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Abstract

The large-scale dynamics of the Kolmogorov flow near its threshold of instability is studied in the presence of she B-effect
{Rossby waves). The governing equation, obtained by a multiscale technique, fails the Painlevé test of integrability when
B # (. This “g-Cahn-Hilliard” equation with cubic nonlinearity is simulated numerically in various régimes. The dispersive
action of the waves modifies the inverse cascade associated with the Kolmogorov flow (She, Phys. Lett. A 124 (1987)
161). For small values of B the inverse cascade is interrupted at a wavenumber which increases with 8. For large values
of B only resonant wave interactions (RWI) survive. An original approach to RWI is developed, based on a reduction to
normal form, of the sort used in celestial mechanics. Otherwise, wavenumber discreteness effects, which are dramatic in
the present case, are not captured. (The method is extendable to arbitrary RWI problems.) The only four-wave resonances
present involve two pairs of opposite wavenumbers. This allows leading-order decoupling of moduli and phases of the
various Fourier modes, so tnat an exact kinetic equation is obtained for the energies of the modes. It has a Lyapunov
( gradient fiow) functional formulation and multiple attracting steady-states, each with a single mode excited.

1. Introduction This ensures that the parallel flow u = (—siny, 0)

is a time-independent solution of the Navier-Stokes

This paper is centered around a one-dimensional toy
mode! for studying an instance of the interaction of
turbulence and waves. The model, called the 3-Cahn-
Hilliard equation, describes the large-scale dynamics
of the Kolmogorov flow in the presence of Rossby
waves.

The Kolmogorov flow is obtained by subjecting
two-dimensional incompressible flow with kinematic
viscosity ¥ to a time-independent spatially periodic
force

f=v(~siny, 0). (0

equation. The basic flow develops a negative eddy
viscosity when » < (1/2)1/2 and thereby becomes
unstable to large-scale perturbations perpendicular to
the basic flow [1-4]. Near the threshold, the large-
scale secondary flow is, to leading order, a function
only of a suitably rescaled large-scale X-coordinate
and is governed by a one-dimensional Cahn-Hilliard
equation. This equation is integrable in the sense that
the steady-state solutions are expressible by elliptic
functions. With periodic boundary conditions and for
large times, the solution always goes to a steady state
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which minimizes a certain Lyapunov functional. Still,
the intermediate temporal dynamics can be nontrivial:
the steady state may be autained via an arithmetic in-
verse cascade in which excitation migrates to larger
and larger scales through a succession of long-lasting
quasi-equilibrium states [5].

The aim of this paper is to study the modification
of the large-scale dynamics of the Kolmogorov flow
when planetary rotation, in the form of the strongly
dispersive B-effect, is incorporated. As is known, the
Rossby waves produced by the B-effect are highly
anisotropic: the generation of vorticity is proportional
to the North-South (poloidat) component of the ve-
locity; by taking the basic Koimogorov flow to be in
the East-West (toroida!) direction we ensure that it re-
mains unaffected by the waves, while the large-scale
secondary flow may be strongly affected. Actually, the
larger the scale, the more important the B-effect be-
comes, since Rossby waves possess the somewhat un-
usual feature that their period is inversely proportional
to their wavelength' . Thus, at sufficiently large scales,
the wave period becomes shorter than any other char-
acteristic time, and strong phase mixing suppresses all
but resonant wave interactions for which the phase
factors cancel out.

Resonant wave interaction theory (RWI) has nu-
merous applications in geophysical fluid dynamics,
plasma physics and solid state physics (see, e.g.,
Refs. [6,7]). Work in the early 1960s on the subject
made use of a Gaussian assumption, introduced in
a heuristic way (see, e.g., Refs. [8-10}), to derive
‘kinetic’ equations for the mean square Fourier am-
plitudes. Thanks to the smallness of the ratio of char-
acteristic times, various asymptotic expansions can be
carried out. A systematic asymptotic theory, in which
the small parameter is the ratio of the wave period
to the nonlinear characteristic time, was developed in
the late 1960s by Benney, Newell and Saffman, called
here the BNS method [11,12]. This theory assumes a
continuum of wave vectors, and may run into difficul-
ties when discreteness of the wave vectors becomes
an important feature, for example when studying the

! Until a wavelength comparable to the ‘deformation radius’ is
reached; see Section 6.

largest scales of a bounded (or spatially periodic)
system, which is precisely the goal of our investiga-
tion. One instance where discreteness leads 1o terms
not captured by the BNS method is the so-called
S-theory of Zakharov, L'vov and Starobinets [7,13].

Our alternative approach to RWI makes use of nor-
mal form techniques borrowed from celestial mechan-
ics which are directly applicable to the discrete prob-
lem.

The paper is organized as follows. In Section 2 we
formulate the problem leading to the 8-Cahn-Hilliard
equation. The derivation uses 2 muitiscale method.
Only the essential scaling arguments are given, tech-
nical details being relegated to Appendix A. In Sec-
tion 3 we show that the B-Cahn-Hilliard equation,
contrary to the Cahn-Hilliard equation, is not inte-
grable, in the sense that it does not have the Painlevé
property. Here, again, the emphasis is on concepts,
with more technical steps relegated to Appendix B.
Section 4 is devoted to numerical exploration of the
B-Cahn-Hilliard equation. In Section 5 we discuss the
asymptotics for large values of B, using a norma form
technique to decouple the dynamics of amplitudes and
phases of spatial Fourier modes. In Section 5.1 we ex-
plain why some terms are missed by the BNS method
in the discrete case. We also comment on the work of
the Russian school whick did incorporate such terms,
albeit in a somewhat heuristic way. For the S-Cahn-
Hilliard equation, we obtain a “resonant interaction
Cahn-Hilliard” (RICH) equation, some of the key
properties of which are presented in Section 5.2. Con-
cluding remarks are made in Section 6.

2. The B-Cshn-Hilliard equation for the
large-scale dynamics

We consider a two-dimensional incompressible flow
subject to an external force f in the presence of 2 8-
effect2. The velocity w = (u;, k2) can be written in
terms of a stream function’

2 For background on the S-plane approximation and its limita-
tions, see, e.g., Refs. [14,15}.

3 We use the fluid dynamicist’s definition of the stream-function.
In the geophysical commuaily, the opposite sign is generally
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u,-=s,-,~6,~?. i,j= l.2 (2)
Here, &; is the fundamental antisymmetric tensor
(&2 = —&x = 1, zero ctherwise), 3j stands for a/ax,-
and 9° for the Laplacian operator®.

In terms of the stream function the Navier-Stokes
equation reads

38 + J(W,¥) = v’ W - £;0:f; - Bra¥.
3)

Here. J( f.8) = &;;(8:f)(9;g) is the Jacobian, v is the
{kinematic molecular) viscosity and 8, is the Rossby
parameter > .

We now abserve that when the external force is
given by {1), the Navier-Stokes equation admits the
solution ¥ = cosy, called the Kolmogorov flow, for
which only the viscous and forcing terms are nonvan-
ishing.

When the Reynolds number of the Kolmogorov
flow. defined as R = 1/v, exceeds the critical value
R. = V2, x-dependent large-scale perturbations expe-
rience a negative eddy viscosity v = v—1/(2v) (see,
e.g., Ref. {4]). In the neighborhood of R, multiscale
techniques can be used to derive an equation for the
large-scale dynamics. For the case of the Kolmogorov
flow without the B-effect, this was done in Refs. [2]
and [3]. The B-effect introduces only relatively mi-
nor modifications in this derivation. Let us here just
state the main result and give some heuristic insight,
leaving details for Appendix A.

Let us, in the Navier-Stokes (3), replace the Kol-
mogorov flow ¥, called the (smali-scale) basic flow,
by ¥ + . where the perturbation ¢ is assumed to
depend on x, y and 1, the dependence in x and ¢ be-
ing ‘slow” in a sense we shali now define. We assume
that the Reynolds number is slightly in excess of the
critical value,

R=R.(1+€. (4)

assumed.

*Instead of x; and xy we shall often use x and y and dencte
the space derivatives by 4, and d,.

5 The notation B will be reserved for a suitably rescaled version
of the Rossby parameter.

We now show how the various scalings and the form
of the large-scale equation may be obtained heuristi-
cally. Consider a large-scale x-dependent perturbatici
of wavenumber & < 1. Momentarily ignoring the 8-
effect which is dispersive, the linear growth rate of this
perturbation is of the form y(k) = —vgk + aek® +
O(k5). We know that the eddy viscosity vg is nega-
tive and O(e?) while o4 has no reason to vanish at
R = R, and is actually negative. Hence perturbations
with wavenumbers O(¢), up to k. = (—w;/m)" 2,
are linearly unstable and have a maximum growth rate
O(e*). This suggests the introduction, in addition to
the “fast’ variable y, of the following ‘slow’ variables:

X=ex, T=¢é (5)
Consider now the B-cffect, which acts nontrivially on
x-dependent perturbations. The frequency associated
to the wavenumber k is B;/k. If *ve require that, for
k = O(e), this frequency be compa-able to the afore-
mentioned growth rate, we must take 5, = O(€”), that
is, set

Bi=€8B. )

Finally, we must find the scaling in € for the ampli-
tude of the perturbation. This is determined by the
form of the nonlinearity which saturates the exponen-
tial growth of large-scale perturbations predicted by
the linear theory. Since the leading-order large-scale
motion depends only on X, there can be no advective
nonlinearity (the Jacobian of #(X) and of a3y(X)
vanishes). Other typ¢s of quadratic nonlinearities are
ruled out by mcinentum conservation or parity. The
low :st order admissible nonlinearity is a cubic Cahn-
Hilliard term which may be viewed as an additive
casrection to the eddy viscosity, proportional to the
square of the large-scale velocity, that is, to (dxy)? =
€2(a,4)2. Since the eddy viscosity is O(€?), nonlin-
ear saturation should lead to an amplitude of ¢ which
is O(%).

Once the proper scaling has been identified, stan-
dard multiscale techniques can be used to derive the
leading order large-scale equation (see Appendix A).
The resulting equation, which emerges technically as
a solvability condition to order €5, reads
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aroxp(X.T) = ax (M (3x9)? — As) 39)
~Madyy ~ By - C). 0)

Here, the notation ¢ is shorthand for (), the lead-
ing order of an expansion in powers of €, averaged
over the fast variable ® ; the constants in (7) are given
by

A= 2V2, A= V2, A3= %\/2. (8)

The constant C depends on the boundary conditions.
For example, if ¢ is periodic in the X-variable, C isthe
average of ¢ over one spatial period. We observe that
when the operator Jy is applied to the twosides of (7),
the Lh.s. and the 8 term are just rescaled versions of
the corresponding terms in the original Navier-Stokes
equation {3). As for the A3, A3 and A; terms, they are
respectively the (negative) eddy viscosity term and
the correction thereto involving higher order deriva-
tives and nonlinearities.

Eq. (7) can also be written in terms of the (large-
scale) velocity

v(X.T) = —-ax(X,T), ©))
as

Fro(X,T) =dx ((Mv? - Ay) 3xv) — Asdgo
-Bog'v, (10)

where ;' denotes the inverse of the X-derivative
(with suitable boundary conditions).

Eqs. (7)-(10) will be called the 8-Cahn-Hilliard
equation ( 8-CH). For 8 = 0, the usual Cahn-Hilliard
(CH) equation for the Kolmogorov flow is recovered
[2,317. Let us recall a few facts about this equation.
Afterremoval of one X-derivative® , the Cahn—Hilliard
equation has a variational formulation in terms of a
Lyapunov functional (gradient flow} [3,16],

S This average is actually trivial because the leading-order per-
turbation of the stream function is independent of y.

7The equation, in a generalized form with arbiirary rather than
cubic nonlinearity, occurs in studies of the spinodal decomposition
(see Ref. [16] and refersnces therein).

% The addition to the stream function of 2 function depending
solely on the time variable leaves the velocity unchanged.

6F
XT)=-—,
ory(X.T) 5¢

Piv) = [ dxidneann® - b’
+ 1359’1 an
When periodic boundary conditions with period L
are assumed in the variable X, the sofution tends for
large times to the steady state which minimizes the
functional F[y]. This state is unique (up to a transia-
tion) and may be expressed in terms of elfiptic func-
tions. However, when the period L is very large, that
is, when there are many linearly unstable modes, there
are many different steady states which, locally, have a
kink/antikink structure,

~ 3 1/2 ( A 1/2 '[
v=+ (l\—:) tanh ‘-2-/\—3) (X - XQ))-E .
(12)

The succession of quasi-equilibria with period L/g
{where ¢ is a positive integer taking the values gng,
Gmax — 1, Gmax — 2, . ..) observed in numerical sim-
ulations by She [5] can be interpreted in terms of
kink dynamics with successive annihilations of pairs
of kinks-antikinks [22,17].

3. Painlevé analysis of the f-Cabn-Hilliard
equation

At the end of the last century it was realized by
S. Kowalesvki and F. Painlevé that there could be a
connection between the integrability of a nonlinear
differential equation and its analytic structure for com-
plex values of the independent variable [ 18-20]. In-
deed, equations which possess the so-called Painlevé
property are often found to be integrable. This prop-
erty means that, in the complex domain, all the mov-
able singularities of the solutions are poles. Movabie
singularities are such that their locations depend oa
initial and/or boundary conditions. By Painlevé anal-
ysis, one understands the testing of an ODE to see if
it has the Painlevé property. This is done by trying to
perform a Laurent expansion of the solutions around
an arbitrary pole, the order of which is determined
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by dominant balance (for details and extension of the
technique 10 PDEs, see, e.g., Ref. [21]).

1t is quite clear that the Cahn-Hilliard equation has
the Painlevé property, since its steady state solutions
are elliptic functions and the latter are meromorphic.
We shall now show that the B-Cahn-Hilliard fails the
Painlevé test and could therefore have considerably
more involved dynamics.

It is enough to consider the time-independent B-CH
equation. After suitable rescaling of the independent
and dependent variables and the use of a complex
space variable z, we then obtain the following ODE:

a3 (/3 - u— A3:u) — pu=0, (13

with a positive constant A. Let z, be a movable singu-
larity of this ODE. Dominant balance, using the most
singular terms near z., shows that the leading-order
singularity should be a simple pole. Hence, we try the
following Laurent expansion in the neighborhood of

[s.9]
w(2) =(z-2)7" Y iz -, (14)
P

where the complex Laurent coefficients u; are to be
determined (if possible) by substitution into (13).
Equating the coefficients of the most singular terms,
we obtain 1y = +v/6A. Higher order Laurent coeffi-
cients satisfy equations of the form

ajuj =bj j=l,2,.... (15)

The coefficients a; and b; are determined recursively.
If all the a;s turned out to be nonvanishing, the ;s
would be well determined and the solution given by
the Laurent expansion (assuming it converges) would
have only one ' ee parameter, namely z.. The ODE
(13) being however of fifth order, this is a very re-
strictive class of solutions. Actually, there are several
values of j for which a; = 0. These are called reso-
nances. They fall into two classes. If b; = 0 for sucha
Jj» the resonance is called compatible: the correspond-
ing u; is then arbitrary and gives an additional free
parameter. If b; # 0, the resonance is noncompati-
ble in the sense that (15) has no solution. It is then
impossible to construct a Lavrent expansion and the
Painlevé test is said to fail.

In Appendix B we obtain the following results for
the CH and 8-CH equations. First, when 8 = 0 and
we drop the three derivatives on the Lh.s. of (13), so
as to obtain a second order equation, the Painlevé test
holds, as expected. Second, when B =0 and we keep
the three derivatives, we have 2 kind of weak Painlevé
property. Third, when B # 0, a noncompatible res-
onance occurs for j = 5 and the Painlevé test fails.
This, of course, tells us nothing about the integrability
of the time-dependent problem.

4. Numerical simulations of the g-Catin-Hilliard
equation

The numerical results presented in this section are
for the 8-CH equation with spatial periodicity. Peri-
odicity is not just a convenient way of doing the nu-
merics: in the absence of the B-effect, the presence of
an infrared cutoff is essential for the solutions 10 attain
a steady state, since otherwise the arithmetic inverse
cascade would proceed for ever. In the presence of the
B-cffect, the infrared cutoff bounds the frequency of
Rossby waves.

The only two parameters of the problem are the
spatial period and the (rescaled) Rossby parameter B.
For numerical purposes, it is convenient to keep the
spatial period fixed, say, equal to 2zr. This is achieved
through rescaling of the space variable: X — pX. In
terms of the velocity, the 8-CH equation then reads

A A A3 -
drv= 3# §v3 - ;56,2,0 - ?a;u - pPay 'v. (16)

Note that the number n of linearly unstable modes is
p(2/3)"/2 (more precisely, its integer part). This is
not modified by the presence of the g-effect.

The numerical integration of (16) makes use of
a standard pseudo-spectral method in which spatial
derivatives and inverse derivatives are calculated in
k-space (Fourier space) while the cubic term is cal-
culated in X-space (physical space). Alias removal,
resulting from the use of a finite number of Fourier
modes {from k = —M to k = M), is done by using
4M points in physical space. Time-stepping is done
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by an Adams-Bashforth scheme ? for all terms except
the fourth derivative damping term, which is treated
by an exponentiat scheme.

Particular attention has to be paid to the choice of
the time step 6T when B is large. It is not enough
to require that 6T be small compared to the vari-
ous characteristic times such as the Rossby period
Trossby ~ k/(pB), the damping time Tyamp ~ p*/K*
and the growth time due to the negative eddy viscosity
Te ~ p*/k. Indeed, the Adams-Bashforth scheme,
when applied to an oscillator of frequency w = pB/k,
leads to a very slow instability on a time scale T, ~
w~4(8T)~3. When B is large and 8T < Trossby this
spurious time scale may stili be comparable to 7,
unless (8T)38*(p/k)® < 1. This condition is most
stringent for the gravest mode (k = 1). Failure to sat-
isfy

BN’grd <« 1 (1m

produces wrong numerical results.

Most of the simulations reported hereafter are done
with random initial conditions in the spatial domain
with a white spectrum. Each run is then character-
ized mathematically by the amplitude of the initial
condition, the seed for the pseudo-random generator,
the number of unstable modes n = p(2/3)"/2 and
the value of the Rossby parameter 8. The purely nu-
merical parameters are the truncation wavenumber M
(which takes the value 64 in all the runs) and the time
step 8t which must be suitably adjusted as explained
above.

Fig. 1 corresponds to n =7 and 8 = (0. Tt is meant
10 illustrate the arithmetic inverse cascade which takes
place in the pure Cahn-Hilliard case and which has
already been reported in Ref. [5]. This figure and all
subsequent ones display the temporal variation of the
energies of the various Fourier modes, as labeled. Ob-
serve that very sharp transitions take place at which
the dominant mode changes to a smaller wavenum-
ber. These transitions correspond to kink-antikink an-
nikilations [2,5]. This inverse cascade proceeds until

9 Except for the first time step which is a second order Runge-
Kutta step.

o al sl s
0.5 » ]
=
o] VN T
k=3 ...\
:;‘, 0.3 \ \ ' .%."" i
oad 4 e
0.1 ]

g o

T T TN T T TTTrI— S
10’ 10° 16 1¢"
Time

10°
Fig. 1. Inverse arithmetic cascade, Time dependence of the cuergy
of vasious Fourier modes for the solution of the Cakn-Hilliard
equation (B8 = 0) with 2 = 7 unstable modes. This is basically the
result obtained by She {5]. Note the very suddea changes in the
dominant mode, which comrespond to kink-antikink anrikilstions.

05 =32 Ej\ -

Fig. 2. Modification of the arithmetic inverse cascade by inclusion
of a very small S-effect with » = 7 and 8 = 10~%; otherwise,
samne conditions as in Fig. I. Note the oscillations.

a steady state is reached in which the gravest mode
(here, k = 1) dominates'®.

Fig. 2has n = 7 and 8 = 10™* and differs from
Fig. 1 by the presence of conspicuous oscillations’ .
The steady state values (for the energies) are essen-
tially the same as for §=0.

10 This solution is expressible in terms of elliptic integrals and
has noavanishing harmonics for all odd waverumbers.

1 The actual times of kink-antikink recombinations have changed
by about five per cent for k = 1,2, 3, an amount too smalt to be
visible on Fig. 2.
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“1 ® \ [

0.3

B(k)

0.1 1 10 100 1600

Fig. 3. Intesruption of the arithmetic inverse cascade by the S-cffect
with n = 7 unstable modes. (a) B=0.0i: (b) 8= 0.1. Note that
the wavenumber of the mode dominating at large times increases
with B.

As B is increased, more significant changes take
place, Figs. 3a and 3b have f = 0.01 and 8 = (.1,
respectively, but the same initial conditions. They il-
lustrate the phenomenon of interrupted inverse cas-
cade: as B is increased, the wavenumber at which
the period of Rossby waves becomes comparabie to a
characteristic time of the Cahn-Hilliard equation in-
creases itself and the inverse cascade stops as phase-
mixing becomes increasingly important. Note that for
£ =0.01 and B = 0.1 the wavenumber which domi-
nates at large times is k = 2 and k = 3, respectively.
With the same initial conditions and 8 = 1 (simula-
tion not shown) the dominant wavenumber is k = 4.
For such ‘intermediate’ values of 8, the temporal be-

k=1
0.4
(b)
0.3~
2
43}
0.2
it H
0.1 -‘:'-,_." (a)
L
()
0.0 g
i i 1 L ¥ ¥

o 100 200 300 400 500 [-{+]]
Time

Fig. 4. Simulation of the B-Cahn-Hilliard equation with strong
Rossby term: 8 = 10 and n = 7 unstable modes. At long times the
Fourier amplitudes go to a steady state with a single Fourier mode
excited, as predicted by the resonant interaction Cahn-Hilliard
equation (53). Several singlc-Fourier mode attractors are compet-
ing, as indicated by (a) and (b) which correspond to two slightly
different initial conditions,

havior can be rather complex and we do not rule out
some weak form of chaos. Note that the increasing
with 8 of the wavenumber which dominates at large
times is a typical result when random initial condi-
tions are used; we shall see later that, even for large
values of B, small wavenumbers (e.g., k = 1) may
dominate at large times, but the corresponding basins
of attractions are probably quite small (Section 5 and
the end of Section 6).

As B becomes even larger, Rossby waves become
important at all wavenumbers within the linearly un-
stable band. The dynamics should then be dominated
by resonant wave interactions. Application of standard
resonant wave interaction theory, of the sort discussed
in Section 5.1, led us to expect that, at large times, all
the energy would be concentrated in the gravest mode.
Acteally, we found by performing a large number of
numerical experiments with different initial conditions
that there are several competing altractors. They all
have a single Fourier mode excited, but not necessarily
the gravest. The examples shown in Fig. 4 correspond
to n=7 and B = 10 with two slightly different initial
conditions (chosen near the separatrix of two basins
of attraction by a dichotomic procedure). The solution
marked (a) has all the energy going for large times
into the mode £ = 2, while for the solution marked
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(b),itisthemode k=1.

This (apparent) contradiction, which we first ob-
served in our simulations, has led us to revisit the the-
ory of resonant wave interactions.

5. A theory of discrete resonznt wave interactions

In Section 4 we found that, for large values of 8,
very simple asymptotic behavior emerges as T —
+00.

When B is large, the pericd of Rossby waves is
much shorter than any other characteristic time aris-
ing from Cahn-Hilliard dynamics. This is the kind
of situation for which the resonant waves interaction
(RWI) theory has been developed. Tt turns out that, in
the form in which RWT has been mostly used so far, it
is not applicable to our problem because a continuum
of wavevectors is assumed.

As pointed out by Benney and Saffman [11], early
work on RWI, such as may be found in Refs. {891,
assumed a discrete spectrum, that is, a representation
of a spatially periodic field in term of its Fourier se-
ries. It also used ad hoc closure assumptions, such
as a Gaussian distribution of the complex amplitudes.
Subsequent work on the continuum case by Benney
and Saffman and Benney and Neweli [ 11,12] ledtoa
systematic justification of closed amplitude equations
by the use of a multiple time method combined with
a cumulant expansion.

In the opinion of Benney and Saffman [11], the
continuum results can be obtained from the discrete
results in the limit of infinitely close wavenumbers.
As we shall see, the sclutions for the discrete and con-
tinuous cases will stay close only for moderately long
times. We found that a convenient way to tackle the
discrete problem is through the use of averaging and
normal form techniques (see, e.g., Ref. {23], Chap-
ier 5). The idea is to consider the B-CH equation a;
a perturbation of a system of oscillators, which can
be handled by techniques frequently used in celestial
mechanics, but without the restriction to conservative
systems.

We start from the 8-CH equation (7) and expand
the solution in a spatial Fourier series,

00

v(T,X)= Y 5(T) exp(ikX). (18)

k=~o00

It is traditional, in the averaging formalism, to choose
a unit of time such that the unperturbed frequencies
are order one. Here, it is simpler to choose the unit
of time associated to the Cahn-Hilfiard dynamics and
thus to have a small Rossby time.

Hence, we set 77 = 1/(pB) and use 7 as expansion
parameter. (The notation € was already used in the
multiscale approach of Section 2.)

Using (8), (16) and (18), the 8-CH equation can
be written as follows in the Fourier representation:

6‘1»"--——’62 Z I, De, 0

ky +ky+ky=k
Vi, 3W2.,\.
( FLRE L ) D
k=11,£2,43,... (19)
Note that the Fourier coefficients ; satisfy Hermitian
symmetry,
box=10. (20)

We now introduce amplitude and phases (which
will here play the same role as action and angle vari-
able in conservative systems),

Oy = agexpiby,

220, ai=a, 0_,=-0; (94)]
The a;s and ;s satisfy

&rak‘fk(a..ﬂ.), (22)
Irby = "wi + 8c(Ge.0s), (23)

where @ = 1/k is the nondimensionalised Rossby
frequency 2, a, and 0, stand for the full set of a;s
and 8;s and

12 For convenience, we define the frequency wy, as being associated
0 a time-dependence of the form e™' rather thas e ="+, Hence,
the phase-speed of the Rossby waves (mot used in this paper)
should be —a/k rather than ay/k.
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Sz (WE - Ak)a - LiERe ) ayana,

ky+ky+k3=k
% expi( B, + Oi, + Bi, — Bi). (24)
&
g =—A—Im E Ay, G,
a;
b +ky+ky=k
x expi(Oy, + 0, + 0, — 0:). (25)
Here,
- V2 - 2 . 3
a2 52 532 (26)
3p* p* 2p*

Let us now explain how the averaging method is
applied to the system (22),(23) (for details, see
Ref. [23]). We treat (22),(23) as if it were a sys-
tem of finitely many ordinary differential equations.
In fact, therc are infinitely many Fourier components
and, thus, infinitely many equations. However, be-
cause of the strong dissipation at high wavenumbers
the system {22),(23) can be approached very closely
by systems having only a finite number N of Fourier
components. Anyway, cur goal here is only to present
a systematic theory, not a rigorous one > . In the spirit
of normal form theory, we seek a change of the inde-
pendent variables a; and §;, reducing to the identity
for 7 = 0, and such that the transformed equations
do not involve any phases in their right hand sides, if
possible.

Let us cenote the new amplitudes and phases by p;
and ¢, respectively. The change of variables is sought
in the form of a power s¢ries in n,

a=pi + 19" (pes @) + 170 (Par@e) + ...,
27N

6: =¢i + 1€, (Pe. o) + 170 (Por@0) +.
(28)

where, again, p. and ¢, stand for the full set of pis and
¢isand the functions p*, p@, . 0V, ¢P,.. are
2ar-periodic in all their phase arguments. They are to
be chosen, if possible, in such a way that in the new
variabies the equations take the form

brpe=FV(po) +9F " (pa) + ... (29)

'* An example of a rigorous infinite-dimensionat perturbation the-
ory for Hamilionian systems may be found in Ref. [24].

|
dru= o o +GP(p) +7G (pe) + ... (30)

Differentiating (27),(28) with respect te T, we obtain
(repeated indices are summed over)

apth (1
5rdk=51'Pk+ﬂ P,, 31'p£ +Tl p,( 3rlPr

F ) (2) F) (2)
+n“°—*arpf+n2 gt (1)
dp
and

a (%) E) (1)
o= am+n—arp n“’—am

d o>
+n° -L drpe+ 0 __4, :9r¢:+ (32)

Substituting (27),(28) in (22),(23) and performing
a Taylor expansion, we obtain

afi M fk o 2
éra + +0(97), (33)
= fx "ap Py ¢ L
P
orde= o+ i+ n gl + kel + 00,

(34)

where all the functions are evaluated at the arguments
{Pe,¢s). Upon using (29) and (30) in (31) and
(32), we obtain

ap;" " o (1)

— —_—F F
+0¢lwl+ﬂa s TR
api?
des

(]
dray=F"

dpy"

+n—— ” GO b +0()  (35)

apr

a‘P(l)

! 0 (1)
3= -+ ——w; + G +
) 7 ) dps "G

‘7‘P}‘” (0)
+——F” +
K ape ¢

(2)
12w+ 0. (36)
dpe
We now identify (33) with (35) and (34) with (36)
order by order in 5. The only terms O(5™") are in
(34) and (36) and are already identical. To order no,
we obtain

1

oy )G"”

]
Pe
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oy

20 = fi Fo, (37)
F) {1)
;’;‘;w, =g - G, (38)
To cider ', we obtain
%td{ = R;‘z). (39)
PE)
=S, (40)
with
g e oy 3
K = ¢ ]

ap; dpg

(1) (1)
—Fk(“—aﬂ" G;O)_‘apk Flw)’ 41
Ay aps

gk % m 08" o
s 2 %8k (1) | 9Bk by _ o) _ 98k o)
k apfpt am% k 304 (]

gt (0)
-—F". 42
ape ! “2)

We observe that all four equations (37), (38), (39)
and (40) have the same structure: a combination of
derivatives with respect to the ¢s equal to a right hand
side.

We now denote by angular brackets the operation
of averaging over all phases,

2n
d
(h(e1,92,...)) = -2%
0
21rd
x/ -2i:ri...h(¢..¢z....). (43)
0

Consider first (37). It is clear that the term 3p}"’ /3¢,
in (37) has a vanishing average. Therefore, a neces-
sary condition for (37) to be solvable is

{fi(Po.00)) = F¥(ps). (44)
Thus, to leading order in %, (29) reads
3o = FY(pe) = (fr(pe, @0))- (45)

In other words, the leading order equation is just
obtained by averaging the original equation (22) over

the phases. However, (44) is only a secessary condi-
tion. To actually try and solve (37) for the pﬁ”s. we
expand £ and g,") in a Fourier series in all the phases,

fi(Per0s) =Y fug(pe) expliois). (46)
§
A (pege) =Yl (P expligi). (4D
§
Here, the Fourier variable £ = {£,} has signed integer

components. Note that the Fourier series in the phases
is unrelated to the spatial Fourier decomposition used

at the beginning of this section.

Eq. (37) is equivalent to the following refation
among phase Fourier components:
{felpe#)) =F{"(ps) (£=0), (48)
£ 0 plg = frelpe) (£ #0). (49)

Eq. (48) is just the solvability condition already writ-
ten (44). Eq. (49) is immediately solved as
(N _ fk.;(Po)
k7 ifgwy

provided that £, w; does not vanish for those fi £( e s
which are nonzero. The condition

(50

£ =0, (51}
which is called ‘the resonance condition’, prevents the
existence of a solution unless

frg=0, (52)

in which case one has a ‘compatible resonance’.

As sliown in Ref. [23], when resonances are
present, it is in general necessary to modify the
asymptotic expansion and to include a certain number
of integer combinations of the original phases among
the independent variables of the averaged equation.

So far our formalism has been quite general with
no particular use made of the specific form of the dy-
namical equation. In Appendix C we show that for the
B-Cahn-Hilliard equation four-wave resonances are
present in (37) which determines the leading-order
asymptotics. These resonances are, however, ‘decom-
posed’, in the sense that they are made of two pairs
of opposite wavenumbers. This implies compatibility.
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Hence. io leading order, standard averaging, namely
(4%], applies. The final equation for the amplitudes,
ihe resonant interaction Cahn-Hiiliard (RICH) equa-
tion, reads

3rpt=(‘/—k2-i )Pk

¥ 2>t - st | o1 (53)

Here. no summation is implieG on k. For the details,
the reader is referred to Appeszdix C.

Equations for higher order terms, such as (39)
involve resomances zmong six waves and more. As
shown in Appendix D such resonances are not neces-
sarily decompesed. It may be shown that this implies
the existence of noncompatible resonances. Thus, the
phases cannot be completely eliminated when study-
ing the corrections to the leading-order asymptotics
and some kind of slow chaos (on time scales O(1/7)
or larger) could be present.

We note that situations with compatible leading-
crder resonances and noncompatible higher order res-
onances are often encountered in celestial mechanics,
the best examples coming from the theory of secular
motion of astercids [25-27].

5.1. Comparison wiih continuous resonant wave
interaction theory

To facilitate thz comparison with the Benney-
Newell-Saffman (BNS) theory of resonant wave
interactions § 11,12], we rewrite (53) in terms of the
(discrete) kinetic energy spectrum E(k) = p% as

FrE(k) = 2(‘2k2 S‘fk‘) E(k)

e

{ ZE(E) E(k)] E(k). (54)

£=1

‘/._
P

Here, again, no summation is implied on k. Suppose
we now go to the continuous limit. This can be done by
cither of the following methods: (i) by changing the
assumed 2ar-periodicity into an L-periodicity and then

letting L — o0; (ii) by letting the number of linearly
unstable modes n — oo, spreading the energy over a
very large number of modes, in such a way that each
individual E(k) — 0, but the sum )", E(¢) remains
finite and goes over into the integral [ Ecom(q)dg.
In this continuous limit, (54) goes over into

OrEeom(k) =2 (sz - 3‘;1:‘) Econ(K)
s‘fa 2E (k) [ Ecom(q) 4. (55)

Observe that the term proportional to E2(k) on the
rhs. of (54) has dropped out.

Eq. (55) may be derived directly from the g8-
CH equation (10) by making the quasi-normal
approximation, i.e. by discarding the fourt'-order
cumulant, The BNS method gives a rationale for
this approximation. The argument goes roughly as
follows. One writes the cumulant hierarchy derived
from the B-CH Eq. (7). One then observes that
for homogeneous random functions in the continu-
ous limit, the fourth order Fourier-space cumulant
(6Ck1)D(ka)D(k3)D(ks)),, a distribution with sup-
port in the hyperplane ky + ky + k3 + ks = 0, invalves
quartets of wavevectors (&, kz, k3, ks) such that their
full sum vanishes but no partial sum vanishes. It fol-
lows that such quartets cannot be resonant for Rosshy
waves (see Appendix D). Hence, for large Bs, the
fourth order cumulant is phase mixed.

The preceding argument does not work in the
discrete case. Indeed, there exist then discrete fourth-
order cumulants with vanishing partial sums of
wavevector arguments, for example { ig O_g Uz 5-z)..
With such cumulants are associated resonant wave
interactions and, hence, no phase mixing. This is
a (cumbersome) way to understand why the term
proportional to E2(k) survives in the discrete case.

For our problem, the long-time behavior of (54)
and (55) can be very different. If (55) is used witha
minimum wavenumber Ky, eventually a steady state
is obtained with all the energy concentrated at kyjs .

14 This is an instance of a general resuit presented in Ref. [28).
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In contrast, as we shail see in the next section, the
solutions of (54) can go to any of many possible stable
stzady state solutions.

We also mention that discreteness effects similar
to those encountered here are present in the so-called
S-theory for the parametric excitation of spin waves
in the presence of time-periodic pumping, a problem
which also has cubic nonlinearity { 13]. It was realized
in this reference that it is not correct to just discard
the fourth order cumulant. The appropriate modifica-
tion was however introduced in a somewhat heuristic
way. Later, a more systematic theory was developed,
which uses diagrammatic expansions {29]. It appears
that the normal form approach (which here reduces
basically to averaging) gives more insight. In this con-
text it is of interest to note that the Russian school
was aware of some connection between resonant wave
interaction theory (called by them ‘wave turbulence’
or ‘weak turbulence’) and analytical mechanics. For
example, on p. 11 of Ref. [7] at the end of a sec-
tion on the elimination of nonresonant terms from a
wave Hamiltonian, the following is observed: “Note
that the above-described transformation is analogous
to the transformation of the Hamiltonians to their nor-
mal forms, i.e. in the vicinity of fixed points in classi-
cal analytical mechanics”. Similar remarks were fre-
quently made by V.E. Zakharov (V.S. L'vov, private
communication).

5.2. Solutions of RICH

We now study the resonant interaction equation
RICH, written in the form (54). We first show that
RICH has a Lyapunov functional formulation. We set

E(k) = k*b}. (56)

Note that he bys are just the moduli of the Fourier
components of the stream function. It is elementary to
check that the equations for the b;s may be written as

by = ~3db (57)

where the Lyapunov functional G is given by

G

2
i (zk’bz) N
k=1 k=t

_?;2‘/2 Y 26+ gp‘/Tizk‘bi. (58)
k=1 k=1

The presence of a Lyapunov functional may seem sur-
prising, since the variational formulation for the orig-
inal Cahn~Hilliard equation could be lost by the pres-
ence of the dispersive B-effect. Actually, in the limit
B — oo, there is no dispersive term left in RICH,
but only a selection of a subset of all possible aonlin-
ear interactions present in the Cahn-Hilliard equation,
namely the resonant ones.

An alternative formulation, in terms of the E(k)s,
is to rewrite (54) as

G
JE(k)’

where G has now only linear and quadratic terms in
the E(k)s,

2
g=422 (Zm)) ~1Y B
p k=t k=1 }

2 Y Eto+ 3-{—52185(1:). (60)
pZ k=t L4 k=t

o In(E(k)) =~ (59

It follows from either of the Lyapunov formulations
{57) and (59) that the solutions of RICH tend, at large
times, to any of the stable steady states corresponding
to a focal minimum of the functional G.

We shall now show that, when p is large, i.c. when
there are many linearly unstable modes, there are many
stable steady-state sofutions.

Clearly, RICH has single-mode steady-state solu-
tions. Indeed, it is seen that (54) is satisfied, if for a
particular mode k the energy E(k) has the value

L
4p?’
while it vanishes for all other modes k' # &

Multiple-mode steady-state solutions for a set X =
{ki. k2,...,ky} of m modes can be obtained as

E(ky=1- (61}
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3k
E(k)-ZE—5+4 5 (62)
where the iotal energy is
- 1
E_2(2m~l)( 2p2§ ) (63)

The existence of these steady-state solutions is con-
strained by the realisability condition, i.e. E(k;) > 0
for all k; € K. Hence, the number of m-mode station-
ary solutions is finite for a given p and scales with p™
whea p is large.

The stability of the steady-state solutions is studied
by introducing a small perturbation in (54), that is,
we set

E(ky=E(\+ E'(k), |EX)| < E(k). (64)

This leads to stability equations which separate into
two subsets, one for the wavenumbers k; belonging to
K. namely

= ~E(k) 225(@) E)],

4\/2k- P

(65)

and one for the exterior wavenumbers g; not in K,
ramely

#E'(g;) = - {21:?—% qZ] E'(g)).

(66)

7
4V2q

From (66), we see that the stability to exterior modes
is most restrictive for the smallest wavenumber go not
in K. Hence, a necessary stability condition is

W+em-Dg-) k>0 (67)
kek

Let us first consider single-mode solutions with
wavenumber k. If k = 1, then g¢ = 2 and stability to
exterior modes follows from (67). If k > 1 stability
to exterior modes requires

P<l + 1p (68)

When stability to exterior perturbations holds, we can
replace 3 ;o E'(§) by ek E'(D) in (65) without

loss of generality; that is, we restrict the stability prob-
lem to the subspace spanned by the excited modes. For
single-mode steady-state solutions, the eigenvalue is
then always negative. This means that condition (68)
is then sufficient for stability. We have thus estab-
lished that RICH, unlike the Cahn-Hilliard equation,
has multiple stable steady-state solutions with a single
mode excited. By (68), the number of such solutions
scales with p when p is large.

We now consider 2-mode steady-state solutions, the
(interior) stability equations are

&E' (k) =—-AE (k) - 2A:E (ky), (69)
OrE' (kp) = -2A2E (ky) — AIE' (Ky). (70)
where

Ai= 4\/_k' E(ky). (71)

The pmduct and the sum of the eigenvalues being
negative, the eigenvalues are real, one of them being
strictly positive. Hence 2-mode steady-state solutions
are always unstable.

For 3-mode steady-state solutions, the charactexistic
equation is

&+ 02 (A1 + Az + A3) — 30(A 1A + AzA;
+A1A;) +4A1A;A:=0. (72)

Hence the sum of the eigenvalues, the sum of pair
products and their product are all negative numbers.
This implies that two eigenvalues have positive real
parts and thus instability.

More generally, we conjecture that m-mode steady-
state solutions with m > 1 are always unstable to
interior perturbations.

Steady-state solutions are the extrema of the Lya-
punov functional G. The stability analysis shows that
these extrema are saddle po*ats of G for 2-mode and
3-mode steady-state solutions (and probably for m-
mode solutions with m > 3). The long-time behavior
of solutions to RICH is therefore quite simple: the so-
lutions are attracted to any of the finitely many minima
corresponding to the stable steady-state single-mode
solutions. This number grows with p as the integer
part of ((1/2) + (p2/3))'/2. Note that (p%/3)'/2is
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the wavenumber which maximizes the linear rate-of-
growth for RICH. The existence of several competing
basins of attraction was already revealed in our nu-
merical experiments on the B-Cahn-Hilliard equation
(Section 4, Fig. 4). The basins of attractions of each
of the stable solutions may be rather complex and have
not yet been mapped out. The presence, for large ps,
of numerous unstable steady-state solutions, which at-
tract to their vicinity trajectories located near their sta-
ble manifold, suggests that transients with numerous
excited modes may persist for long durations.

6. Concluding remarks

In this paper there are some results and open ques-
tions which are specific of the B-Cahn-Hilliard (8-
CH) equation and others which can appear in a broad
class of problems involving resonant wave interactions
(RWI). Let us first discuss issues of the latter type.

QOur normal form approach to RWI, as described in
Section 5, can in principle be applied to any prob-
lem with discrete wavenumbers. For the 8-CH cqua-
tion the main conclusion is that, in the limit 8 — o0,
the leading-order asymptotics is governed by a kinetic
equation for the wave moduli (or their squares, the
wave energies), called the resonant interaction Cahn-
Hilliard (RICH) equation. The decoupling of moduli
and phases has its origin in the compatibility of four-
wave resonances. This, in turn, is so because the res-
onances are ‘decomposed’, i.e. made of two pairs of
opposite wavenumbers. Similar decoupling holds for
equations other than Cahn-Hilliard, provided they are
one-dimensional and have a cubic nonlinearity. Such
a simple ‘kinetic’ situation can be upset in at least two
ways,

First, we observed that, beyond the leading order,
there are noncompatible resonances, involving for ex-
ample six or more waves. These inhibit the decoupling
of moduli and phases. It would be of interest to derive
and study the corresponding normal form which de-
scribes the slow and weak, possibly chaotic, deviations
from the long-time asymptotic behavior predicted by
RICH.

Second, if the dispersion relation is changed from

wi o« 1/k to a more general function.! form, four-
wave resonances may not be decomposes and, hence,
will in general not be compatible, so that no kisetic
equation is obtained to leading order. Actually, it may
be shown that four-wave resonances are stifl decom-
posed as long as wy = f(k), where f(k) is (i)
odd-convex: f(—k) = —f(k) and f"(ky > O for
k > 0 and (ii) superadditive (resp. subadditive):
flky + k2) > f(k1) + flkp) (resp. flks + k2} <
f{k) + f(ky)) for ky > 0 and k; > O. The function
f(k) = =25 + k5, which does not satisfy these con-
ditions, has the four-wave resonance ky = 1, kx = 4,
k3 = —2 and k4 = —3 which is clearly not decomposed
(M. Vergassola, private communication).

Noncompatible resonances can occur in a more nat-
ural way if we depart from our toy model (3} to in-
corporate physical effects which are present in reafis-
tic geophysical flow and in Iaboratory experiments on
two-dimensional flow. The most important ones are a
bottom friction by Ekmann pumping and a finite radius
of deformation Ly arising from free surface effects
[14,15). In (3) we must then add a term ~»,3*¥ in
the rh.s. and replace 32 by 3% — L% in the Lhs..

Bottom friction with realistic values shifts the criti-
cal Reynolds number for negative eddy viscesity from
v/2 to much larger values [3]. Also, by damping the
low-k modes, it induces a large-scale cut-off for the
instabihiy which may slow down or stop the inverse
cascade.

In the presence of a finite radius of deformation the
dispersion relation becomes wy oc k/(K* + 1/L%).
When kLz < 1, the phase speed saturates and the
Rossby waves are only weakly dispersive. Therefore,
the validity of RWI requires much farger values of 8
than in the absence of deformation radius. Fusther-
more, the dispersion relation is not odd-ccivex, so that
noncompatible resonances do occur.

Let us turn te issues more specific of the 8-Cakn-
Hilliard <quation. When starting from the Navier-
Stokes equation (3), the derivation of RICH involves
successively two asymptotics: (i) the multiscale ex-
pansion in which the ratio of scales is € and the slight
excess of the Reynolds number over its critical value
is O(€?) (cf. (4)), (ii) the RWI expansion in which
the small parameter is 1/8. Since 8 = Bi/€°, where
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B is the parameter appearing in the Navier-Stokes
Eq. (3), we conjecture that RICH holds when 8; =
€ gl€), where g(€) — oo atarate slower than 1/e.In
other words, even for very small values of the physi-
cal Rossby parameter 8, RICH should be the relevant
equation at sufficiently large scales when the Reynolds
number is close to its critical value.

Simulations of the 8-Cahn-Hilliard equation have
revealed that the solutions can be very close to what is
predicted by RICH, say within cne tenth of a percent,
for values such as 8 ~ 10. Comparison of the negative
eddy viscosity termn with the Rossby term in (16) sug-
gests that the large expansion parameter which con-
trols the validity of RICH is B(p/k)? rather than 8.
(The number of linearly unstable mode is p(2/3)'/2.)
If we apply this argument solely to the gravest modes
for which k = O(1), we find the condition p° > 1,
which is much less restrictive than 8 > 1 for the
kind of values of p used in our numerical explorations
{p = 9). However, if we require the condition to be
satisfied for all the wavenumbers in the linearly unsta-
ble band, which extends up to k = O{p), we recover
the condition B >> 1. An interesting asymptotic prob-
lemistolet p — oo, B — 0 and Bp® — co. RICH
could then be valid at large scales while small scales
exhibit a standard Cahn-Hilliard inverse cascade,

Finally, we mention the problem of understanding
the structure of the multiple basins of attraction of
single-mode solutions to RICH, particularly when p is
large. Numerical experiments on the -Calin-Hilliard
equation with large values of 8 (10-100) and Gaus-
sian initial conditions with low amplitude and a white
(flat) spectrum indicate that single-mode solutions
which are attained have mostly their wavenumbers
near (p?/3)1/2, the value which maximizes the lin-
ear rate-of-grewth. Since there is a quartic Lyapunov
functional (58), this challenging problem could be
amenable to geometrical methods.
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Appendix A. Derivation of the B-Cahn~Hilliard
equation by a multiscale technique

Our purpose is to give some details on the derivation
of the 8-CH equation (7). It is assumed that the reader
is familiar with multiscale techniques '’ . Derivations
of the CH equation in the absence of the B-effect may
be found in Refs. [2,2].

The Navier Stokes equations with Kolmogorov-flow
forcing f = v (—sin y,0) and the B-effect is rewritten
here for convenience,

AW + J(3*W, W) = vd*3*¥ ~ vcosy — Bid;¥.
(A1)

We are interested in long-wavelength periuirbations
to the basic solution of (A.1), namely

¥ =cosy. (A2)

When B, =0, it is known that the threshold of insta-
bility is for R = 1/v = R, = +/2 and that, just above
this threshold, the most unstable mode has a large-
scale dependence only on the coordinate x [2-4]. It
may be checked that these features are unaffected by
the presence of the dispersive S-term.

As in Ref. [3], we set

v=v(l1—€?) (A3)
and introduce slow space and time variables,
X=ex, T=¢€%. (A4)

The multiscale technique treats fast and slow vari-
ables as being independent. Since the basic fiow de-
pends only on y and is time-independent, derivatives
appearing in (A.1) are now given by the following
rules:

& — €, —eVy, 3 —d,. (AS)

15 5 brief introduction may be found in Ref, [30] (Section 9.6.2).
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(We used the notation Vy rather than dy t0 make
the difference between slow and fast variables more
conspicuous.) For the reasons explained in Section 2,
we take

Bi=¢p

and the amplitude of the periurbation ¢ of order €7,
namely

(A.6)

LX) =00 +epV + gD +.... (AT

Here, the functions ¢, ¢!V, . . . depend both on fast
and slow variables. Substituting the perturbed stream
function ¥ + ¢ for ¥ in (A.1), we obtain

3,0% + J(3*W,¢) + 1%, %) + J(3*. )

—23%3% + By = 0. (A8)

We now evaluate the various terms appearing in (A.8),
using (A.3), (A.5) and (A.7) and stop at the high-
est order in € which will turm out to stay relevant for
obtaining the final large-scale equation. In the follow-
ing equations we omitted all the terms involving fast
derivatives of ‘9. The solvability condition 2t or-
der € implies indeed that ® depends only on slow
variables. We thus obtain

53’ ~ Eara ' + ExV® + iy,
(A9)
WY ~ el @, 9V) - (329) (V™))
-(30) (V') - €3)9) (VxpD),

(A-10)
N3, W) ~ e3¢V, ¥)
+eX(Vya2y D) (0,¥9) + (V.53 P
+V3 ) (9,%), (A.11)

J(@3.4) - -3V (V™)
+E (Va2 ) (3 ) D (Vip?)

~(P) (V. (A12)
3’3"y ~ vleapp' + 23ly'D

+e (3 +202Vi" -3y, (A13)
—Bidx ~ —BESTxp®. (A.14)

In the r.h.s of these equations, J(-,-} denotes the Ja-
cobian in the fast variables. Since y is the only fast
variable, such Jacobians are zero. Upon using (A.9)-
(A.14) in (A.8) and equating terms having egual
powers in €, we obtain a hierarchy of equations which
all have the general form

Af=g, (A.1I5)
where the eperator
A= -rdt (A.16)

acts only on the fast variable y. Because of the y-
periodicity, the operator A has as its null-space the
‘constants’, i.e. the functions which do not depend
on the fast variable y. For an equation of the form
{A.15) to be solvable, the r.h.s. must be orthogonal to
such constants, i.e. (g} = 0, where the angular brackets
denote averages over the basic 2# period in y.

The final equation for the large-scale dynamics
emerges as a solvability condition to oder €5, In prin-
ciple, we should therefore write the hierarchy up to
that order. However, as noted in Ref. [31]. solvabil-
ity conditions can be generated more quickly by just
decomposing derivatives ir (A.8), using (A.5) and
taking averages on y without yet expanding ¢. In this
fashion we obtain

Vi) ~ E((V¥) siny) + (Vi) (3,8))

—€{(3, Vi) (Vxih)) — vee* (1 - ) V()
+BeVx(y) =0, (A7)

from which the whole set of solvability conditions
can be generated by expanding ¢ in powersin €. k
may then be checked that all the solvability conditions
up to order €’ are satisfied (for the last two orders
this requires the use of the condition R = R;). The
solvability condition to order €% reads

IV ® - (Vi) siny)
H(VR# 3 D) + (T o)
~((3, V2 "YWV D) - (3, VD)Vt

2 VWD) + 2. V4@ 4 gV =0,
(A.18)
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This will become a closed equation for ¢(© only after
¢V, ¢ and ¢ have been calculated in terms of
g,(i)\.
For this we write the equations arising at order €°,
€. e and €%,
Av'Y =0, (A.19)
A" =sinyVyg'?, (A20)
Alﬁu) =siny(l + 8f)Vx$"’ + a;.’tll(”inll(O).
(A21)
Ag™ =siny (1+ 02Vt +sinyVip®
“(3_\»(6'1(”19_3 _ agqy(l))vx'#(l) + a;wﬂ)vx‘pw)
+20.8; V'V — waty. (A22)
From (A.19), it foliows that ' depends only on
slow variables. Eqs. {A.20)-(A.22) may be solved
explicitly, up to arbitrary additive constants, i.. func-
tions depending only on the slow variables. The results
are given hereafter,
'V = —RsinyVg'® + (gV), (A23)
¢ = —R?cos y(Vyip'® )2 — R.sinyVy (')
+g' ™, (A24)
¢ = _3R.sinyVig® + Rsiny(Vyy'®)’
—R.sinyVxg'? ~ R.sinyVy{y'?")
—21\’3 COS_V(inﬁ(o’)(Vx(i[/(”)) + (¢,(3))'
(A25)

Substitution of (A.23), (A24) and {A.25) into
(A.18) and use of R, = V2 produces

HVx(X.T) = Vi {(A(Vx)? — &) Vi¥)
Vg - By - C), (A.26)

with
3
Ay =2‘/§- /\2=\/5~ I\3=-\/—§-.
The constant C, which may depend on the time T,
stems from the integration with respect to the X-
variable (oth rwise, there is an additional Vy acting
on the left of each term). Except for the change of
notation ( Vy rather than dy), {A.26) is the 8-Cahn-
Hilliard equation (7).

(A27)

Appendix B. Details of the Painlevé analysis

We show how to perform the Painlevé test on the
steady-state 5-CH equation, rewritten here for conve-
nience as

8.3 ()3 —u— Ad,%u) — Au=0. (B.1)
We set
A(Z) =3[3 —u~ A3 u, (B.2)

and we shall consider the three following problems:

A(z) =0, (B.3)
#2A(2) =0, (B4)
aA(2) - Pu=0. (BS)

Eqgs. (B.3) and (B.5) are respectively the (steady-
state) CH and B-CH eguations. The solutions of (B.4)
include those of the CH equation. We do not specify
any boundary conditions, since the Painlevé test in-
volves only the local structure of the equation.

The Painlevé test of an equations consists in trying
to construct meromorphic solutions, i.e. solutions hav-
ing only poles as movable singularities. Near such a
singularity z., assumed to be a pole of (integer) order
p, a meromorphic function has a Laurent expansion
of the form
u(z) =

(to+wz +wmzi+...). (B6)

1
(z-2z)F
The order of the pole p and the coefficient ug are deter-
mined by dominant balance after substitution of (B.6)
into the equation under consideration. By examining
(B.3), we fiad that the contributions from the u°/3
term and the —Ad?u term are always more singular
than the —u term. Balancing these terms gives

p=1, uy==VoA. (B.7)

The same dominant balance works also for (B.4) and
(B.5).

Since all the equations under consideration are au-
tonomous, no generality is lost by assuming z. = 0.
Hence, we are seeking solutions of the form

M(Z)=%(uo+u|z +uwmzt+..). (B.8)
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The successive Laurent coefficients u;, uz, ... are
determined by identification of the various powers of
¢. It is important to note that all these coefficients
(except ug), when they appear for the first time in this
identification process, appear linearly. Hence, the u;s
(j = 1) satisfy equations of the form

aju; =bj, (B9)

where the b;s are functions of ug, uy, . . ., ;1. Simple
algebra gives, for the case of (B.3),

aj=AM4+3j - )y = I+ (8- j),

j=12..., (B.10)

while, for the cases of (B.4) and (B.5), we obtain

ai=Aj-3)i-H-50+)HE-j,

Jj=12,.... (B.11)

Let us first examine the case of (B.3). We observe
that a; vanishes when j equals four '®. This is called
a resonance. Hence, (B.9) has no solution for j =4
unless by = 0. For j > 4 the a;s do not vanish and
(B.9) has always a well-defined solution. In order
to examine the possibility of constructing a Laurent
expansion, it suffices to calculate the bjs up to j=4.

Substitution of (B.8) into (B.3) gives a sequence
of relations, the first four of which read

ujuy =0, (B.12)
uguy = —ut up + up, (B.13)
(uf, - 2A)u3 = 2uguuy + 4y, (B.14)

(3 — 6A)uy = —1Puy — wdug — 2uguts + uy.
(B.15)

Successively selving (B.12) to (B.15) and using
(B.7), we obtain

uz = 1/V6A, (B.16)
u=u3 =0, (B.17)
Ouy =0. (B.18)

161t also vanishes when j equals —1, but this reflects just the
arbitrary location of the pole.

For us we thus have by = 0, that is, a compatible
resonance and, hence, a secon:! free {complex) pa-
rameter, in addition to z,. Having thus constructed a
two-parameter family of Laurent series sofutions of
(B.3), we have proven that it has the Painlevé prop-
erty. Actually, (B.3} may be explicitly integrated in
terms of elliptic functions.

We now turn to (B.4), which may be rewritten as

A(z) =a+yz +62%, (B.19)

with arbitrary constants &, y and 8. Going theough the
same procedure as zbove, we find that compatibility
holds if and only if ¥ = 0. It may be checked that
the cotresponding equation A(z) = a + 8z is in
the class of Painlevé transcendents which does have
meromorphic solutions [32].

Alternatively, we can work directiy with the fifth
order equation (B.4). We observe that the coefficients
aj, given by {B.11), vanishes for j =3, 4, 5. It may
be checked that all three resonances are compatible.
Together with z, this gives four arbitrary constants,
not enough for a fifth order equation. So, we onfy have
a kind of weak Painlevé property.

Finally, we turn to the 8-CH equation (B.5). The
coefficients a; are still given by (B.11). Hence, there
are the same three resonances j = 3, 4, 5as for (B4).
The j = 3 and j = 4 resonances are compatible, but
for j =5 we find

Ous = Bup.

This is a noncompatible resonance. Hence, the
Painlevé test fails for the 5-CH equation.

(B.20)

Appendix C. Details of the theory of resonant
interacti

‘We show here how the general averaging formalism
presented in Section 5 can be applied to the 8-Caha-
Hilliard equation. We want to solve Egs. (37)-(40}.

We begin with (37). The function f; for the S~
Cahn-Hilliard case is given by (24), which may be
rewritten in more symmetrical form as

Fx(Pe,00) = (Aak? — 13k*) py — o2
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xRe Z

b +ha+i+ k=0

PPt Pry £ilor ten ton ey ) .

(C.h)

where k4 = —k and we have used the Hermitian sym-
melry (@r, = —9i)-

As explained in Section 5, the terms in (37) are
expanded in multiple Fourier series in all the phases.
From (C.1} it is seen that the Fourier coefficient
feglpe) differs from zero if and only if E=0o0r

&= £X(ki, k2, %3, k3), (C2)

where X = {X;} has only four nonvanishing com-
ponents, all equal to +1, comesponding to a tetrad
(ky.ky, k3, kq) of indices i such that (i)

bi+hk+hk+k=0, (C3)

and (ii) no partial sum of two wavenumbers, e.g.,
&k + ky vanishes; otherwise the Hermitian symmetry
implies the vanishing of @z, + @i, + @1, + @i, so that
the corresponding terms pertain to fy ¢-o.

Let us now consider (49), rewritten for the conve-
nience of the reader,

i wsply = frg(pe) (£ #0). (C4)

The existence of solutions to {C.4) requires that,
whenever £, w; vanishes, the th.s. should also vanish
(Fredholm alternative). We have seen that the f;¢s
are nonvanishing only for those £s given by (C.2).
We then have

& 0 = wy, + @, + @, + @y, (C5)

It is shown in Appendix D that in the Rossby case,
four-wave resonances, that is, the simultancous van-
ishing of k; + ky + k3 + ks and of wy, + wi, + @y, +
@y, require the wavevectors to be opposite in pair,
eg. ky + k3 = 0 and k3 + k4 = O or permutations.
This situation is ruled out by the condition (ii) on
ietrads. Hence, we have established that, whenever
there is a resonance, the rh.s of (C.4) vanishes, i.e.,
that there are only compatibie resonances. Therefore
the leading-order asymptotics is given just by stan-
dard averaging, namely (45). To write this equation in
explicit forin for the S-Cahn-Hilliard case, we must
evaluate

(fk(Po-ﬁ’c)) = fk.f:ﬂ(ﬂo)' (C6)
Using (C.1), we obtain
frg(pe) = (1R - Msk*) i — 61iK* ) _ plp
(121
—-30,K%p}. (C7)

Using (26), (C.6) and (C.7) in (45) we obtain
the resonant interaction Cahn-Hillard (RICH) equa-
tion (53).

The solution of (38) is handled in essentially the
same way as for (37). Again there are only com-
patible resonances. The main difference with the pre-
vious case is that the average of (25) vanishes be-
cause of the presence of the imaginary part. Hence,
to leading order there is no modification of the fre-
quency of the Rossby waves. When considering the
Egs. (39) and (40), which determine the next-to-
leading-order corrections, the matters become more
complex: the right hand sides of these equations con-
tain expressions quadratic in the fis and ggs. It may
be checked that sixth order noncompatible resonances
are present. Hence, straightforward averaging fails be-
yond the leading order.

Appendix D. Resonances: a diophantine problem

We investigate here the conditions for resonances
among n > 2 waves, The problem will be sofved
completely for n = 2, 3, 4, the only values needed
for the leading-order behavior for large values of 8.
Special solutions will be given forn=5and n = 6.

The problem may be formulated a: follows. Let
there be given n — | (signed) integer wavenumbers

ki, k3, . .., kp—y; define
k=k +ka+--+ky. {D.1)

Find those wavenumbers satisfying the condition of
resonance, that is,

W= Wy F @+ -y, (D2)
where

_B
W=7 (D.3)
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This constitutes a diophantine problem, that is, a sys-
tem of equations for which one seeks integer solu-
tions.

Without loss of generality, we may assume 8= 1.
The problem may be recast in more symmetrical form,
namely

+k+- -+ k=0,

1,1 o
PR T
where k, = —k. It follows from (D.4) and (D.5)
that the k;s are the roots of an rth order polynomial
equation of the form

(D4)
(D5)

X " Pt apx? =0, (D6)

where the coefficients ap, ay, .. ., a,— are integers.
For n =2, (D.6) has the form
X +ay=0.

It follows that the most general solution is that k; and
k; form a pair of opposite wavenumbers.
For n = 3, Eq. (D.6) has the form

(D.7)

2L +ay=0, (D.8)

which has only trivial (real) solutions: k) =k;=k; =
0.
For n =4, Eq. (D.6) has the form

P +a+ay=0, (D9)

which is ihe most general biquadratic equation with
integer coefficients. It follows that the generat solution
is made of two pairs of opposite wavenumbers,

ki + k=0, k3+ka=0 (or permutations).
(D.10)

Such solutions may be called ‘decomposed’, in the
sense that they decompose into the solutions of two
lower-order (n = 2) problems.

For n=5 and n =6, Eq. (D.6) has the form
x +a;x3 +a2x2 +ap=0,
B+ agxt + @ + axx? +ap=0.

(D.11)
(D.12)

We do not know if these diophantine problems can
be solved completely. We did a numerical search by

varying ky, ky, ..., k,—; between prescribed bounds
(from —N to N) with no bounding constrainten k, =
—ky — kz — ... ~ ky—y and looked for all instances
which satisfy the resonance condition. For n = 5 and
N =30, we found about 200 solutions, possessing ro
particular symmetry. An example is

-5, 3, -8 -30, 40. (D.13)

For n = 6 we found a huge profiferation of solutions.
They include a substantial number of sclutions with
two wavenumbers having multiplicity two, that is,

kl! kZ, kl- k20 kSQ kﬁ, (Doi‘)
an example being
-5, 8 -5, 8, 4, -0 (D.15)

Itis actually possible to find all solutions of the form
(D.14). Indeed, if in (D.5), with n = 6, we assame
k3 = k; and k4 = k3, we obtain

ks + ke = —2(ky + kz),

ksks = kikz. (D.16)
1t follows that

ks=—(ki + k) + [ + kiky + B,

ke =—(ki +ka) = \/ K} + kiky + K5, (D.I7)

A necessary and sufficient condition for ks and ks to
be integer is

B+kiky+ =27 (D.18)
where 7 is an integer. Setting
xski+k, y=k—k, (D.19)

we obtain, from (D.18), the quadratic diophantine
equation

32 +y =428,

which is a variant of the famous Pythagoras equation
(x2 + y* = z%) and which may be solved by similar
techniques. We shall not dwell on these matters.

(D.20)
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