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Abstract 

The large-scale dynamics of the Kolmogomv flow near its threshold of instability is studied in the presence of the ,8.effect 
tRossby waves). The governing equation, obtained by a multiscale technique, fails the Painlev6 test of integrability when 
,8 ~ 0. This ",8-Cahn-Hilliard" equation with cubic nonlinearity is simulated numerically in various r6gimes. The dispersive 
action of the waves modifies the inverse cascade associated with the Kolmogomv flow (She, Phys. Lett. A 124 (1987) 
161 ). For small values of ~8 the inverse cascade is interrupted at a wavenumber which increases with ft. For large values 
of ,8 only resonant wave interactions (RWl) survive. An original approach to RWl is developed, based on a reduction to 
normal form, of the sort used in celestial mechanics. Otherwise, wavenumber discreteness effects, which are dramatic in 
the presenl case, arc not captuaxl. (The method is extendable to arbitrary RWI l:roblems.) The only four-wave resonances 
present involve two pairs of opposite wavenurabcls. This allows leading..ordcr decoupling of moduli and phases of 
various Fourier modes, so mat an exact kinetic equation is obtained for the energies of the modes. It has a Lyapunov 
{ gr~/en! flow) functional formulation and multiple attracting steady-states, each with a single mode excited. 

1. Introduction 

This paper is centered around a one-dimensional toy 
model for studying an instance of the interaction of 
turbulence and waves. The model, called the fl-Cahn- 
Hitliard equation, d~cdbes the large-sc~e dynamics 
of the Kolmogorov flow in the presence of Rossby 
waves. 

The Koh'nggorov flow is obtained by subjecting 
two-dimensional incompressible flow with kinematic 
viscosity ~, to a time-independent spatially periodic 
force 

f =  z, ( - s i n y ,  0). ( I )  

This ensures that the parallel flow u - ( - s i n  y, 0) 
is a time-independent ~lution of the Navier-Stokes 
equation. The basic flow develops a negative eddy 
viscosity when 1, < (1/2)  i/2 and thereby becomes 

unstable to large-scale perturbations perpendicular to 
the basic flow [ I -4] .  Near the threshold, the large- 
scale secondary flow is, to leading order, a function 
only of a suitably rescaled large-scale X-coordinate 
and is governed by a one-dimensional Cahn-Hilliard 
equation. This equation is integrable in the sense that 
the steady-state solutions are expressible by elliptic 
functions. With periodic boundary conditions and for 
large times, the solution always goes to a steady state 
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which minimizes a certain Ly~unov functional. Still, 
the intermediate temporal dynamics can be nontrivial: 
the steady state may be attained via an arithmetic in- 

verse cascade in which excitation migrates to larger 
and larger scales through a succession of long-lasting 
quasi-equilibrium states [5]. 

The aim of this paper is to study the modification 
of the large-scale dynamics of the Kolmogorov flow 
when planetary rotation, in the form of the strongly 
dispersive ~-effect, is incorporated. As is known, the 
Rossby waves produced by the ~-effect are highly 
anisotropic: the generation of vorticity is l~'Oponional 
to the North-South (poloidal) component of the ve- 
locity; by talcing the basic Kolmogorov flow to be in 
the East-West (toroida~) direction we ensure that it re- 
mains unaffected by the w~wes, while the large-scale 
secondary flow may he strongly affected..Actually, the 
larger the scale, the more important the ~-effeot be.. 
comes, since Rossby waves p ~ e s s  the somewhat un- 
usual feature that their period is inversely proportional 
to their wavelength l .  Thus, at sufficiently large scales, 
the wave period becomes shorter than any other char- 
acteristic time, and strong phase mixing suppresses all 
but resonant wave interactions for which the phase 
factors cancel out. 

Resonant wave interaction theory (RWI) has nu- 
merous applications in geophysical fluid dynamics, 
plasma physics and solid state physics (see, e.g., 
Refs. [6,7]). Work in the early 1960s on the subject 
made use of a Gaussian assumption, introduced in 
a heuristic way (see, e.g., Refs. [8-10]), to derive 
'kinetic' equations for the mean square Fomier am- 
plitudes. Thanks to the smallness of the ratio of char- 
acteristic times, various asymptotic expansions can be 
carried out. A systematic asymptotic theory, in which 
the small parameter is the ratio of the wave period 
to the nonlinear characteristic time, was developed in 
the late 1960s by Benney, Newell and Saffman, called 
here the BNS method [ 11,12]. This theory assumes a 
continuum of wave vectors, and may run into difficul- 
ties when discreteness of the wave vectors becomes 
an important feature, for example when studying the 

t Until a wavelength comparable to the "deformation radius" is 
reached; see Section 6. 

largest scales of a bounded (or spat~ty ~ )  
system, which is precisely the goal of our ~ g a -  
tion. One instance where discreteness heads to terms 
not captured by the BN$ method is the so-caa~ 
S-theory of Zakharov, L'vov and Starobinets [7,|3j. 

Our alternative approach to RWI makes use of nor- 
mal form techniques borrowed from celestial mechan- 
ics which arc directly applicable to the discre~ Wob- 
lem. 

The paper is ~ganized as follows. In Section 2 w¢ 
formulate the problem leading to the , B - C a t m - H i ~  
equation. The derivation uses a multiscal¢ 
Only the essential scaling arguments are ~ tech- 
nical details being relegated to Appendix A. In Sec- 
tion 3 we show that the fl-Calm-l~Himd 
conu-my to the Cahn-Hilliard equation, is not i ~ -  
grable, in the sense that it does not have the Painlev~ 
property. Here, again, the emphasis is co com:gpts, 
with more technical steps relegated to ~ , ~  B. 
Section 4 is devoted to numerical ~ p ~ r a t ~  of the 
j~-Cahn-Hilliard equation. In Section 5 we discuss the 
asymptotics for large values of ~8, using a normal form 
technique to &couple the dynamics of amplitudes and 
phases of spatial Fomier modes. In ,~qion 5.i wcex- 
plain why some terms are missed by the BNS method 
in the discrete case. We also commcm on tl~ work of 
the Russian school whi~  did incorpmate such tams, 
albeit in a somewhat heuristic way. For the 
itilliard equation, we obtain a "resonant i ~  
Cahn-Hilliard" fRICH) equation+ some of the key 

of which are presented in Section 5.2. Cou- 
cluding remarks age made in Section 6. 

2. The 0 . ~  equaaou for me 
large-scale d~uuuks 

We consider a two-dimensional incompt'essibie flow 
subject to an external force f in the presence of a ~-- 
effect 2 . The velocity u = (ut,u2) can be written in 
terms of a stream function 3 

2 For background m u~e ,8-pla~ app~xinm~0n aad its 
fions, see, e.g., R©fs. [ 14,15I. 

3 We use the fluid dynamicist's d e f i u ' ~  of  the meam-fu~'~m. 
In ~ geophysical co.~a.~y, ~ ~ ~ is 
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u~ = e.~jO)9', i , j  = I, 2. (2) 

Here, e~j is the fundamental antisymmetric ten.m.r 
(~2 = -~2~ = 1, zero otherwise), 0/stands for 0/0x i 

an~l 0 2 for the Laplacian olm-ator 4 . 

In terms of tbe stream function the Navier-Stokes 
equation reads 

o~2~ + 1(029,9.)  = vB2O2~ - eoOif j - fltOl~'. 

(3) 

Here, J(  f ,  g) - eai (Oif) (0jg) is the Jacobian, v is the 
(kinematic molecular) viscosity and f l  is the Rossby 
parameter 5 

We now observe that when the external force is 
given by ( 1 ), the N~vier-Stokes equation admits the 
solution 9" = cosy, called the Kolmogorovflow, for 
which only the viscous and forcing terms are nonvan- 
ishing. 

When the Reynolds number of the Kolmogorov 
flo~,, defined as R = I/v~ exceeds the critical value 
R,. = v~, x-de~ndent large-scale perturbations expe- 

rience a negative eddy viscosity ve = u -  I / (2v)  (see, 
e.g., Ref. [4] ). In the neighborhood of Ro multiscale 
techniques can be used to derive an equation for the 
large-scale dynamics. For the case of the Kolmogorov 

l~w without the E-effect, this was done in Refs. [2] 
and [3]. The ft--effect introduces only relatively mi- 
nor modifications in this derivation. Let us here just 
state the main result and give some heuristic insight, 
leaving derails for Al'rpendix A. 

Let us, in the Navier-Stokes (3), replace the Kol- 
mogorov flow ~', called the (small-scale) basic flow, 
by 9" + O, where the perturbation ~p is assumed to 
depend on x, y and t, the dependence in x and t be- 
ing "slow" in a sense we shall now define. We assume 
:hat the Reynolds number is slightly in excess of the 
critical value, 

R = R,.( I + e2). (4) 

~survad. 
Ingead of x~ and x2 ¢~e shall often use x and y and denote 

tl,a space derivatives by az and ~. 
Tb:e. nocalion ~ will be reserved for a suitably rescaled version 

of the Rossby ~ .  
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We now show how the various scalings and the form 
of the large-scale equation may be obtained heuristi- 
cally. Consider a large-scale x-dependent perturbati¢i~ 
of wavenumber k << I. Momentarily ignoring the f -  
effect which is dispersive, the linear growth rate of this 
perturbation is of the form y(k) : - u f ~  + 0"4k 4 + 
O(k6). We know that the eddy viscosity vf is nega- 
tive and O(e 2) while o'4 has no reason to vanish at 
R = Rc and is actually negative. Hence perturbations 
with wavenumbers O(e),  up to k~ = (-v~./0"4) 1/2, 

are linearly unstable and have a maximum growth rate 
O(e4). This suggests the introduction, in addition to 
the 'fast' variable y, of the following 'slow' variables: 

X=~x, T=64t. (5) 

Consider now the B-effect, which acLs nontrivially on 
x-dependent perturbations. The ~quency associated 
to the wavenumher k is f l / k .  If we require that, for 
k -- O(e),  this frequency be comps-able to the afore- 
mentioned growth rate, we must take ~, = O(eS), that 
is, set 

Finally, we must find the scaling in ~ for the ampli- 
tude of the perturbation. This is determined by the 
form of the nonlinearity which saturates the exponen- 
tial growth of large-scale perturbations predicted by 
the linear theory. Since the leading-order large-scale 
motion depends only on X, there can be no advective 
nonlinearity (ghe Jacobi~t of ~(X) and of a2@(X) 
vanishes). Other ty~s  of quadratic nonlinearities are 
ruled out by mementum conservation or parity. The 
10~, ~st order Mmissibl¢ nonlinearity is a cubic Cahn- 
Hilliard term which may be viewed as an additive 
c~u'ection to the eddy viscosity, proportional to the 
square of the large-scale velocity, that is, to (0x~) 2 = 
e2(Ox~) 2. Since the eddy viscosity is O(e2), nonlin- 
ear saturation should lead to an amplitude of ~, which 
is O(e°). 

Once the proper scaling has been identified, stan- 
dard multiscale techniques can be used to derive the 
leading order large-scale equation (see Appendix A). 
The resulting equation, which'emerges technically as 
a solvability condition to order • 6, reads 
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a-,,axq,( x. T) = ax (0,(Ox,P) - 02 ,) 
-,130x50 - .B(0 - C). (7) 

Here, the notation ~/, is shorthand for (~(o)), the lead- 
ing order of an expansion in powers of e, averaged 
over the fast variable ~; the constants in (7) are given 
by 

AI = 2V~, A2 = %/2, A3 = 3V/2. (8) 

The constant C depends on the boundary conditions. 
For example, ifO is periodic in the X-variable, C is the 
average of ~ over one spatial period. We observe that 
when the operator o~x is applied to the two sides of (7), 
the i.h.s, and the fl term are just rescaled versions of 
the corresponding terms in the original Navier-Stokes 
equation (3). As for the A2, A3 and A! terms, they are 
respectively the (negative) eddy viscosity term and 
the correction thereto involving higher order deriva- 
tives and nonlinearities. 

Eq. (7) can also be written in terms of the (large- 
scale) velocity 

v(X,T)  -~ -ax~(X,T), (9) 

~¢(X,T) = - ~ ,  

vtv,] =-/dx - ½;t:z(ax@) 2 

+ ½,~3(o~)21. 

as 

(|I) 

When periodic boundary conditions witk period L 
are assumed in the vmiable X, the solution tends for 
large times to the s ~ d y  state which minimizes the 
functional F [ ~, ]. This state is unique (up to a uans~  
tion) and may be expressed in terms of elliptic ftmc- 
tions. However, when the period L is very large, ~at 
is, when there are many linearly unstable modes, 
are many different steady states which, locally, lutve a 
kink/antikink stngture, 

v = ~: \ - c  / mnh c x - xo ) . 
• . [  

(Z2) 

The succession of quasi-equilibria with period L/q 
(where q is a positive integer taking the values qnm, 
qmu - I, qm~ -- 2 . . . .  ) observed in numerical sim- 
ulations by She [5] can be interpreted in terms of 
kink dynamics with successive annihilations of pa~s 
of kinks-antikinks [22,17]. 

X,T) - ( O,v - - 

(10) 

where ax I denotes the inverse of the X-derivative 
(with suitable boundary conditions). 

Eqs. (7)-(10) will be called the/~-Cahn-Hilliard 
equation (fl-CH). For/~ - 0, the usual Cahn-Hiiliard 
(CH) equation for the Kolmogorov flow is recovered 
[2,3] ~. Let us recall a few facts about this equation. 
After removal of one X-derivativeS the Cahn-lElliard 
equation has a variational formulation in terms of a 
Lyapunov functional (gradient flow) [3,16], 

6 This average is actually trivial because the leading-order per- 
turbafion of the .meant function is indepead~ of y. 

7 The equation, in a generalized form with mbitmry rather than 
cubic nonlinearity, occms in studies of the sonodal decomposition 
C~ee Ref. i 161 and references therein). 
s The addition to the suearn function of a functioa depending 

~lely on the time variable leaves the velocity unchanged. 

3. r=haev~ mm~sis of ~ ~ 
equaaou 

At the end of the last century it was realized by 
S. Kowalesvki and P. Painlev~ that there could be a 
connection between the integrability of a nonlinear 
differential equation and its analytic .qructute for com- 
plex values of the independent variable [ |8-20]. Im 
deed, equations which possess the so-called Pa in~6 
property are ofte~ found to be integrable. This prop_ 
erty means that, in the complex domain, all the mov- 
able singularities of the solutions are poles. Movable 
singularities are such that their locations depend oR 
initial and/or boundary conditions. By Painlev¢~ anal- 
ysis, one understands the testing of an ODE to see if 
it has the Painlev~ property. This is done by trying to 
perform a Lanrent expansion of the solutions around 
an arbitrary pole, the order of which is detenmned 
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by dominant balance (for details and extension of the 
technique zo PDE's, see, e.g., Ref. [2I]) .  

It is quite clear that the Cahn-Hilliard equation has 
the Painlev~ property, since its steady state solutions 
are ellil~ic functions and the latter are meromorphic. 
%~ shall now show that the fl-Cahn-Hilliard fails the 
Painlev~ test and could therefore have considerably 
more involved dynamics. 

It is enough to consider the time-independent/~-CH 
equation. After suitable rescaling of the independent 
and dependent variables and the use of a complex 
space variable z, we then obtain the following ODE: 

e:" (u:/3-u- ,~a~2u) -/3~ = o, (13) 

with a positive constant It. Let z. be a movable singu- 
larity of this ODE. Dominant balance, using the most 
singular terms near z,, shows that the leading-order 
singularity should be a simple pole. Hence, we try the 
following Laurent expansion in the neighborhood of 

o o  

u( : )  = ( :  - z.) -I E u y ( z  - Z,) j, (14) 

where the complex Laurent coefficients uj are to be 
determined (if possible) by substitution into (13). 
Equating the coefficients of the most singular terms, 
we obtain uo = +v/ '~ .  Higher or~r  Laurent coeffi- 
cients satisfy equations of the form 

ajuj = b~, j =  1,2 . . . . .  (15) 

The coefficients ay and bj are determined recu~ively. 
If all the ajs turned out to be nonvanishing, the ujs 
would be well determined and the solution given by 
~be Laurent expansion (assuming it converges) would 
have only o n e  ee paxameter, namely z.. The ODE 
(t3)  being however of fifth order, this is a very re- 
strictive class of solutions. Actually, there are several 
values of j for which aj = 0. These are called reso- 
nances. They fall into two classes. If bj = 0 for such a 
j, the resonance is called compatible: the correspond- 
ing uj is then arbitrary and gives an additional free 
parameter. If by @ 0, the resonance is noncompati- 

ble in the sense that (15) has no solution. It is then 
impossible to construct a Laurent expansion and the 
Pmnjcv+ test is said to fail. 

In Appendix B we obtain the following results for 
the CH and r iCH equations. First, when/~ = 0 and 
we drop the three derivatives on the 1.h.s. of (13), so 
as to obtain a second order equation, the Painlev~ test 
holds, as expected. Second, when fl = 0 and we keep 
the three derivatives, we have a kind of weak Painlev~ 
property. Third, when ,8 @ 0, a noncompatible res- 
onance occurs for j = 5 and the Painlev~ test fails. 
This, of course, tells us nothing about the integrability 
of the time-dependent problem. 

4. Numerical simulations of the ~Cahn-l l i l l iard 
equation 

The numerical results presented in this section are 
for the/~-CH equation with spatial periodicity. Peri- 
odicity is not just a convenient way of doing the nu- 
merics: in the absence of the//-effect, the presence of 
an infrared cutoff is essential for the solutions to ~tain 
a steady state, since otherwise the arithmetic inverse 
cascade would proceed for ever. In the presence of the 
fl-effect, the infrared cutoff bounds the frequency of 
Rossby waves. 

The only two parameters of the problem are the 
spatial period and the (rescaled) Rossby parameter)8. 
For numerical purposes, it is convenient to keep the 
spatial period fixed, say, equal to 2~. This is achieved 
through rescaling of the space variable: X --, pX. In 
terms of the velocity, the fl-CH equation then reads 

O~TI ) ---- ~_~C72133 _ .~OXU 42 --p4A3-4dxV. - p ~ x l  v. (16) 

Note that the number n of linearly unstable modes is 
p(2 /3 )  U2 (more precisely, its integer part). This is 

not modified by the presence of the ~-effect. 
The numerical integration of (16) makes use of 

a standard pseudo-spectral method in which spatial 
derivatives and inverse derivatives are calculated in 
k-space (Fourier space) while the cubic term is cal- 
culated in X-space (physical space). Alias removal, 
resulting from the use of a finite number of Fourier 
modes (from k = - M  to k = MY, is done by using 
4M points in physical space. Time-stepping is done 
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by an Adams-Bashforth scheme 9 for all terms except 

the fourth derivative damping term, which is treated 
by an exponential scheme. 

Particular attention has to be paid to the choice of 
the time step oW when `8 is large. It is not enough 
to require that b'T be small compared to the vari- 
ous characteristic times such as the Rossby period 
Tr~¢~ ,,, k /  (p`8), the damping time T~¢, ,.. p 4 / p  
and the growth t ime due to the negative eddy viscosity 
TE ~ / , 2 / F .  Indeed, the Adams-Bashforth scheme, 
when applied to an oscillator of frequency ca = p`8/k, 
leads to a v ~  slow instability on a time scale T,p ,,, 
a,-4(ST) -~. When ,8 is large and aT << T ~ , y  this 
spurious time scale may still be comparable to TE, 
unless (b'T)3l~4(p/k) 6 << 1. This condition is most 
stringent for the gravest mode (k = I ). Failure to sat- 
isfy 

(o~)3`84p 6 <~<~ ] ( |7)  

produces wrong numerical results. 
Most of the simulations reported hereafter are done 

with random initial conditions in the spatial domain 
with a white spectrum. Each run is then character- 
ized mathematically by the amplitude of the initial 
condition, the seed for the pseudo-random generator, 
the number of unstable modes n - p(2/3)U2 and 
the value of the Rossby parameter `8. The purely nu- 
merical parameters are the truncation wavenumber M 
(which takes the value 64 in all the runs) and the t ime 

step 8t which must be suitably adjusted as explained 
above. 

Fig. l con'esponds to n = 7 and `8 = O. It is meant 
to illustrate the arithmetic inverse cascade which takes 
place in the pure Cahn-Hilliard case and which has 
already been reported in Ref. [5]. This figure and all 
subsequent ones display the temporal vadation of the 
energies of the various Fourier modes, as labeled. Ob- 
serve that very sharp transitions take place at which 
the dominant mode changes to a smaller wavenun~ 
her. These transitions correspond to kink-antikink an- 
nihilations [2,5]. This inverse cascade proceeds until 

9 Except for the first dine step which is a second order R a g e -  
Kutta step. 

J 

0.5- ! 

f~l ~ 0.3-0.2.. ~ ~ i " ' "  " * " * ' " "  
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Pig. I. lnven¢ a~#lm)=dc cw.a~. Tm~ ~ o f ~ =  ~ u ~  
of v-a~.s Fo.~-r made~ for d~ sohuo, of [b~ C a l ~ H i t ~  
eq~tion ( ~ = O) with ~ = 7 unstable modes. Tlds is l~dga~ d~¢ 

mode, which coneslmml to ldnk-anti~d~ 

I 

0"51 
0.4 

0.3- 

0.2- 

0.1 

o.o 

• . , | | , , l l  , , i . , ; . , .d t I l I a d  , , s l i d  L ~  

2 
io o io' I o~.rimc Io 2 I ¢  

~r,. 2. ukx~r, ca i~  of ~ ai~h..,c~ m a s t  ca~:~k ~, i~,cbsm 
of a ve~ small ~ w ~  n : 7 m1,8 : 10-4: oakrnc .  
same conditions ~s in Rg. i. No~ fl~e ~ .  

a steady state is reached in which the gravest mode 

(here, k= I) dominates .°. 

Fig. 2 has n = 7 and ,8 = 10 -4 and differs from 

Fig. ] by the pn~-uce of ~oscillatio~". 

The steady state values (for the energies) age essea- 

tially the same as for ,8 = O. 

to~ ~aaioa ~ exptemb~ in terms of e l ~  ~ 
has ~ hanno~s for all odd wavet~mt~e~ 
n The actual dines of kjk-au~kiak ~ have chm~ged 
by about five per cent fog & = 1,2.3, an an~ung too smaa ~ be 

vidble on l~g. 2. 
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Time 
Fig+ 3. imcn'upt/oa ofthe mi~mctic inve~ cascade by the ~-effect 
with n = 7 unstable modes. (a ) /3  = 0.0I;  (b) B - 0.1. Note that 
~e wa~'enumber o f  the mode dominating at large times increases 

As fl is increased, more significant changes take 
place. Figs. 3a amJ 3b have +8 = 0.01 and B = 0.1, 
respectively, but the same initial conditions. They il- 

iu_qrate the phenomenon of imerrupted inverse cas- 

c ~ e :  as P is increased, the wavenumber at which 

the period of Rossby waves becomes comparable to a 
c~acter/st ic  time of the Cabn-Hilliard equation in- 
creases itself and the inverse cascade stops as phase- 

mixing becomes increasingly important. Note that for 

= 0.01 and fl = 0.1 the wavenumber which domi- 

nmes at large times is k = 2 and k - 3, respectively. 
With the StaTiC initial conditions and fi -- 1 (simula- 
tion not shown ) the dominant wavenumber is k = 4. 

For such +intermediate" values of/3, the temporal be- 

0 + 4 -  ~ ~  '" 

0.3- 

0 . 2 -  

0+0 i 1 I I I | 
o 100 200 300 400 500 e00 

Time 
Fig. 4. Simulation of the ~-Cahn-Hilliard equation with strong 
Rossby term: B = 10 and n = 7 unslabk modes. At long times the 
Fourier amplitudes go to a steady state with a single Fourier mode 
exci~l, as predicted by the resonant interaction Cahn-Hilliard 
equation (53). Several single-Fourier mode attractors are compet- 
ing. as indicated by Ca) and (b) which conespond to two slightly 
different initial conditions. 

havior can be rather complex and we do not rule out 

some weak form of chaos. Note that the increasing 
with +8 of the wavenumber which dominates at large 
times is a typical result when random initial condi- 
tions are used; we shall see later thal, even for large 

values of ,8, small wavenumbers (e.g.,/c - I) may 

dominate at large times, but the corresponding basins 

of attractions are probably quite small (Section 5 and 
the end of Section 6). 

As/3 becomes even larger, Rossby waves become 

important at all wavenumbers within the linearly un- 

stable band. The dynamics should then be dominated 

by resonant wave interactions. Application of standard 
resonant wave interaction theory, of the sort discussed 
in Section 5.1, led us to e~+'pect that, at large times, all 

the energy would be concentrated in the gravest mode. 

Actually, we found by performing a large number of 

numerical experiments with differe.,:t initial conditions 
that there are several competing attractors. They all 
have a single Fourier mode excited, but not lieccssafily 

the gravest. The examples shown in Fig. 4 correspond 

to n = 7 and/3 -- 10 with two slighdy different initial 

conditions (chosen near the separatrix of two basins 
of attraction by a dichotomic procedure). The solution 
marked (a) has all the energy going for large times 
into the mode k = 2, while for the solution marked 
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(b), it is the mode k = 1. 
This (apparent) contradiction, which we first ob- 

served in our simulations, has led us to revisit the the.. 
ory of resonant wave interactions. 

5. A theory of  discrete resonant wave 

In Section 4 we found that, for large values of/~, 
very simple asymptotic behavior emerges as T 
+~x3. 

When ,8 is large, the period of Rcr~sby waves is 
much shorter than any other characteristic time aris- 
ing from Cabu-Hilliaxd dynamics. This is the kind 
of situation for which the resonant waves interaction 
(RWI) theory has been developed. It turns out that, in 
the form in which RWI has been mostly used so far, it 
is not applicable to our problem because a continuum 
of wavevectors is assumed. 

As pointed out by Benney and Saffman [ 111, early 
work on RWI, such as may be found in Refs. [8,91, 
assumed a discrete spectrum, that is, a representation 
of a spatially periodic field in term of its Fourier se- 
ries. It also used ad hoc closure assumptions, such 
as a Gaussian distribution of the complex ampligudes. 
Subsequent work on the continuum case by Benney 
and Saffman and Benney and Ncweli [ 11,121 led to a 
systematic justification of closed amplitude equations 
by the use of a multiple time method combined with 
a cumulant expansion. 

In the opinion of Benney and Saffman [ 11 ], the 
continuum results can be obtained from the discrete 
results in the limit of infinitely close wavenumbers. 
As we shall see, the solutions for the discrete and con- 
tinuous cases will stay close only for moderately long 
times. We found that a convenient way to tackle the 
discrete problem is through the use of averaging and 
normal form techniques (see, e.g., Ref. [231, Chap- 
ter 5). The idea is to consider the ~ equation a:~ 
a perturbation of a system of oscillators, which can 
be handled by techniques frequently used in celestial 
mechanics, but without the restriction to conservative 
systems. 

We start from the ,8-CH equation (7) and expand 
the solution in a spatial Fourier series, 

413 

o o  

v(T,X) = E ~k(T)exp(ikX). ( |8 )  

It is traditional, in the averaging formalism, to choose 
a unit of time such that the u ~  
axe order one. Here, it is simpler to choose the 
of time associated to the Cabn-Hiiliard ~ and 
thus to have a small Rossby time. 

Hence, we set 71 : I / (pB) and use 71 ~ expansion 

pmmneter. (The notation e was already used i~ the 
multiscale approach of Section 2.) 

Using (8), (16) and (18), the ~8-CH equatm caa 
be written as follows in the Fourier roFre~mat~u: 

. 2 v ~ . ,  

k = +1,=t:2, +3  . . . .  (19)  

Note that the Fouria" coefficients Dk satisfy Hermi t~  
symmetry, 

We now introduce amplitude and phases (which 
will here play the same role as action and angle vail- 
able in conservative systems), 

~k - ak exp/Ok, 

ak > O, a_~ = ak, O-k = -0~. 

The a~s and 0ks satisfy 

(21) 

~ak = /k ( a., O. ) , (22) 

~ k  =-t,ok + gk(a,. 0 , ) .  (23~ 
n 

where ~k = I/k is the nondimensionalised Rossby 
frequency t2, a .  and 0, stand for the full set of aks 
and 0ks and 

12 For coavenicnc~,wc define O~c/re~y ~ as be~ a~:~'~cd 
to a t~e-deputden~ of the form e ~ r  rath~ than ¢ -~v .  E~x-c. 
the l;t~se.speed of the Rossby waves (rex used in th~s p ~ ' )  
should be - ~ k / t  ra~het" than ~,ktk. 



fi, = (~2k: - ~3k4)ak - ~ k  2 Re E ak, ak:ato 
k~ +k2+k3=/~ 

× expi(8~, 4- Ok: + 0t~ - 0~), (24) 

g ~ = - a l ~ - l m  E ak~ak:ak~ 
k~ + ~ : + k ~  

× expi(0~, +0k: + 0k~ - #:). (25) 

Here, 

~_ 2v5 a2 = v5  3v5 
3p 2 , --~. ~ = ~ .  (26) - . 2p4 

Let us now explain how the averaging method is 
applied to the system (22),(23) (for details, see 
Ref. [23] ). We treat (22),(23) as if it were a sys- 
tem of finitely many ordinary differential equations. 

In fact, there are infinitely many Fourier components 
and, thus, infinitely many equations. However, be- 
cause of the strong dissipation at high wavenumbers 
the system (22),(23) can be approached very closely 
by systems having only a finite number N of Fourier 
components. Anyway, our goal here is only ~o present 
a systematic theory, not a rigorous one ~3. In the spirit 
of normal form theory, we seek a change of the inde- 
pendent variables at, and 0k, reducing to the identity 
for r/ = 0, and such that the transformed equations 
do not involve any phases in their right hand sides, if 

possible. 
Let us denote the new amplitudes and phases by ,ok 

a.-d ,p~, respectively. The change of variables is sought 
in ~he form of a power series in n., 

a~ =p~ + ~7p'~ ! ) (p°,~o) + "r/2p~2)(p., ~.) + . . . .  

(27) 

o~ =~k + r / ~ ( p . ° ~ . )  + ~ l ~ ) ( p . , ~ ° )  + . . . .  

(28) 

where, again, p. and ~p° stand for the full set ofpks and 
, ;~s and  the  func t ions  p(=),  p(2) . . . .  ; (p(i),  ~p(2) . . . .  are 

2rr-penodic in all their phase arguments. They are to 
be chosen, if possible, in such a way that in the new 
variables the equations take the form 

~Tp~ = F~m(P.)+ ~IF~')(P°) + . . . .  (29) 

~ An example of a rigorous infinke-dimension~.t perturbation the- 
oD" for Hamihoni~ sy~ems may be found in Ref, 124]. 
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! 
= - ~k + G~°)(p.)  ) ( p . )  + . . . .  ( 3 0 )  

Differentiating (27),(28) with respect to T, we obtain 
(repeated indices are summed over) 

Op~ ') op"" 

0012) ,.  (21 _2o'Pk __ _ +~2o-~oro,+,l -~-~ ,+ . . .  (31) 
and 

o d  ') - 

a~O 12) 
+ ~ - -~- -~r~ + . . -  (32) 

Substituting (27),(28) in (22),(23) and performing 
a Taylor expansion, we obtain 

aA .(~) ark _(I) + 0(,12), (33) 

I Ogkp(~)~ Og~ (j) 
@e~ = - ~  + gk + r/-~-_ + ~?-z-:-_ q't + 0(~2), 

(34) 

where a]i the functions are evaluated at the arguments 

(po,tPo). Upon using (29) and (30) in (31) and 
(32), we obtain 

., ( I )  
_ o &  ,- , (o) f lO~O~ + 007 ~) (35) 

and 

1 &P~')m, + + ~;;(~]) 
31-0t( = -ink + G~ 0) 

,, ( I )  ., ( I )  
_ aff'k F(o) _o~#k ,.-,(o) 

71 3(p~ u t  

+ ' r / ~ m ~  + O(r/2). (36) 

We now identify (33) with (35) and (34) with (36) 
order by order in 7/. The only terms O(r/- t)  are in 
(34) and (36) and are already identical. To order r/°, 
we obtain 
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aP~ j~ F~o), a - - - ~  = h - (37) 

= g ,  _ c 0, (3s) 
0¢,~ 

To order 1,/I , we obtain 

~ m ~  (39) 

with 

' 

~k 2) a~k O(I) + agk ~p(I) G~ I) "~"(') = ~ _ "w__~_t G(O) 

O~') F~°). (42) 
ap ,  

We observe that all four equations (37), (38), (39) 
and (40) have the same structure: a combination of 
derivatives with respect to the ~ps equal to a right hand 
side. 

We now denote by angular brackets '.he operation 
of averaging over all phases, 

2~- 

f d~ ( h ( ~ , , ~  . . . .  )) = 

o 

2~. 
f d~2 x - ~ - . . .  h(~,t, ~p2 . . . .  ). (43) 

o 

Consider first (37). It is clear that the term ~p~ )/~p~ 
in (37) has a vanishing average. Therefore, a neces- 
sary condition for (37) to be solvable is 

( fk(p., f f , ))  = F(~°) ( p . ) .  (44)  

Thus, to leading order in ~/, (29) reads 

@ p k - F ~ t ( p . )  = (fk(p., ~p.)). (45) 

In other words, the leading order equation is just 
obtained by averaging the original equation (22) over 

the phases. However, (44) is only a ~ condi- 
tion. To actually try and solve (37) for the p~)s, 
expand fk ~dp~ l) in aFourier series in al! t h e ~  

fk(p.,~.) = ~ ft~g(p.) exp(iwsc~), (46) 

- ¢ 4 7 )  

g 

Here, the Fourier variable [ = {~t} has signed integer 
components. Note that the Fourier series in the phmes 
is unrelated to the spatial Fourier decomposition used 
at the beginning of this scczion. 

Eq. (37) is equivalent to the following relation 
among phase Fourier components: 

( f t (P. ,¢. ) )  = F~° ' (P . )  (~:=0), (48) 

i~ttotp(~- f,~(p.) (~ ~ 0). (49) 

Eq. (48) is just the solvability condition already writ- 
ten (44). Eq. (49) is immediately solved as 

p~tt) fk~(Po) 
~= isctm-----~. (50) 

provided that ~t ml does not vanish for those fk~ ( Po,~ 
which axe nonzero. The condition 

~e o,e'- 0, (51) 

which is called "the resonance condition', prevents the 
existence of a solution unless 

fk.~ =0, (52) 

in which case one has a 'compatible resonance'. 
As shown in Ref. [23], when resonances ate 

present, it is in general necessary to modify, the 
asymptotic expansion and to include a certain number 
of integer combinations of the original phases =ntong 
the independent variables of the averaged e q ~ .  

So far our formalism has been quite general with 
no particular use made of the specific form of the dy- 
namical equation. In Appendix C we show that for the 
,6-Cahn-Hilliard equation four-wave resonances a~ 
present in (37) which determines the l e a d i n g ~  
asymptotics. These resonances are, however, "decom- 
posed', in the sense that they are made of two 1 ~  
of opposite wavenumhers. This implies comp~ibility. 
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Hence. to leading order, standard averaging, namely 
(4~), applies. The final equation for the amplitudes, 
~the resonant interaction Cahn-HtTliard (RICH) equa- 
tion, reads 

( ~___2 k2 _ 3V~ k4 ~ 
&P~ = ~, p2 2p 4 ,] Pt 

- 2 ~ k 2  2 Z p ~ - p  ~ pt. (53) 
P': t=l 

Here. no summation is implied on k. For the details, 
the reader is referred to Apl.',e.~"]ix C. 

Equations for higher oreer terms, such as (39) 
involve resonances ~c, ong six waves and more. As 

shown in Appendix D such resonances are not neces- 
s~ity decompesed. !~ may be shown that this implies 
the existence of noncompatible resonances. Thus, the 
phases cannot be completely eliminated when study- 
ing the corrections to the leading.order asymptotics 
and some kind of slow chaos (on time scales O(1/7/) 
or larger) could he present. 

We note that situations with compatible leading- 
order resonances and noncompatible higher order res- 
onances are often encountered in celestial mechanics, 
the best examples coming from the theory of secular 
motion of asteroids [ 25-27]. 

5.1. Comparison wi~h continuous resonant wave 
interaction theoo" 

To facilitate the comparison width the Benney- 
Newell-Saffman (BNS) theory of resonant wave 
interactions [ I 1,12]. we rewrite (53) in terms oftbe 
(discrete) kinetic energy spectrum E( k ) = p2 as 

~ E ( k ) = Z ~ p 2  2p 4 ) E ( k )  

4-~k  2 E(O - E(k) E(k). (54) 

Here, again, no summation is implied on k. Suppose 
we now go to the continuous limit. This can be done by 
either of the following methods: (i) by changing the 
assumed 2~'-periodicity into an L-periodicity and then 

letting L --, ~ ;  (ii) by letting the number of linee, rly 
unstable modes n ---, ~ ,  spreading the energy over a 
very large number of modes, in such a way that each 
individual E(k) ~ 0, but the sum ~ l  E(?) remains 

finite and goes over into the integral f ~  Ecom(q)dq. 
In this continuou~ limit, (54) goes over into 

(_.~_~k 2 3V/2k4 ~ o ~ t ~ ( t )  -- 2 ~ p2 - 2p 4 j E~,(t,) 

8 v ~  oo 

o 

Observe that the term proportional to E2(k) on the 
r.h.s, of (54) has dropped out. 

Eq. (55) may be derived directly from the 8- 
CH equation (10) by making the quasi-normal 
approximation, i.e. by discarding the fourlh-order 
cumulant. The BNS method gives a rationale for 
this approximation. The argument goes roughly as 
follows. One writes the cumulant hierarchy derived 
from the /~-CH Eq. (7). One then observes that 
for homogeneous random functions in the continu- 
ous limit, the fourth order Fourier-space cumulant 
(D(kl)O(k2)~(k3)~(k4))o a distribution with sup- 

port in the hype,'plane kl + k2 + k3 + k4 = 0, invol°;~ 
quartets of wavevectors (kl~ k2, k3, k4) such that their 
full sum vanishes but no partial sum vanishes. It fol- 
lows that such quartets cannot be resonant for Rosshy 
waves (see Appendix D). Hence, for large ~8s, the 
fourth order cumulant is phase mixed. 

The preceding argument does not work in the 
discrete case. Indeed, there exist then discrete fourth- 
order cumulants with vanishing partial sums of 
wavevector arguments, for example ( D~ 0-t, Ot ~-~)c. 
With such cumulants are associated resonant wave 
interactions and, hence, no phase mixing. This is 
a (cumbersome) way to understand why the term 
proportional to E2(k) survives in the discrete case. 

For our problem, the long-time behavior of (54) 
and (55) can he very different. If (55) is used with a 
minimum wavenumber kmi~, eventually a steady state 
is obtained with all the energy concentrated at kmin 14 

t4 This is an instance of a general result presented in Ref. [28]. 
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In contrast, as we shail see in the next section, the 
solutions of (54) can go to any of many possible stable 
st-,~dy state solutions. 

We also mention that discreteness effects similar 
to those encountered here are present in the so-called 
S-theory for the paran~tric excitation of spin waves 
in the presence of time-periodic pumping, a problem 
which also has cubic nonlinearity [ 13]. It was realized 
in this reference that it is not correct to just discard 

the fourth order cumulant. The appropriate modifica- 
tion was however introduced in a somewhat heuristic 
way. Later, a more systematic theory was developed, 
which uses diagrammatic expansions [29]. It appears 
that the normal form approach (which here reduces 
basically to averaging) gives more insight. In this con- 
text it is of interest to note that the Russian school 
was aware of some connection between resonant wave 
interaction theory (called by them "wave turbulence" 
or "weak turbulence') and analytical mechanics. For 
example, on p. I! of Ref. [7] at the end of a sec- 
tion on the elimination of nonresonant terms from a 
wave Hamiltonian, the following is observed: "Note 
that the above-described transformation is analogous 
to the transformation of the Hamiltonians to their nor- 
mal forms, i.e. in the vicinity of fixed points in classi- 
cal analytical mechanics". Similar remarks were fre- 
quently made by V.E. Zakharov (V.S. Uvov, private 
communication). 

oo oo  

2v/2 Ek2~ + 3v~ E k4~. 
- p'-T- -7 
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(SS) 

The presence of a Lyapunov functional may seem .~r- 
prising, since the variational formulation for the ot'ig- 
inal C.ahn-Hiiliard equation could be lost by the pres- 
ence of the dispersive ~effect. Actually, in the l i r~  

- ,  o¢, there is no dispersive term left in RICH, 
but only a selection of a subset of all possible nc~|in- 
ear interactions present in the Cahn-Hilliard equation, 
namely the resonant ones. 

An alternative formulation, in terms of the E(k)s, 
is to rewrite (54) as 

0rln(E(k))  = c~E(k)" 

where ~ has now only linear and quadratic terms in 
the E(k)s, 

~ t  

= 

p2 ~-~ E ( k ) + 4 
t=I P t=t 

(60~ 

5.2. Solutions of RICH 

We now study the resonant interaction equation 
RICH, written in the form (54). We first show that 
RICH has a Lyapunov functional formulation. We set 

E(k) ~ t2~. (56) 

Note that he bts are just the moduli of the Fourier 
components of the stream function. It is elementary to 
check that the equations for the b~s may be written as 

! 00 
~bk - - ~  ab--~' (57) 

where the Lyapunov functional 0 is given by 

It follows from either of the Lyapunov formulations 

(57) and (59) that the ~lutionsofRICH tend, at large 
times, to any of the stable steady states corresponding 
to a local minimum of the functional ft. 

We shall now show that, when p is large, i.e. when 
there are many linearly unstable modes, there ale many 
stable steady-state solutions. 

Clearly, RICH has single-mode steady-state solu- 
tions. Indeed, it is seen that (54) is satisfied, if for a 
particular mode k the energy E(k) has the value 

3 k 2 
t ( k ) - -  ½ 4p  2 , (6[)  

while it vanishes for all other modes k t ~ k. 
Multiple-mode steady-state solutions for a set K = 
{kz, k2 . . . . .  kin} of m modes can be obtained as 
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3 k~ 2 
E(/q) = 2/~ - ½ + ]V--~, (62) 

where the total energy is 

~= (63) • 

tiEK / 

The existence of these steady-state solutions is con- 
strained by the realisability condition, i.e./~(ki) _> 0 
for all ki E K. Hence, the number of m-mode station- 
ary solutions is finite for a given p and scales with pm 
whea p is large. 

The stability of the steady-state solutions is studied 
by intruducmg a small perturbation in (54), that is, 
we Set 

E(k) = t ( '  ~ + ~ (~ ) ,  IE'(t)I << ~( t ) .  (64) 

This leads to stability equations which separate into 
two ~bsets, one for the wavenumbers ki belonging to 
K. namely 

v~_ ~OrE'(~) = -~(t)  E'(O - E'(t~) 
4 k, 

165) 

and one for the exterior wavenumhers q~ not in K, 
namely 
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(66) 

From (66), we see that the stability to exterior modes 
is most restrictive for the smallest wavenumber q0 not 
in K. Hence, a necessary stability condition is 

~p~ + (2m -. ! )¢6 - E k~ > 0. (67) 
k,EK 

Let us first consider single-mode solutions with 
wavenumber k. If k = I, then qo = 2 and stability to 
exterior modes follows from (67). If k > ! stability 
to exterior modes requires 

! ! 2 k 2 < ~ + .~p. (68) 

When stability to exterior perturbations holds, we can 
replace ~ n  E'(~') by ~t~lc E'(I) in (65) without 
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loss of gcnerality; that is, we restrict the stability prob- 
lem to the subspace spanned by the excited modes. For 
single-mode steady-state solutions, the eigenvalue is 
then always negative. This means that condition (68) 
is then sufficient for stability. We have thus estab- 
lished that RICH, unlike the Cahn-Hilliard equation, 
has multiple stable steady-state solutions with a single 
mode excited. By (68), the number of such solutions 
scales with p when p is large. 

We now consider 2-mode steady-state solutions, the 
(interior) stability equations are 

~E~ ( k3 ) " -AIEt ( kn ) - 2A2E' ( k2), (69) 

0TE'(k2) - -2A2E' ( kn ) - AnE' ( kz ), (70) 

where 

A,---p-~-- . (7n) 

The product and the sum of the eigenvalues being 
negative, the eigenvalues are real, one of them being 
strictly positive. Hence 2-mode steady-state solutions 
are always unstable. 

For 3-mode- st~.~y-state solutions, the characteristic 
equation is 

0 .3 + 0"2(AI + A2 + A3) - 30"(AxA2 + A2A3 

+A3At ) + 4AIA2A3 = O. (72) 

Hence the sum of the eigenvalues, the sum of pair 
products and their product are all negative numbers. 
This implies that two eigenvalues have positive real 
parts and thus instability. 

More generally, we conjecture that m-mode steady- 
state solutions with m > I are always unstable to 
interior perturbations. 

Steady-state solutions are the extrema of the Lya- 
punov functional G. The stability analysis shows that 
these extrema are saddle po:qts of ~ for 2-mode and 
3-mode steady-state solutions (and probably for m- 
mode solutions with m > 3). The long-time behavior 
of solutions to RICH is therefore quite simple: the so- 
lutions are attracted to any of the finitely many minima 
corresponding to the stable steady-state single-mode 
solutions. This number grows with p as the integer 
part of (11/2) + (p2/3))1/2. Note that (p2/3)1/2 is 
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the wavenuntber which maximizes the linear rate-of- 
growth for RICH. The existence of several competing 
basins of attraction was already revealed in our nu- 
merical experiments on the .8-Cahn-Hilliard equation 
(Section 4, Fig. 4). The basins of attractions of each 
of the stable solutions may be rather complex and have 
not yet been mapped out. The presence, for large ps, 
of numerous unstable steady-state solutions, which at- 
tract to their vicinity trajectories located near their sta- 
ble manifold, suggests that transients with numerous 
excited modes may persist for long durations. 

6. Concluding remarks 

In this paper there are some results and open ques- 
tions which are specific of the ~8-Cahn-Hillia~d ( ~  
CH) equation and others which can appear in a broad 
class of problems involving resonant wave interactions 
(RWI). Let us first discuss issues of the latter type. 

Our normal form approach to RWI, as described in 
Section 5, can in principle be applied to any wob- 
lent with discrete wavenuntbers. For the ~ equa- 
tion the main conclusion is that, in the limit .8 ---, o¢, 

the leading-order asymptotics is governed by a kinetic 
equation for the wave moduli (or their squares, the 
wave energies), called the resonant interaction Cahn- 
Hilliard (RICH) equation. The decoupling of moduli 
and phases has its origin in the compatibility of four- 
wave resonances. This, in turn, is so because the res- 
onances are 'decomposed', i.e. made of two pairs of 
opposite wavenuntbers. Similar decoupling holds for 
equations other than Cahn-Hilliard, provided they are 
one-dimensional and have a cubic nonlinearity. Such 
a simple "kinetic' situation can be upset in at least two 
ways. 

First, we observed that, beyond the leading order, 
there are noncontpatible resonances, involving for ex- 
ample six or more waves. These inhibit the decoupling 
of ntoduli and phases, it would be of interest to derive 
and study the corresponding normal form which de- 
scribes the slow and weak, possibly chaotic, deviations 
front the long-time asymptotic behavior predicted by 
RICH. 

Second, if the dispersion relation is changed from 
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cot oc I /k  to a more general functio~l form, fo~o 
wave r ~ m o ~ s  may not be ~ ,ad, h~l~,  
will in general not be compatib~, so thal no k i ~ i c  
equation is obtained to leading order. A~a~y ,  it n~ay 
be shown that four-wave resonances are still 
posed as long as ~i  = f(t), where f(t) is (i) 
odd-convex: f(-k) = -f(k) and f"(t) > 0 for 
k > 0 and (ii) superadditive (resp. ~~e): 

f ( k l  + kz) > f ( k i )  + f(k2) (resp. f ( k ,  + k2) < 
f(kn) + f (kz) )  forku > 0 and kz > 0. The functk~ 
f ( k )  = -25k 3 + k  s, which does not satisfy these co¢- 
ditions, has the four-wave resonance kt - I, k7 = 4, 
k3 - - 2  and k4 = - 3  which is clearly n o t ~  
(M. Vergassola, private communication). 

Noncompatible resouances can occur in a mare nat- 
ural way if we depart from our toy model (3) to in- 
CorlX~e physical effects which are present in realis- 
tic geophysical flow and in laboratory experiments e¢ 
two-dimensional flow. The most intportam ones ate a 
bottom friction by Ekmann pumping and a finite radius 
of deformation L~ arising from free surface effec~ 
[ 14,15]. In (3) we must then add a term -vt~2q ' in 
the r.h.s, and replace 02 by 02 - L2R in the l.h.s.. 

BoSom friction with realistic values shifts the criti- 
cal Reynolds number for negative eddy viscosity from 
v/2 to much larger values [3]. Also, by damping the 
Iow-k modes, it induces a large-scale cut-off far 
insmbih~y which may slow down or stop the inverse 
cascade. 

In the. presence of a finite radius of d s f ~  
dispersion relation becomes ~t  ~x k / ( k  2 + I/L~).  
When kLR << I, the phase speed saturates and the 
Rossby waves are only weakly dispersive. Therefore, 
the validity of RWI requires much larger values of/~ 
than in the absence of deformation radius, Froths- 
more, the dispersion relation is not ndd.-cc~,,vex, so 
noncompafible resonances do occur. 

Let us turn to issues more specific of ~he i[~-Cahn- 
Hilliard c~quation. When starting from the Navier- 
Stokes equation (3), the derivation of RICH involves 
successively two asyntl~otics: (i) the muttisca~ ex* 
pansion in which the ratio of scales is • and the slig~ 
excess of the Reynolds number over its critical value 
is O(e 2) (cf. (4)) ,  (ii) the RWI expansion in which 
the small par, m~er  is l iB. Since B = Bi/us, where 
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~/m is the [mrm'neter appearing in the Navier-Stokes 
Eq. (3), we conjecture that RICH holds when ~q, = 
~g(~) ,  where g(~) -., c¢ at a rate slower than 1/~. In 
other words, even for very small values of the physi- 
cal Rossby parameter//I, RICH should be the relevant 
equation at sufficiently large scales when the Reynolds 
number is close to i~s critical value. 

Simulations of the//-Cahn-Hilliard equation have 
revealed that the solutions can be very close to what is 
predicted by RICH, say with/n ene tenth of a percent, 
for values such as ,8 ~ I0. Comparison of the negative 
eddy viscosity term with the Rossby term in (16) sug- 
gests that the large expansion parameter which con- 
trols the validity of RICH is/3(p/k) 3 rather than//. 
(The number of linearly unstable mode is p(2/3)  1/2.) 
If we apply this argument solely to the gravest modes 
for which k -- O( 1 ), we find the condition/jp3 >> I, 
which is much less restrictive than//  >> I for the 
kind of values of p used in our numerical explorations 
(p ~ 9). However, if we require the condition to be 
satisfied for all the wavenumbers in the linearly unsta- 
ble band, which extends up to k = O(p) ,  we recover 
the condition l/>> 1. An interesting asymptotic prob- 
lem is to let p - ,  oc, ,8 ---+ 0 and l~p 3 --+ oo. RICH 
could then be valid at large scales while small scales 
exhibit a standard Cahn-Hiiliard inverse cascade. 

Finally, we mention the problem of understanding 
the structure of the multiple basins of attraction of 
single-mode solutions to RICH, particularly when p is 
large. Numerical experiments on the//-Cahn-Hilliard 
equation with large values of+0 (10-100) and Gaus- 
sian initial conditions with low amplitude and a white 
(flat) spectrum indicate that single-mode solutions 
which are attained have mostly their wavenumbers 
near (p2/3)!/2, the value which maximizes the lin- 
ear rate-of-gre~h. Since there is a quartic Lyapunov 
functional (58), this challenging problem could be 
amenable to geometrical methods. 
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Appendix A. Derivation of the ,O.Cahn--Hilliard 
equation b y  a multiseale technique 

Our purpose is to give some details on the derivation 
of the//-CH equation (7). It is assumed that the reader 
is familiar with multiscale techniques t5. Derivations 
of the CH equation in the absence of the//-effect may 
be found in Refs. [2,3]. 

The Navier Stokes equations with Kolmogorov-flow 
forcing f = u ( -  sin y, 0) and the ,0-effect is rewritten 

here for convenience, 

at02~ + J(02~ ", '/,') = va20z¢ ' - ~,cos y -//la~'. 

(A,t)  

We are interested in long-wavelength perturbations 
to the basic solution of (A.I),  namely 

9" -- cosy. (A.2) 

When//I = 0, it is known that the threshold of insta- 
bility is for R = 1 / z ,  - Rc = v/2 and that, just above 
this threshold, the most unstable mode has a large- 
scale dependence only on the coordinate x [2-4]. It 
may be checked that these features are unaffected by 
the presence of the dispersive//-term. 

As in Ref. [3], we set 

u = v c (  1 - e2) (A.3) 

and introduce slow space and time variables, 

X = ~ x ,  T=~4br. (AA) 

The multiscale technique treats fast and slow vari- 
ables as being independent. Since the basic flow de- 
pends only on y and is tin,c-independent, derivatives 
appearing in (A.I) are now given by the following 
rules: 

We have benefitted from discussions with V. Arnold, 
M. Blank. V. L'vov, A. Morbidelli, A. Nepom- 
nyashchy, M. Vergassola and V. Zakharov and 

a, ~ ~ % ,  a~ --. ~Vx, ay ~ a,,. (A.5) 

"t~ A brief introduction may be found in Ref. 1301 (Section 9.6.2). 



if, F~isch ¢~ al.IPl~ica D 94 ¢1996) 36-56 5~ 

(We used the notation Vx rather than Ox to make 
the difference between slow and fast vaeriables more 
conspicuous.) For the reasons explained in Section 2, 
we take 

fll = esfl (A.6) 

and the amplitude of the lk'Cc,~rbation # of order • "°, 
namely 

¢(y,X,T) =¢(0) +e¢( , )  + e2~(2) + . . . .  (A.7) 

Here, the functions ~(0), ¢(!) . . . .  depend both on fast 
and slow variables. Substituting the perturbed stream 
function 1/,' + ~r for q~ in (A.I),  we obtain 

a, a2¢ + J(a2~,,¢) + J(a2¢,~ ,) + y(a2¢,,~) 

-=,a2a2~ +/~ta ,~ = 0. (A.8) 

We now evaluate the various terms atvearing in (A.8), 
using (A.3), (A.5) and (A.7) and stop at the high- 
est order in • which will turn out to slay relevant for 
obtaining the final large-scale equation. In the follow- 
ing equations we omitted all the terms involving fast 
den'vativ~ of ~<o). The solvabilhy coalition, at ~- 
der eo implies indeed that ~#(o) depends only or, slow 
variables. We thus oblain 

~ , ~  .~ e~a~( ' )  + e%V~¢ *°> + e6~2¢  ~2), 
(A.9) 

-e2( a3~)(Vx~ (l)) - e:)(ay~/,) (Vx~(2)), 

(A.~0) 

++2(Vxa~¢ ('))(a:~,) + ~(v~a~,/, (2) 

+v~x¢(°))(a,~ ,), (A.~) 
/(a2~, ~) -.-* - e 2 ( a ~ ( t ) )  (Vx~)(°)) 

+e ~[ (Vxa.,~ (')) (a,~ ('))a~(')(vx~, (~)) 
- ( 0 ~  (z)) (Vx~  (°)) ], (A.I 2) 

t'O~2~2¢ ~ l"c[e~41~ ll)  "l" +2a;~(2) 

- -+3t  ~4.t.(3) ,'#,12~-72,1, ( ! ) 4 ( I )  + - a;~r )1, (A.13) -f-e ~uv¢ p + ,.,,yvX~, 

-)8, ~7~ -.., -/~6Vx~,(°). (A. 14) 

In the r.h.s of these equations, J ( . , - )  denotes tic $=- 
cobia~ in the fast variables. Since y is ~ ¢mly f=st 
variable, such Jacobians ate zero. Upo~ using (A.9)- 
(A.14) in (A.8) and equating terms havi~g eqeal 
powers in e, we obtain a hierarchy of ¢quatio~ which 
all have the general form 

A f  = g, ( A . | 5 )  

where the operator 

A - -~'c~ 4 (A.16) 

acts only on the fast variable y. Because of the y- 
periodicity, the operator A has as its null-spece the 
'constants', i.e. the functions which do not dep¢~ 
on the fast variable y. For aa eqttmio~ of the form 
(A.15) to be solvable, the r.h.s, must he o rdmgo~ to 
such constants, i.e. (g) = 0, where the angul= breckets 
denote averages over the basic 2~" period in y. 

The final equation for the lava-scale 
emerges as a solvability condition to oder ~ .  In prin- 
ciple, we should therefore write the hiermdty up to 
that order. However, as noted in Ref. [31 ]. soivalbib 
ity conditions can be generated more quickly by just 
decomposing derivatives iv (A.8), using (A.5) ami 
taking a~'ages on y without yet expanding ~. In 
fashion we obtain 

+/~Vx(¢,) = o, (A.tT) 

from which the whole set of solvability coalitions 
can be generated by expending # in powers in ~. It 
may then be checked that all the solvability conditions 
up to order ~ are satisfied (for the last two orders 
this requires the use o f t lg  condition R = R~). The 
solvability condition to order ~6 reads 

~V2x~ <°) - ( ( V , ~  ° ) )  siny) 

+((v~(~))a~ ~) + ((v~C,~2))a;~, ~)  

_~,~(~,(2,) + ~,~v~¢,(o~ +/~Vx¢,¢o) =0. 
(A.t8) 
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This will become a closed equation for ~(0) only after 
~ l ) ,  l/,~_ ~) and 0 (3) have been calculated in terms of 

For this we write the equations arising at order ,~o 
• ~, 6 2 and 6 3, 

Appendix B. Details of  the Painlev& analysis 

We show how to perform the Painlevd test on the 
steady-state fl-CH equation, rewritten here for conve- 
nience as 

A~F °) = O, (A.19) 

A0 (i~ = sin yVx¢, (°), (A.20) 

Aft t-% = siny( l + O~)Vx0 It) + 0~.~bll)Vx~b ~0), 

(A.21) 

A~ ~3) = siny ( I + 0, 2 )Vxl~ ~2i + sin yV31//°) 

-(~y¢,(~)o~ 3 (~ .3.,x2),-, .,.co) . . -0,.0 ) )Vx~  ,(1) +o>.~ ",x~ 
...~%. ~2v72./.(I) 4 (!) 

~ . , . , - , , , .  v x v ,  - ucO,. d/ (A.22) 

From (A.]9), it follows that ¢(o) depends only on 

slow variables. Eqs. (A.20)-(A.22) may be. solved 
explicitly, up to arbitrary additive constants, i.e. func- 
tions depending only on the slow variables. The results 
are given hereafter, 

l / / i )  = -Re sin yV¢ (°) + (~,(i)), (A.23) 

~t(2) = _ R~ COS y(Vxi~ (0))2 -- Rc sin y V x  (¢,(l)) 

+(!k(2)), (A.24) 

0 (3) = -3R,. sin yV3xlp (°) + g~ sin y(Vx~ (°))3 

-R~ sin yVx~/°) - R~ sin yVx(~ (2)) 

(A.25) 

Substitution of (A.23), (A.24) and (A.25) into 
{A.18) and use of Rc = x/2 produces 

 vxc,(x. r )  = - 

-A3VSxd/ - f l(d/ - C), (A.26) 

with 

3 
Af=2v~ ,  A2=V/2, A 3 = ~ .  (A.27) 

The constant C, which may depend on the time T, 
stems from the integration with respect to the X- 
variable (off:xwise, there is an additional Vx acting 
on the left of each term). Except for the change of 
notation (Vx rather thin ax), (~.26) is the fl-Cahn- 
Hitliard equation (7). 

a~ 3 (u3/3 - u - ,~Oz2u) - ;~u- 0. (B.I) 

We set 

A(z )  -= u3/3 - u - A~2u,  (B.2) 

and we shall consider the three following problems: 

A(z) - 0 ,  (B.3) 

O~A(z) -- 0, (S.4) 

a~A(z) -/3u = o. (3.5) 

Eqs. (B.3) and (B.5) are respectively the (steady- 
state) CH and a-CH equations. The solutions of (B.4) 
include those of the CH equation. We do not specify 

any boundary conditions, since the Painlevd test in- 

volves only the local structure of the equation. 

The Painlcv6 test of an equations consists in trying 
to construct meromorphic solutions, i.e. solutions hav- 
ing only poles as movable singularities. Near such a 

singularity z., assumed to be a pole of (integer) order 
p, a meromorphic function has a Laurent expansion 
of the form 

i p(/~o -[-UlZ -[-//2z 2 -[- • .). (B.6) ufz) = (z- z.-"-'-'-T 

The ordcr of the pole p and the coefficient uo are deter- 

mined by dominant balance after substitution of (B.6) 

into the equation under consideration. By examining 
(B.3), we fi:ad that the contributions from the u3/3 
term and the - A a 2 u  term are always more singular 
than the - u  term. Balancing these terms gives 

p = i ,  uo = - l - .v~. (e.7) 

The same dominant balance works also for (B.4) and 
(B.5). 

Since all the equations under consideration are au- 
tonomous, no generality is lost by assuming z, = 0. 
Hence, we are seeking solutions of the form 

U(Z) "" ]--(/40 "FUlZ "4- U2Z 2 +...). (B.8) 
Z 
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The successive Laurent coefficients u~, u2 . . . .  are 
determined by identification of the various powers of 
z. It is important to note that all these coefficients 
(except u0), when they appear for the first time in this 
identification process, appear l inearly.  Hence, the ujs 
( j  _> 1 ) satisfy equations of the form 

aj uj = bj, (n.9) 

where the bjs are functions of uo, at . . . . .  uj-l .  Simple 
algebra gives, for the case of (B.3), 

aj = A(4 + 3j _ j 2 )  = h ( l  + j ) ( 4 -  j ) ,  

j = 1,2 . . . . .  ( e . t o )  

while, for the cases of (B.4) and (B.5), we obtain 

a~ = A ( j  - 3 ) ( j -  4 ) ( / -  5)(I  + / ) ( 4 - -  j ) ,  

j =  1,2 . . . . .  (B.I I) 

Let us first examine the case of (B.3). We observe 

that aj vanishes when j equals four re. This is called 

a resonance. Hence, (B.9) has no solution for j = 4 
unless b4 = O. For j > 4 the a/s do not vanish and 
(B.9) has always a well-defined solution. In order 
to examine the possibility of constructing a Laurent 

expansion, it suffices to calculate the bjs up to j --- 4. 

Substitution of (B.8) into (B.3) gives a sequence 
of relations, the first four of which read 

Uo2Ul ffi 0, (B.12) 

u~u2 = -u~ uo + uo, (B.~3) 

(u~ - 2a)u3 = -2u0ulu2 + ul, (B.14) 

( u~ - 6a  ) u ,  = -u2u2  - u~uo - 2u0umu3 + u2. 
(B.]5) 

Successively solving (B.12) to (B.15) and using 
(B.7), we obtain 

u2 = I /~ '6 "A ,  (B.16) 

Ul = U3 -- 0, (B.17) 

0U4 = 0. (BAg) 

J~ It al~ vanishes when j equals -I ,  but this reflects jest the 
arbitrary location of the pole. 

For u4 we thus have b4 = O, that is, a c o m V ~  
resonance and, hence, a seco~! free ( ~ )  pa- 
rameter, in addition to z,. Having thus ~ a 
two-parameter family of Lata'ent series soh~io~s of 
(B.3), we have Woven that it has the Pa/alev~ p¢o~ 
erty. Actually, (B3) may be e~piicitly it~,grat~d ia 
terms of elliptic functions. 

We now turn to (BA), which may be rewritten as 

A ( z )  " a + y z  +Sz 2, (Bo|9) 

with arbitrary constants a, y and 8. Going thfo,zgh the 
same procedure as above, we find that comp~ibi|Ry 
holds if and only if 7 = O. It may be checked that 
the corresponding equation A ( z )  = a + 8 z  2 is  in 

the class of Painlev6 transcendents wh/ch does have 

meronmfphic solutions [32]. 
Alternatively, we can work directly with the fifth 

order equation (BA). We observe dmt the c ~  
aj, given by (B.! 1), vanishes for j  = 3, 4, 5. h may 
be checked that a l l  three resonances are compatible. 

Together with z, this gives four arbitrary coasu ls ,  

not enough for a fifth order equation. So, we only have 
a kind of weak Painlev6 property. 

Finally, we turn to the//-CH equation (B.5). The 
coefficients aj are still given by (B.I !). Hence, there 
~e  the same three resonances j =3,  4, 5 as for (B.4). 

The j - 3 and j = 4 resonances are compatible, bet 
for j = 5 we find 

Ou5 = auo. (B.20) 

This is a noncompatible resonance. Hence, the 

Painlev6 test fails for the ~-CH equation. 

Appmdix C. Details ef the theeq, ef resemm 

imemctimls 

We show here how the general averaging fornmlism 
presented in Section 5 can be applied m the ~Calm~ 
Eliiliard equation. We want m solve Eqs. (37)-(4e).  

We begin with (37). The function f t  for the fl- 
Cahn-Hilliard case is given by (24), which may be 
rewritten in more symmetrical form as 

f k ( p . , ¢ . )  = (a2~ - ~3P)ok - a~k 2 
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(C.l) 

w!'ere k4 - - k  and we have used the Hermitian sym- 
metry ( ~  = - ~ t ) .  

As explained in Section 5, the terms in (37) are 
expanded in multiple Fourier series in all the phases. 
From (C.t)  it is seen that the Fourier coefficient 

fk~(po) differs from zero if and only i f s  ~ -" 0 or 

~: = ~ X ( k , ,  k2, ~3, k,)), (C.2)  

where X = {Xi} has only four nonvanishing com- 
ponents, all equal to +1, corresponding to a tetrad 
(kl,k2,k3,k4) of indices i such that (i) 

k~ + k2 + k3 + k4 = 0, (C.3) 

and (ii) no partial sum of two wavenumbers, e.g., 
kl + k2 vanishes; otherwise the Hermitian symmetry 

implies the vanishing of tpk, + ~Pk2 + ¢k3 + ~t~ so that 

the corresponding terms pertain to ft,f=o. 
Let us now consider (49), rewritten for the conve- 

nience of the reader, 

The existence of solutions to (CA) requires that, 
whenever ~:t ¢a~ vanishes, the r.h.s, should also vanish 
(Fredholm alternative). We have seen that the ft .fs 
are nonvanishing only for those ~:s given by (C.2). 
We then have 

~ ~ = o~t~ + o~t: + o~t~ + ~ .  (C.5)  

It is shown in Appendix D that in ~he Rossby case, 
four-wave resonances, that is, the simultaneous van- 
ishing of k~ + k2 + k~ + k4 and of wt, + w~ 2 + wt~ + 
w~,, require the wavevectors to be opposite in pair, 
e.g., k~ + k2 = 0 and k3 + k4 = 0 or permutations. 
This situation is ruled out by the condition (ii) on 
~etrads. Hence, we have established that, whenever 
there is a resonance, the r.h.s of (C.4) vanishes, i.e., 
that there are only compatible resonances. Therefore 
the leading-order asymptotics is given just by stan- 
dard averaging, namely (45). To write this equation in 
explicit form for the ,8oCahn-Hilliard case, we must 
evaluate 
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(A(p.. ~.)) = A ~ (p . )  (¢.6) 

Using (C.I), we obtain 

fk ~=o(p.) = (~2k 2 - ~3k 4) pk - 6 ~ t  2 ~ ~,~/,k 

- 3 ~ F p  3. (c.7) 

Using (26), (C.6) and (C.7) in (45) we obtain 
the resonant interaction Cahn-Hillard (RICH) equa- 
tion (53). 

The solution of (38) is handled in essentially the 
same way as for (37). Again there are only com- 
patible resonances. The main difference with the pre- 
vious case is that the average of (25) vanishes be- 
cause of the presence of the imaginary part. Hence, 
to leading order there is no modification of the fre- 
quency of the Rossby waves. When considering the 
Eqs. (39) and (40), which determine the next-to- 
leading-order corrections, the matters become more 
complex: the right hand sides of these equations con- 
lain expressions quadratic in the f t s  and gas. It may 
be checked that sixth order noncompatible resonances 
are present. Hence, straightforward averaging fails he- 
yond the leading order. 

Al;@endix D. Resonances: a dioplumtine problem 

,~v,,u,,vns for resonances ~,~ investigate here the. -^='*:':^ 
among n > 2 waves. The problem will be solved 

completely for n = 2, 3, 4, the only values needed 
for the leading-order behavior for large values of )8. 
Special solutions will be given for n - 5 and n -- 6. 

The problem may be formulated a~. follows. Let 
there be given n - I (signed) integer wavenumbers 

kl, k2 . . . . .  kn-l; define 

k =__ ki + k2 + . . .  + k,,- i .  ( D . I )  

Find those wavenumbers satisfying the condition of 
resonance, that is, 

o~t = ~t ,  + o~2 q-""  + ~k._, ,  (D.2)  

where 

P wt --- ~ .  (D.3) 
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This constitutes a diophantine problem, that is, a sys- 
tem of equations for which one seeks integer solu- 
tions. 

Without loss of generality, we may assume ,6 = i .  

The problem may be recast in more symnmrical form, 
namely 

kt + k2 + - - .  + k,, = 0, (DA) 
i ! ! 
+ + +  Y, =0,  D.5) 

where k,, - -k. It follows from (D.4) and (D.5) 

that the k~s are the roots of an nth order polynomial 
equation of the form 

x" + a ,_2x  #-2 + - . .  + a2 x2 + a0 = 0, (D.6) 

where the coefficients ,~o, a2 . . . . .  a,,-2 are integers. 
For n = 2, (D.6) has the form 

x 2 + ao = O. (D.7) 

It follows that the most general solution is that kt and 
k2 form a pair of opposite wavenumbers. 

For n --- 3, Eq. (D.6) has the form 

x 3 + ao = 0, (D.8) 

only trivial (real) solutions: k; - k2 = k3 --- which has 

0. 
Forn = 

X 4 2f. a2x  2 

4, F.q. (D.6) has the form 

+ ao - 0, (D.9)  

which is the n-,os', generad biquadratic equation with 
integer coefficients. It follows that the g~.-~J solution 
is made of two pairs of opposite wavenumhets, 

kt + k2 = 0, k3 + k4 = 0 (or permutations). 

(D.10) 

Such solutions may be called 'decomposed', in the 
sense that they decompose into the solutions of two 
lower-order (n = 2) problems. 

For n = 5 and n = 6, Eq. (D.6) has the form 

X 5 + a3x 3 + a2 x2 + a4) = O, (D.I 1 ) 

x 6 + a4x "t + a3 x3 + a2 x2 + ao = O. (D.12) 

We do not know if these diophantine problems can 
be solved completely. We did a numerical search by 
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varying kl,  k2 ..... kn-; between Weseri~ 
(from _,s/to N) with no boundi~ eonmaim on k,, = 

-k ;  - kz - . . .  - k,j-t and look~ for aH i ~  
which satisfy the resonance condition. For n = 5 and 

N = 30, we found about 200 solutions, possessing no 

particular symmetry. An example is 

-5 ,  3, -8 ,  -30,  40. (D.13) 

For n = 6 we found a huge proliferation of ~ .  
They include a substantial number of soh~h~t with 
two wavenumbers having multiplicity two, that is, 

kl, k2, k;, k2, ks, k6, (D .14 )  

an example being 

-5, g, -5, g, 4, -I0. (D.15) 

It is actually possible to find all solutions of the from 

(I).14). Indeed, if in (D.5). with n - 6, we asseme 

k3=ki and k4 = k2, we obtain 

k5 + /~  = -2(k l  + k2), 

k5k6 = k;k2. {D.16) 

It follows that 

. . . .  

+ + V/k  + t,k  + k2, 

k6 - - - (k !  + k2) - ~ + klk2 + k~. (DAT) 

A necessary and sufficient condition for k5 a ~  ~ to 
be integer is 

+ t;t  + :2 = z 2, {D.IS) 

where z is an integer. Setting 

x = k| +k2, y = kl - k2, (1).19) 

we obtain, from (D.18), the quadratic ~ n e  
equation 

3x2 + y2 =4Z 2, (D.20) 

which is a variant of the famous Pythagoras 
(X 2 -F )12 __ Z 2) ~ which may be solved by sire/tat 
techniques. We shall not dwell on these ma~ers. 
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