes falling
within two families of zonal and blocking types re-

spectively. The blocking regime corresponds to a well-

defined pattern that appears to be particularly robust
to variations in the dataset or in the initial guess. How-
ever, the zonal regime does not possess a single pattern
but rather corresponds to an ensemble (a continuum?)
of solutions elongated in phase-space along the direc-
tion of the second EOF which modulates the diffluence
of the flow downstream from the jet. In both zonal and
blocking regimes, the transients are an important factor
of the maintenance of the large-scale flow. In the
blocking case, the anomalous dipole is mainly main-

tained by the transients against dissipation. We show .

that in the zonal case, dynamics is largely governed by
linear and quasi-linear mechanisms but that fully non-
linear mechanisms are crucial to account for the
maintenance of the blocking flow. The quasi-stationary
solutions are also in good agreement with the composite
regimes of maximal probability of persistence, inde-
pendently defined from a pure diagnostic approach.
Although based on an.objective ground, the method
still possesses in its present shape several arbitrary set-
tings. The diagnosed dependence of transient fluxes on

the large scales is a priori sensitive to the way analogs
are defined. But since high amplitude persistent anom-
alies mainly occur within the second quarter of the
channel, all measures of similarity giving a significant
weight to this domain lead to similar results. More se-
rious difficulties arise from the scale separation that we
have adopted for the sake of easiness. Undoubtedly,
the spatial-temporal analysis (cf. Part I) on which the
separation is based does not provide an unambiguous
prescription, An effect is that when large scales are de-
fined with an insufficient number of degrees of freedom,
the optimized solutions may be combinations of sep-
arated regimes. In the other extreme, when the number
is too large, the search for analogs leads to very poor
subsets, on the one hand, and the inclusion of fluc-
tuating scales leads to nonpersistent solutions, on the
other. In the present study, we have removed these

. ambiguities by a comparison with an independent di-

agnostic study of persistence properties.

However, the orthogonality of transients and large-
scale flow is only a matter of technical convenience.
At the price of an additional amount of complexity,
this assumption can be removed. Another prominent
problem is the fact that Fourier modes are in no way
the best functional basis to represent the quasi-station-
ary structure of the flow. Accordingly, we may expect
to improve the analysis by using, for instance, the large-
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F1G. 12. As in Fig. 11, but shows only the large-scale part of the
nonlinear feedback for filtered fields.

scale eigenmodes of the linearized problems. But more
attractive possibilities lie in the analogy between
blocking dipoles and local free modes or modons of
the original quasi-geostrophic equation (McWilliams
1980). Shutts (1983) and more recently Haines and
Marshall (1987) have shown how a modon can be
" reinforced by enslaving to its advantage incident baro-
tropic perturbations. The limitation of this approach
is that, thus far, the only known modon solution pos-
“sesses a circular shape in a uniform background wind.
The generation of a family of shapes with a more gen-
eral background flow appears as a very difficult task
for finite amplitude modes. For weakly nonlinear flows,
Malguzzi and Manalotte-Rizzoli (1984 ) obtain a series
of local and global eigenmodes by reducing the quasi-
geostrophic stationary problem to a Schrédinger equa-
tion. These modes are good candidates to expand the
finite amplitude quasi-stationary flows.

Our study is a self-consistent theory of the mainte-
nance of large-scale persistent atmospheric anomalies.
It confirms that a coherent structure may be obtained
as the response to transient feedback. But unlike pre-
vious works, the anomaly is not directly forced, full
nonlinearity is allowed and the transients are freely
generated by the instability of a baroclinic jet. Owing
to these factors, and in spite of its simplicity, the ob-
served dynamics of our model compares quantitatively
with the atmosphere in many respects. However, a sig-

nificant discrepancy with atmospheric statistics diag-

nosed by Illari (1984) and Mullen (1987) is that our
upper-layer feedback is almost in phase with the block-
ing anomaly while it seems to be located about one-
quarter wavelength upstream in the atmosphere. The
magnitudes of the anomalies agree very well with ob-
servations, however. Apparently, the main source of
the discrepancy lies in the fact that our model is too
dissipative (as a result of the lack of vertical resolution)
and that the blocking anomaly largely projects on non-
propagative large-scale modes. We thus believe that
better agreement can be reached by allowing higher
vertical resolution and a more realistic mean wind pro-
file. Another characteristic of our model is the absence
of explicit orography. This omission is acceptable in
studying the variability over the Atlantic, and in west-
ern Europe but not when dealing with the Pacific case.
Including orographic form drag will presumably result
in triggering the phase of the blocking, although the
energetics is expected to be only slightly modified. An-
other more serious limitation concerns the transition
properties between regimes. We believe that our ap-
proach can give a good account for the maintenance
of large-scale variability but the fast transitions are
likely to involve mechanisms which are not represented
here. For instance, the link between explosive cyclo-
genesis and the onset of blocking was noticed by
Blackmon et al. (1986) among others. Such phenom-



2864

ena require higher resolution, the release from quasi-
geostrophic hypothesis, and the inclusion of the water
cycle. : )

Our approach does provide, however, the basis for
an operational definition of weather regimes applicable
to an elaborate GCM or to atmospheric data. The dif-
ficulty is then to define the function to be minimized
which must take into account the regional character
of weather regimes. Beyond this step, the procedure
can be applied in a straightforward way. If the number
of variables describing the large-scale flow is less than,
or of the order of 100, the cost of the analysis is neg-
ligible compared to the resources needed to integrate
a GCM. Furthermore, the use of a 15 000-day dataset
in this study is a very conservative choice. Some tests
have shown that 3000 days are sufficient to characterize
the weather regimes. This is not valid for the purely
statistical study of persistence conducted in Part I which
requires much more data. The difference lies in that a
much larger amount of dynamical information is taken
into account in the nonlinear equilibration. When
transient fluxes data are missing, as is the case for long
atmospheric records, a simplified version might be used
where the tendency is fully diagnosed and estimated
with finite time differences.

Persistent regimes are not the only regularities of
large-scale dynamics. Extension to recurrent evolutive
processes can be considered by the introduction of de-
lays in the functional. Then propagation effects can be
examined as well as the existence of systematic pre-
cursors for some flow configurations.
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APPENDIX A
The Quasi-Newtonian Algorithm

We recall the main features of the iterative algorithm
used in order to find minima of the cost function. We
use a general formulation for optimization problems
and define the cost function F: RY — R as a scalar
function of the variable x = (x;, - - +, xy5)7. Here, F

is assumed to be a smooth function of x and the prob- .

lem is to find the minima of F. The algorithm starts
with a first guess x{*’, and iteratively finds new ap-
proximations x\” of a minumum x* with the condition
that F(x"*"Y) < F(x‘™). The general iteration for-
mula for the quasi-Newtonian algorithm is
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xD = xW -\, d,, (A1)

with
d, = H,,-VF(x(")), (A2)

where VF(x'™) is the gradient of F with respect to x
and H,is a linear symmetric operator. In the Newton
method, H, is set as the inverse of the Hessian operator
for x = x'”, namely (in orthonormal basis) the sym-
metric matrix containing the second-order derivatives
of F. Since the computation of second-order derivatives
would take a lot of computational time, the inverse
Hessian operator is approximated in the quasi-New-
tonian method, using the information from the gra-
dient and previous iterations. Several algorithms may
be used in this purpose; here we choose the BFGS for-
mula:

On® 6nT Hyype 'YnTHn
H,,,=H,+ - A3
e " 6nT'Yn 'YnTHn'Yn (A3)
where
6n - x("*'l)}_. x(")
and ‘

Y = VF(x"V) — VF(x™).

For further details, the reader is referred to Minoux
(1983). In (A1), A, is a scalar chosen in order to min-
imize

d(N) = F(x™ + \d,).

It can be shown that the convergence of such methods
is faster than exponential (superlinear), and, more
precisely, that

D = x*|
™ — x*|

In practice, the algorithm is very efficient as soon as
x™ is close to the minimum (values of F about 10™*
times the typical initial cost) but about 100 iterations
are needed to reach this stage in our problem. Im-
provements of this method have been developed by C.
Le Maréchal (personal communication ) at INRIA who
gave us access to his numerical code M2QN1.

-0 as n—> .

APPENDIX B
Computation of the Gradient of F

As shown in appendix A, the quasi-Newton algo-
rithm needs to compute the gradient of the cost func-
tion F. For the sake of simplicity, we consider that the
optimized variable x = (x,, * -+, x,)7 is built with
the spectral coefficients of the two-level potential vor-
ticity fields. Note that the associated basis is not or-
thonormal for the inner product defined in section 3.
From (3.5) we see that the calculation of the gradient
requires the knowledge of the tendency T(L) and the
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adjoint of the differential operator of T at LDT™*/ DL
defined by the formula

DT* \_/DT .,
(£. 5z W-L) = (Fr@-L.L), @D

which must be valid for any vorticity fields L and L',
Since the adjunction is a linear operation, we can write
separately the computation of the adjoint for the three
terms 4, B and C. In order to allow a compact for-
mulation, we introduce the following operators:

} 9, 9g;
Ox: (g1, @) > ( I’ ax)
A: (a1, @) =~ (Aqy, Ago)

L: (g1, 2) = (Y1, ¥2)
Lun: (41, @2) = (Migs, Aag2)

d a
A: (41,(12)"(—'U18_‘;1,-U2 '5%)

. _p % _
B: (ql,qz)—»( o2, -0, ax)

- C (91, @) > (VilA(% - Y1), VizA(‘l/l — ¥2))
D: (a1, ¢2) = (0, —v.AyY»)
8t 3t
E: (q,,q;)—*(—aé-x—s—ﬁa—w)(m,th)

F: (@1, @) = (Dp(01), Dp(22))

where the quantities on the right-hand side of the def-
initions are described in section 2 of Part 1.

a. Adjoint of A

Owing to our simplifications, the term A is linear
and thus is identical to its differential, apart from the
removal of forcing terms. Consequently, the differential
of Aisthesum A+ B+ C+ D + E + F. We can
compute in a formal way the adjoints of the above
operators using formulas like (B1). Using the notation
¥ = (Y1, ¥2) and ¢ = (4, ¢2), an integration by parts
shows easily that for any couple, ¢, ¢/,

(q,0xq") = —(8xq9,4")

and thus,
3 = —0,. (B2)
In the same way,
A* = A, (B3)
Noting that the inner product (3-2) reads
(@0 =~ [ [ (R0t + R aga)
- ~[[ &0 + R s, B4
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we obtain
(@10 = [ =Rt - R 2apt]

and thus
L*=1L. (BS)

Putting (g, L »,q") into the integral form (B4), it is
seen that

L)’.\‘l A = L_ILM,)‘ZL. (B6)

~ Using these elementary adjoint calculations, and the

properties of adjoint composition, we compute the ad-
joint of the terms contained in 4. Since

A = —Ly,1,0x,
we get
A* =3, L 'Ly, L. (B7)
In the same way, one obtains
B* =4d,Lg, oL 7" (B8)

For the internal friction operator, we have

(a.Cqy =~ [ [ i RAws - w)

_ + v2 Ry LAY, — ¥h)]
and since ;' is proportional to R,?, and »? to R,>, this
reads

(@cay = [ [ i =wnawi - s

or
(@cay = [ v =y -,

which means that C is self-adjoint:
Cc*=C_C. (B9)

The Ekman damping operator is also self-adjoint, and
the superviscosity as well; therefore,

D*=D (B10)

and

E* =E. (B11)
The planetary-scale damping can be decomposed as a
linear combination of projections of the vorticity onto
single spectral modes. Since those projections are self-
adjoint and the coefficients of the combination are the
same in both layers, this term is self-adjoint and again

F* =F. (B12)

Thus, the adjoint of 4, (DA/DL)*, can be simply
evaluated- by splitting it into elementary operators.
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b. Adjoint of B(L)

First, we notice that this term is not linear in L, and
thus its differentiation has to be performed before ad-
joint calculations. From (2.3) and (2.5), a small vari-
ation dL of the large scales induces a variation in B:

dB(L) = B(dL, S(L)) + B(L, DL (L) dL) .

(B13)
Thus, the differential of B is the sum of two operators:

G: (41, @) = (J(q1, 1) + J (G, ),
J(q2, ¥2) + J(G2, ¥))

where § and V¥ are fixed (actually the average small-
scale part S), and H which is the composition of
B(L, -) with the differential of § with respect to L.
Using complete notations, one obtains from (2.5):
3000
(L) dL = % (V.w(L, L), dL)S

i=1

(B14)

The adjoint of U: (¢, 42) = (J(q1, ¥1), J(42, ¥2)) can
be computed in the following way:

(e, ugy = -[[ R, )
+ R2—2¢2J(42, ¥s)]
or, by integration by parts,

(4, Uy = +ff (R )

+ Ry 2‘[’2-’(‘]2, ¥2)l.
Here U is thus anti-adjoint:

U* = -U. (B15)
It can be shown in the same way that
V* = -L"'VL,

(B16)
where '

Vi (g1, @) = (J(a1, 0, (@2, 1)),
and thus

G*=U*+V*

can be computed with the same method as A™*. Con-
trarily, computation of (DS/DL) is a bit more com-
plex. Using the L-S notations, we obtain

DS 3000
(s bs L>= > (Viw(L, L), L')S;, S).
DL Z .

(B17)

.It is noteworthy that the inner product acts here on
-the small-scale subspace. Since DS/DL is a linear op-
erator acting from the large-scale subspace to the small-
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scale one, its adjoint will act in the opposite way. From
(B17) one may write

DS
S,—-L
(552 %) -

and thus, for_ any small-scale field S,

DS\* 3000

—_— . 3 . V L .

(5z) 5= = (S SHvmtr, L

This adjoint is numeﬁcally computed in this way, and
composed with B(L, -)* which reduces to the projec-
tion of the operator G* onto the small-scale subspace.
No difficulties result from mixing adjunction and pro-
jections onto small- and large-scale subspaces since the
latter are orthogonal to each other.

The gradients of the weight functions are computed
using (3.8) and (3.9):

Voew(L, L;)

3000

(z (S,,S}VLW(L L), L")

[qus(d(L L)) - (d(L, L)) VLH]

1
H
where

3000

H= % ¢(d(L, L)),

i=1

in such a way that we only need to know V ¢(d(L,
L;)). This is evaluated by:

V.o(d(L, L;)) = ¢'(d(L, L;))-Voé(d(L, L;)).
(B18)

Numerically, the gradient of the distance in the right-
hand side of (B18) is computed for the inner product
associated with the Euclidian distance d. Using this
norm, the gradient is written as (L ~ L;)/2d(L, L;).
(The singularity disappears since ¢ is actually a func-
tion of the square of the distance.) This gradient is then
multiplied by a suitable constant matrix in order to get
the gradient with respect to the inner product (-, - ).
Though this algebra may seem awkward, the separation
into elementary operators allows straightforward nu-
merical coding.

¢. Adjoint of the term C

Using the algebra given in subsection b, the adjoint
of C can be carried out in the following way. First of
all, according to equation (2.6), one gets

DC 3000
L= 2 (Viw(L, L)), dL)C;,

and the same formulas as for (DS/DL)* can be de-
rived. One then obtains

DC\* 3000
T ¢ L, = is ! V s i
(DL) E}l (Ci, LYV Ww(L, L;)
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for any large-scale field L’. The weight gradients are
estimated as previously. Once those adjoint operators
are defined, (DT/DL(L))*, considered as an operator,
is applied to the tendency 7(L) and y1elds the gradient
of the cost function.
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