CHAQOS

VOLUME 11, NUMBER 2

JUNE 2001

Comment on “Finding finite-time invariant manifolds in two-dimensional

velocity fields” [Chaos 10, 99 (2000)]
G. Lapeyre, B. L. Hua,” and B. Legras

Laboratoire de Mé&orologie Dynamique, Ecole Normale Sujeere, 24 Rue Lhomond,

75230 Paris Cedex 05, France

(Received 10 October 2000; accepted 30 November 2000; published 29 May 2001

This note serves as a commentary of the paper of HElleaos10, 99 (2000 ] on techniques for
detecting invariant manifolds. Here we show that the criterion of Haller can be improved in two
ways. First, by using the strain basis reference frame, a more efficient version of theorem 1 of Haller
(2000 allows to better detect the manifolds. Second, we emphasize the need to nondimensionalize
the estimate ohyperbolic persistencelhese statements are illustrated by the example of the Kida
ellipse. © 2001 American Institute of Physic§DOI: 10.1063/1.1374241

Stirring and mixing in fluid mechanics is often incom-
plete owing to a partition of the flow in subdomains sepa-
rated by transport barriers. Recently Haller [Chaos 10,
99 (2000] has proposed an algorithm based on analytic
results to identify the invariant manifolds which are un-
derlying the barriers. In this paper, we generalize this
approach and provide an improved algorithm that opti-
mizes the detection of manifolds.

I. HALLER'S APPROACH FOR HYPERBOLIC POINTS

Hyperbolic trajectories and invariant manifolds play a.
crucial role for transport and mixing in periodic and aperi-
odic flows. For aperiodic two-dimensional flows, several
techniques for detecting these finite-time hyperbolic trajecto-

ries have been proposéd: Recently, Hallet has proven a
mathematical theorenthis theorem 1 providing sufficient

existence conditions for uniform hyperbolic trajectories de-
fined as particles trajectories admitting finite-time stable an

unstable manifolds.

Haller proposes a two-step numerical algorithm for de-
tecting the hyperbolic trajectories. The first step consists in

calculating the local maxima dfiyperbolic persistencee-
fined for forward and backward integration

di(Xg,tg)= max {(t—tg)|detD,u(x(7,Xo),7)<0,

telty,to+T]
tos ’T<t},

D

max {(to—t)|detDu(x(7,%q),7) <0,
te[to—T.to]

d (Xg,tg)=

t0< Tgto},

)

whereu(x,t) is the velocity andD,u(x(t),t) is the velocity
gradient tensor on a Lagrangian trajectafy,x,). The sec-
ond step consists in testing that the eigenvectors
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D,u(x(t),t) do not rotate too fast along the Lagrangian tra-
jectories selected by the first stHpgs.(6) and(7) in Ref. 2]
over the duration of hyperbolic persistence.

Haller claims that the local maxima off andd; are,
respectively, mapping the stable manifold and the unstable
manifold near the hyperbolic point. He further claims that
this is generally sufficient to accurately identify the hyper-
bolic point as their intersection without need of the second
step.

The algorithm is basically a Lagrangian version of
Okubo—Weiss® criterion, separating strain dominated from
vorticity dominated regions in the flow, where the separation
is performed as a function of persistence along particle tra-
jectories.

The Okubo—Weiss criterion has been, however,
criticized ~° for not taking into account the strain axes rota-
tion. In particular, it has been showthat a more general
criterion is provided by using as a reference frame the eigen-
(yectors of the strain matrix

S(x(1),5)=Dxu(x(t),t) + Dyu(x(t),H)*,

where* denotes the transpose.

This suggests that weaker sufficient conditions can be
found to detect hyperbolic trajectories and that Haller’s al-
gorithm can be improved.

We first show below a case for which the Haller’s algo-
rithm fails to identify unambiguously the hyperbolic point.
We then introduce a modification of the algorithm based on
the generalized criterion of Lapeyre, Klein, and Flaad we
show that it corresponds to a special case of a generalized
version of Haller's theorem. We further propose a second
modification rescaling the hyperbolic persistence according
to the strain rate.

IIl. THE EXAMPLE OF THE KIDA ELLIPSE

of . . . .
We consider here the Kida ellip§e* which is an exact

solution of the two-dimensional Euler equations. This solu-
#n is an elliptic patch of constant vorticity within a uni-
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— e X). The elliptical shape is preserved by the temporal
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FIG. 1. Persistence; (xo) of the two conditions of Haller's theorem. The FIG. 2. Same as Fig. 1 but for the hyperbolicity persistetice(x,) of the
cross indicates the position of the hyperbolic point. The black contour showgelocity gradient tensor expressed in strain basis.
the edge of the elliptical patch &t 0.

estimated hyperbolic region is limited to a part of the plane
evolution. The angle of the great axis with th& axis and  but clearly fails to identify the hyperbolic point as a local
the aspect ratioy (great axis/small axjsvary according to maximum of the hyperbolic persistence.

dy :

Tt 2Y0eaSIN(20), Ill. GENERALIZED CONDITIONS OF HYPERBOLICITY

de wy 241 We now use apother approach, deri_ved from .Lapeyre
E:Qe’ﬁ (12 Ten2-] cog26). et al,® which takes into account the rotation of strain axes.

Instead of considering the evolution of the line elemgnt
This simple model is an approximation for the motion of aunder the equation

coherent vortex embedded in a turbulent field where the vor- |
tex feels the influence of other vortices through the strain y=Dyu(x(0),0)y., @)
field. Thus it can mimic the flow around vortices, and inwe consider here the evolution of the rotated line element
particular the chaotic nature of the Lagrangiany=RY', whereRis the rotation matrix defined by the ortho-
trajectories:®13 normal basis of the strain matr&(x(t),t). This vector sat-
Here we choosew=20, Q.=0, 0.,=0.6 and, att isfies a new equation
=0, =0 and y=2 so that the ellipse is initially oriented ., . e, ,
along thex axis. The solution is periodic with perio@* y'=(RT"Dyu(x(t), ) R—=RR)Y' =[VUlsrairy',  (4)
=1.38--, the aspect ratio oscillating between 1.54 and 2. \where the matriX VuJsyaincan be express%ds a function of
Because of this special initial condition, the backwardthe strain rate and theffective rotationrotation due to both
time evolution of the ellipse is symmetric to the forward vorticity and strain axes rotation
evolution with respect to the axis. Consequently, we need New hyperbolic persistenceﬁrt can be defined by re-
only to perform forward integration. placingDu by [ Vu]syainin Egs.(1) and(2). Figure 2 shows
In this example, the hyperbolic periodic orbit is easily the distribution ofd: for which strain is larger than effective
localized on thex axis inx=4.79 -+ by inspecting trajecto- rotation. We see that there is a well defined curve of local
ries initiated on thex axis and can be used to test Haller's maxima passing through the hyperbolic point on xhexis.
method. This location corresponds to the position of the orbitrhis curve is a piece of the stable manifold; the unstable
at the specific Poincare section. For each particle initially ormanifold is obtained by symmetry with respect to shaxis.
a regular grid, we have computed the trajectory and diag- This case shows that the fast rotation of the strain axes
nosed the strain properties using fourth order Runge—Kuttgan mask the presence of the hyperbolic point. However, the
integrator. The total time of integration &= 2. use of the reference frame of the strain axes allows to detect
Since trajectories outside the ellipse experience straifhe hyperbolic point: Such axes are the principal axes that
but no vorticity, the first step of Haller’s criterion is always optimize the growth and decay in amplitude of the tracer
satisfied. Using now the second sfspcond condition in Eq. gradient.
(6) of Ref. 2|, we show in Fig. 1 the distribution of persis-  The rationale of this result lies in the possibility to
tenceﬁ?(xo) of trajectories satisfying both conditions. The modify Haller's theorem with weaker conditions. We can
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generalize Eq(3) to any fieldR 4(x,t) applying a rotation of 10
angle ¢ to the material elemeny in x, leading to a new
evolution equation

y' =Dyu(x(t),t)y" +O(ly'[?), ©)

where
Dyu(X(t),t)=R_ 4D,u(x(t),t)Rs— ¢R 5.

The proof and the results entirely follow those of Haller but 0
for replacingD, and its eigenvalues by, and its eigenval- 8

ues which are obviously different because of theéerm. wﬁs
Since the rotationp is largely arbitrary, it can lead to g

weaker as well to stronger conditions for hyperbolicity. Its -5

choice can be dictated by physical consideration and we

show above, on the example of the Kida ellipse, that using

the strain axes as a reference frame provides weaker condi-

tions, at least on this case. -10 |
Notice that we have only used in this example the first 0 5 10

condition of the improved theorem, not the condition of axes

rotation in the reference frame. It turns out that using thig™'C: 3- Same as Fig. 1 but for the normalized hyperbolicity persistence

condition does not improve the localization of the hyperboliceT (Xo)-

point as a persistence maximum.

o
=

V. CONCLUSION

We have seen that in the simple case of a Kida ellipse,
the Haller's algorithm to determine hyperbolic trajectories
The stable manifold in Fig. 2 is only visible as a line of has to be modified. This is due to the rotation of the strain

local maxima in the persistence field. The map exhibits als@X€s which is important in this flow. We propose two types
a broad region of high persistence, actually saturating at thgf modifications. The first one, which is based on a general-
value of the integration time, much larger than that obtained?€d version of Haller's theorem, is to use a condition based

near the hyperbolic point. It has been checked by increasin@" Strain and “effective rotation,” taking into account the
the integration time that the maxima do not appear in thidotation of the strain axes. The second modification, which is

region but are rejected at infinity. more heuristic, is to adimensionalize the hyperbolic persis-

The reason of this artifact is that the hyperbolic persis-t€Nce by the strain rate. As the Kida ellipse is a good proto-
tence is a dimensional quantity. When we compare its valuey/Pe for the large family of flows with long-lived coherent
in various regions of the flow, we implicitly assume that the Structures, it is likely t_hat our quifipations will improve the
Lagrangian time scales are similar. If this is not the case, thg&tection of hyperbolic trajectories in many cases.
interesting hyperbolic features may be blurred out, as above.
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