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This note serves as a commentary of the paper of Haller@Chaos10, 99 ~2000!# on techniques for
detecting invariant manifolds. Here we show that the criterion of Haller can be improved in two
ways. First, by using the strain basis reference frame, a more efficient version of theorem 1 of Haller
~2000! allows to better detect the manifolds. Second, we emphasize the need to nondimensionalize
the estimate ofhyperbolic persistence. These statements are illustrated by the example of the Kida
ellipse. © 2001 American Institute of Physics.@DOI: 10.1063/1.1374241#
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Stirring and mixing in fluid mechanics is often incom-
plete owing to a partition of the flow in subdomains sepa-
rated by transport barriers. Recently Haller †Chaos 10,
99 „2000…‡ has proposed an algorithm based on analytic
results to identify the invariant manifolds which are un-
derlying the barriers. In this paper, we generalize this
approach and provide an improved algorithm that opti-
mizes the detection of manifolds.

I. HALLER’S APPROACH FOR HYPERBOLIC POINTS

Hyperbolic trajectories and invariant manifolds play
crucial role for transport and mixing in periodic and ape
odic flows. For aperiodic two-dimensional flows, seve
techniques for detecting these finite-time hyperbolic trajec
ries have been proposed.1–4 Recently, Haller2 has proven a
mathematical theorem~his theorem 1! providing sufficient
existence conditions for uniform hyperbolic trajectories d
fined as particles trajectories admitting finite-time stable a
unstable manifolds.

Haller proposes a two-step numerical algorithm for d
tecting the hyperbolic trajectories. The first step consists
calculating the local maxima ofhyperbolic persistencede-
fined for forward and backward integration

dT
1~x0 ,t0!5 max

tP@ t0 ,t01T#

$~ t2t0!udetDxu~x~t,x0!,t!,0,

t0<t,t%, ~1!

dT
2~x0 ,t0!5 max

tP@ t02T,t0#

$~ t02t !udetDxu~x~t,x0!,t!,0,

t0,t<t0%, ~2!

whereu(x,t) is the velocity andDxu(x(t),t) is the velocity
gradient tensor on a Lagrangian trajectoryx(t,x0). The sec-
ond step consists in testing that the eigenvectors
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Dxu(x(t),t) do not rotate too fast along the Lagrangian tr
jectories selected by the first step@Eqs.~6! and~7! in Ref. 2!#
over the duration of hyperbolic persistence.

Haller claims that the local maxima ofdT
1 and dT

2 are,
respectively, mapping the stable manifold and the unsta
manifold near the hyperbolic point. He further claims th
this is generally sufficient to accurately identify the hype
bolic point as their intersection without need of the seco
step.

The algorithm is basically a Lagrangian version
Okubo–Weiss5,6 criterion, separating strain dominated fro
vorticity dominated regions in the flow, where the separat
is performed as a function of persistence along particle
jectories.

The Okubo–Weiss criterion has been, howev
criticized7–9 for not taking into account the strain axes rot
tion. In particular, it has been shown9 that a more genera
criterion is provided by using as a reference frame the eig
vectors of the strain matrix

S~x~ t !,t ![Dxu~x~ t !,t !1Dxu~x~ t !,t !* ,

where* denotes the transpose.
This suggests that weaker sufficient conditions can

found to detect hyperbolic trajectories and that Haller’s
gorithm can be improved.

We first show below a case for which the Haller’s alg
rithm fails to identify unambiguously the hyperbolic poin
We then introduce a modification of the algorithm based
the generalized criterion of Lapeyre, Klein, and Hua9 and we
show that it corresponds to a special case of a general
version of Haller’s theorem. We further propose a seco
modification rescaling the hyperbolic persistence accord
to the strain rate.

II. THE EXAMPLE OF THE KIDA ELLIPSE

We consider here the Kida ellipse10,11 which is an exact
solution of the two-dimensional Euler equations. This so
tion is an elliptic patch of constant vorticityv within a uni-
form generalized strain (uext52(Vext1sext)y,vext5(Vext

2sext)x). The elliptical shape is preserved by the tempo

eton
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evolution. The angleu of the great axis with thex axis and
the aspect ratiog ~great axis/small axis! vary according to

dg

dt
522gsextsin~2u!,

du

dt
5Vext1

vg

~g11!22sext

g211

g221
cos~2u!.

This simple model is an approximation for the motion of
coherent vortex embedded in a turbulent field where the v
tex feels the influence of other vortices through the str
field. Thus it can mimic the flow around vortices, and
particular the chaotic nature of the Lagrangi
trajectories.12,13

Here we choose,v520, Vext50, sext50.6 and, att
50, u50 andg52 so that the ellipse is initially oriente
along thex axis. The solution is periodic with periodT*
51.38̄ , the aspect ratio oscillating between 1.54 and 2

Because of this special initial condition, the backwa
time evolution of the ellipse is symmetric to the forwa
evolution with respect to thex axis. Consequently, we nee
only to perform forward integration.

In this example, the hyperbolic periodic orbit is eas
localized on thex axis in x54.79̄ by inspecting trajecto-
ries initiated on thex axis and can be used to test Haller
method. This location corresponds to the position of the o
at the specific Poincare section. For each particle initially
a regular grid, we have computed the trajectory and di
nosed the strain properties using fourth order Runge–K
integrator. The total time of integration isT52.

Since trajectories outside the ellipse experience st
but no vorticity, the first step of Haller’s criterion is alway
satisfied. Using now the second step@second condition in Eq
~6! of Ref. 2#, we show in Fig. 1 the distribution of persis
tenced̃T

1(x0) of trajectories satisfying both conditions. Th

FIG. 1. Persistenced̃T
1(x0) of the two conditions of Haller’s theorem. Th

cross indicates the position of the hyperbolic point. The black contour sh
the edge of the elliptical patch att50.
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estimated hyperbolic region is limited to a part of the pla
but clearly fails to identify the hyperbolic point as a loc
maximum of the hyperbolic persistence.

III. GENERALIZED CONDITIONS OF HYPERBOLICITY

We now use another approach, derived from Lape
et al.,9 which takes into account the rotation of strain axe
Instead of considering the evolution of the line elemeny
under the equation

ẏ5Dxu~x~ t !,t !y, ~3!

we consider here the evolution of the rotated line elem
y5Ry8, whereR is the rotation matrix defined by the ortho
normal basis of the strain matrixS(x(t),t). This vector sat-
isfies a new equation

ẏ85~R21Dxu~x~ t !,t !R2R21Ṙ!y8[@¹u#strainy8, ~4!

where the matrix@¹u#straincan be expressed9 as a function of
the strain rate and theeffective rotation~rotation due to both
vorticity and strain axes rotation!.

New hyperbolic persistencesdT8
6 can be defined by re

placingDxu by @¹u#strain in Eqs.~1! and~2!. Figure 2 shows
the distribution ofdT

1 for which strain is larger than effective
rotation. We see that there is a well defined curve of lo
maxima passing through the hyperbolic point on thex axis.
This curve is a piece of the stable manifold; the unsta
manifold is obtained by symmetry with respect to thex axis.

This case shows that the fast rotation of the strain a
can mask the presence of the hyperbolic point. However,
use of the reference frame of the strain axes allows to de
the hyperbolic point: Such axes are the principal axes
optimize the growth and decay in amplitude of the trac
gradient.

The rationale of this result lies in the possibility t
modify Haller’s theorem with weaker conditions. We ca

s
FIG. 2. Same as Fig. 1 but for the hyperbolicity persistencedT8

1(x0) of the
velocity gradient tensor expressed in strain basis.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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generalize Eq.~3! to any fieldRf(x,t) applying a rotation of
angle f to the material elementy in x, leading to a new
evolution equation

ẏ85Dx8u~x~ t !,t !y81O~ uy8u2!, ~5!

where

Dx8u~x~ t !,t !5R2fDxu~x~ t !,t !Rf2ḟRp/2 .

The proof and the results entirely follow those of Haller b
for replacingDx and its eigenvalues byDx8 and its eigenval-
ues which are obviously different because of theḟ term.

Since the rotationf is largely arbitrary, it can lead to
weaker as well to stronger conditions for hyperbolicity.
choice can be dictated by physical consideration and
show above, on the example of the Kida ellipse, that us
the strain axes as a reference frame provides weaker co
tions, at least on this case.

Notice that we have only used in this example the fi
condition of the improved theorem, not the condition of ax
rotation in the reference frame. It turns out that using t
condition does not improve the localization of the hyperbo
point as a persistence maximum.

IV. FURTHER IMPROVEMENT

The stable manifold in Fig. 2 is only visible as a line
local maxima in the persistence field. The map exhibits a
a broad region of high persistence, actually saturating at
value of the integration time, much larger than that obtain
near the hyperbolic point. It has been checked by increa
the integration time that the maxima do not appear in t
region but are rejected at infinity.

The reason of this artifact is that the hyperbolic pers
tence is a dimensional quantity. When we compare its va
in various regions of the flow, we implicitly assume that t
Lagrangian time scales are similar. If this is not the case,
interesting hyperbolic features may be blurred out, as ab

In order to remedy this effect, we propose to use
characteristic time scale provided by the strain rate to a
mensionalize the hyperbolic persistence. Thus we replac

dT8
1~x0!5E

$0<t,Tudet~@¹u#strain!,0%
dt,

by

eT8
1~x0!5E

$0<t,Tudet~@¹u#strain!,0%
s~ t !dt, ~6!

wheres is the strain rate.
Figure 3 shows the distribution ofeT8(x0). We see that

the hyperbolic point is still captured by this method and t
the high-persistence region seen in Fig. 2 has disappea
Moreover, the stable manifold is now a global maximum
eT8(x0) in this case. The conjunction of the two approach
~opting for a strain basis reference frame and using a no
mensional time scale! allows to capture very efficiently the
hyperbolic point.
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V. CONCLUSION

We have seen that in the simple case of a Kida ellip
the Haller’s algorithm to determine hyperbolic trajectori
has to be modified. This is due to the rotation of the str
axes which is important in this flow. We propose two typ
of modifications. The first one, which is based on a gene
ized version of Haller’s theorem, is to use a condition bas
on strain and ‘‘effective rotation,’’ taking into account th
rotation of the strain axes. The second modification, which
more heuristic, is to adimensionalize the hyperbolic pers
tence by the strain rate. As the Kida ellipse is a good pro
type for the large family of flows with long-lived coheren
structures, it is likely that our modifications will improve th
detection of hyperbolic trajectories in many cases.
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