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Hyperbolic lines and the stratospheric polar vortex
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The necessary and sufficient conditions for Lagrangian hyperbolicity recently derived in the
literature are reviewed in the light of older concepts of effective local rotation in strain coordinates.
In particular, we introduce the simple interpretation of the necessary condition as a constraint on the
local angular displacement in strain coordinates. These mathematically rigorous conditions are
applied to the winter stratospheric circulation of the southern hemisphere, using analyzed wind data
from the European Center for Medium-Range Weather Forecasts. Our results demonstrate that the
sufficient condition is too strong and the necessary condition is too weak, so that both conditions fail
to identify hyperbolic lines in the stratosphere. However a phenomenological, nonrigorous, criterion
based on the necessary condition reveals the hyperbolic structure of the flow. Another~still
nonrigorous! alternative is the finite-size Lyapunov exponent~FSLE! which is shown to produce
good candidates for hyperbolic lines. In addition, we also tested the sufficient condition for
Lagrangian ellipticity and found that it is too weak to detect elliptic coherent structures~ECS! in the
stratosphere, of which the polar vortex is an obvious candidate. Yet, the FSLE method reveals a
clear ECS-like barrier to mixing along the polar vortex edge. Further theoretical advancement is
needed to explain the apparent success of nonrigorous methods, such as the FSLE approach, so as
to achieve a sound kinematic understanding of chaotic mixing in the winter stratosphere and other
geophysical flows. ©2002 American Institute of Physics.@DOI: 10.1063/1.1480442#
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Transport plays an important role in the distribution of
chemicals in the stratosphere„the layer of atmosphere
between 12 and 55 km in altitude…. This fact is clearly
illustrated by, for instance, the formation of the Antarctic
ozone hole every austral winter. In the extratropical
stratosphere, chemical transport proceeds in quasihori-
zontal layers, where air parcels practically conserve en-
tropy for up to about 3 weeks. Transport, stirring, and
mixing in these isentropic layers is governed by the La-
grangian chaos generated by organized large-scale circu
lations „of several hundred kilometers and larger…. The
spatial organization of chaotic stirring is described by the
main hyperbolic lines „i.e., the material lines that are lo-
cally the most attracting or repelling… forming at any
time a skeleton of paths and lobes through the flow. Gra-
dients of long-lived tracers tend to orient normal to and
intensify along strongly attracting lines, thereby enhanc-
ing the mixing process by small-scale vertical circula-
tions. At the same time, a strong vortical circulation exists
in the winter polar region. The polar vortex exemplifies
an elliptic coherent structure: its edge forms a partial
barrier to mixing. Rigorous mathematical criteria were
derived recently to characterize hyperbolic lines and el-
liptic coherent structures. In this paper, we review and
test these criteria in a case study using stratospheric
winds from the European Center for Medium-Range
Weather Forecasts. Our work shows that these criteria
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fail to pick out hyperbolic lines and elliptic coherent
structures in the stratosphere, which are, however,
readily identified with other less rigorous methods.

I. INTRODUCTION

A large number of chemical compounds in the atm
sphere are long-lived species. As soon as the lifetime exce
a few weeks, the large-scale distribution is to a large ext
governed by transport from sources to sinks, and stirring
mixing. This observation is also valid for chemical and bi
logical species in the ocean, and although the time scales
very different, for the chemical and mineralogical compo
tion of the Earth’s mantle. For a variety of reasons includi
the aspect ratio, stratification, and rotation, large-scale m
tion in the atmosphere and the ocean is mainly smooth
layerwise. This is particularly true in the stratosphere,
region of the atmosphere which extends from about 12 km
the midlatitudes and 18 km in the tropics up to 55 km. In th
region, convective vertical motion is strongly inhibited b
the stratification and radiatively induced vertical motion
typically of the order of 10 m per day under 30 km altitud
Smoothness is here associated with layerwise motion sin
is well known that two-dimensional and quasigeostrop
flows are dominated by the large-scale structures. Con
quently the stirring and mixing is more chaotic than turbule
in the sense that the time scales are not determined by
smallest spatial scales of motion, unlike the condition p
vailing, say, in the combustion chamber of a rocket.

Two types of approaches have so far been develope
investigate the stirring properties of such flows. The stati
cal approach, rooted in the seminal work of Batchelor,1 has
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383Chaos, Vol. 12, No. 2, 2002 Lines and the polar vortex
recently shown considerable theoretical progress2,3 leading to
the prediction of the probability density functions of trac
gradients under a fairly wide range of physical hypothe
This approach is relevant to the interpretation of the sm
scale fluctuations that are observed from numer
simulations,4 and from airborne measurements.5

Unlike eddies in a combustion chamber, atmosphe
vortices are large, persistent, and cannot be considered
from a statistical standpoint. Hence the second approach
we will follow here addresses the deterministic and geom
ric properties of transport and stirring in the atmosphere.

A prominent example is that of the stratospheric po
vortex which is a strong cyclonic circulation in the pol
region during winter in response to strong radiative cool
over the poles. This vortex is stronger and more stable in
Antarctic than in the Arctic. The Antarctic polar vortex ha
gained much recognition because it provides the conditi
necessary for massive destruction of ozone, leading to
formation of the ozone hole. The polar vortex also serves
a paradigm for other similar issues, like the tropical barrie
the stratosphere and the subtropical jet in the troposphe

An important property of the polar vortex that is instr
mental to ozone destruction is its relative isolation from
midlatitudes: the polar air mass does not receive signific
intrusions from midlatitude air masses.6–9 Consequently,
very different chemical conditions prevail inside and outs
the vortex. The boundary between the vortex and its exte
is often seen as a very sharp transition in chemical mix
ratios measured by aircraft transects.10 In this paper, we de-
fine the vortex edge to be at the location of the sharp
gradient in the mixing ratio of certain chemicals, e.g., nitro
oxide, surrounding the polar vortex. Another tracer, the
tential vorticity ~PV, see the definition in Sec. IV A!, may be
used in place of chemical mixing ratios to define the po
vortex edge.~The definition of the vortex edge based o
tracer gradients usually requires further refinement to
fully operational but we do not need to enter into such co
plications here.! PV is not measured directly but is calculate
from high-resolution simulations where an initial PV dist
bution is advected passively,11 assuming that PV is materi
ally conserved, an approximation that is generally valid o
time scales of one to three weeks. These simulations all s
that sharp PV gradients are often co-located with the sh
chemical tracer gradients observed from aircraft or ballo
data. These findings have led to the idea that a dynam
barrier exists around the polar vortex which inhibits e
change with the midlatitudes.

In the standard context of dynamical systems, a barrie
an invariant torus on which trajectories do not disperse
ponentially like in the surrounding chaotic regions.12 In prac-
tice, studies have diagnosed the barrier effect of the p
vortex in terms of minimum Lyapunov exponent,13 minimum
stretching of material lines,14 and minimum effective
diffusivity.15 These minima are, however, much broader th
the actual width of the high-gradient region between the v
tex and the exterior, which can be as small as 3 km accord
to aircraft data.10

The dynamical barrier around the polar vortex is n
perfect, as it is constantly disturbed by planetary wa
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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~which are weaker in the southern hemisphere than in
northern hemisphere, and hence the higher stability of
vortex!. As a result, the vortex is continuously eroded in
filaments which are expelled into the surf zone16 ~so called
because it is the midlatitude region stirred by break
Rossby waves!. It is generally considered, based on obser
tions and trajectory calculations, that filament-shedding
the stratosphere is essentially a one-way process: filamen
polar air are shed from the vortex but air parcels from
surf zone hardly penetrate into the vortex through layerw
isentropic motion. The vortex interior is mainly fed throug
slow diabatic descent. Vortex erosion is a very efficie
mechanism to generate and maintain high tracer gradient
shown by numerical experiments and theory in tw
dimensional turbulence.17,18Therefore, vortex coherence an
erosion, and relatedly the distribution of tracers, should
better understood from the stirring properties of the stra
spheric flow.

Early attempts to characterize the stirring properties o
two-dimensional flow19,20 were based on the eigenvalues
the velocity gradient tensor, distinguishing areas where p
ticle separation grows exponentially from other areas wh
the separation oscillates. This is the so-called Okubo–W
criterion. When applied to describe a particle trajectory, t
criterion relies on the assumption that the velocity gradi
tensor is frozen during the motion of a fluid parcel, a con
tion which is hardly met, even by the simplest flows.21 Con-
siderable improvements have been achieved recently by
sidering the separation of particles in a reference fra
rotating with the strain axes.22–24 This is a significant step
toward a Lagrangian description which is needed sin
stretching of a fluid parcel results from the history of stra
along its trajectory.25 Other techniques are based on the elo
gation of a contour line, usually chosen as a contour of
tential vorticity.14

The theory of Hamiltonian dynamical systems indica
that stirring in a smooth incompressible flow is best d
scribed by the knowledge of hyperbolic points and the in
cate tangle of the associated stable and unstable manif
Most of the applications have been devoted to the study
periodic flows where powerful methods like the Poinca´
map can be used.12,26,27It is only recently that the quasiperi
odic and the aperiodic situations have been considered.28–34

In the aperiodic case, which is obviously more relevant fro
the perspective of transport and stirring in geophysical flo
the hyperbolic invariant manifolds may or may not cross
they cross, they may only have a finite number of crossin
and the hyperbolic trajectories may be of finite duratio
Several techniques that have been used in the aperiodic
try to map the hyperbolic structures from various estimat
of stretching like the finite-time Lyapunov exponents35 or
patchiness.36 In the following we will use a method called
the finite-size Lyapunov exponent which shows some h
skill at detecting the hyperbolic structure.37

A particularly interesting approach is a series of rec
works by Haller,32,33,38,39who has obtained rigorous resul
on the characterization of attracting and repelling hyperbo
material lines over finite-time intervals. Such lines are t
finite-time generalizations of unstable and stable hyperb
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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384 Chaos, Vol. 12, No. 2, 2002 T.-Y. Koh and B. Legras
manifolds which they approach as time goes to infinity. T
mathematical results of Haller, which are described in m
detail in Sec. III, provide necessary and sufficient criteria
a material trajectory to belong to a hyperbolic line. Unfort
nately, the necessary and the sufficient criteria are still
ferent and do not provide a narrow bracketing of the hyp
bolic lines in all cases, although they perform very well
some idealized problems.

The goal of this paper is to present the application of
most recent version of Haller’s results39 within the context of
the polar vortex flow.

In Sec. II, we review the existing criteria for local hy
perbolic and elliptic properties. In Sec. III, we summari
and interpret Haller’s results for Lagrangian hyperbolic a
elliptic structures. Section IV presents our computatio
methods and data. Section V presents and discusses th
sults of applying Haller’s conditions to the polar vortex. Se
tion VI compares those results with results from the fini
size Lyapunov exponent~FSLE! calculations. Section VII
states our conclusions and offers further discussions.

II. LOCALLY HYPERBOLIC AND ELLIPTIC REGIONS

A. Okubo–Weiss criterion

In a two-dimensional velocity fieldv, the time evolution
of the displacement elementd s from particle A to a close
neighboring particle B is given by

D

Dt
ds5ds"¹v,

where“v is the velocity differential matrix of the vectorv.
In stratified geophysical flows, the two-dimensional spa
domain is a spherical surface labeled by longitude–latit
coordinates~l,w!. We may considerd s andv to exist in the
tangential plane spanned by the unit vectors (l̂,ŵ) at the
location of particle A. Thus~cf. Appendix 2 of Ref. 40!

ds[S R cosw dl
R dw D , v[S R cosw l̇

R ẇ D ,

“v[S 2ẇ tanw1
]l̇

]l
2l̇ sinw1cosw

]l̇

]w

l̇ sinw1~cosw!21
]ẇ

]l

]ẇ

]w

D ,

where R is the Earth’s radius.“v may be split as“v[S
1O where the strain matrixS is the symmetric componen
and the rotation matrixO is the antisymmetric component:

S[S a b

b cD , O[S 0 2l̇ sinw2V

l̇ sinw1V 0
D ,

where

a[]l̇/]l2ẇ tanw, ~1!

b[
1

2
F ~cosw!21

]ẇ

]l
1cosw

]l̇

]w
G , ~2!
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]ẇ

]w
, ~3!

V[
1

2
F ~cosw!21

]ẇ

]l
2cosw

]l̇

]w
G . ~4!

V is the rotation rate relative to the basis set (l̂,ŵ), which
itself is rotating at a rate ofl̇ sinw in the tangential plane
For the rest of this paper, we shall assume that the flow
nondivergent so thata52c.

The sign of det“v characterizes the flow in the neigh
borhood of particle A, assuming that“v is quasiconstant
with time.19,20 Thus, the flow is separated into elliptic, par
bolic and hyperbolic regions:

det“v5~ l̇ sinw1V!22a22b2H .0 elliptic
50 parabolic
,0 hyperbolic

. ~5!

Equation~5! is sometimes called the Okubo–Weiss criterio
Note that det“v is not invariant under rotation of the

frame of reference:l̇→l̇1constant, due to the presence
the l̇ sinw term in Eq.~5!. Hence, the results obtained from
applying the Okubo–Weiss criterion in two differently rota
ing frames will not agree. Thus, one has to decide in wh
frame the Okubo–Weiss criterion is to be applied. For e
ample, should the Earth’s frame be used? Or perhaps a fr
moving with some average flow velocity is more suitable?
general, it is difficult to choose any one reference frame o
another based on the flow kinematics alone.

B. Using strain coordinates

Dresselhaus and Tabor41 suggested the use ofstrain
coordinates—i.e., a local frame moving with the eigenvec
tors of the strain matrixS—in analyzing the kinematics o
material elements in a flow field. As the set of eigenvect
of S along every trajectory in the flow rotates at its own ra
each particle in the flow is really analyzed in its own fram
of reference. Thus, the question of an overall frame of re
ence for the flow is circumvented.

The strain matrixS has orthonormal eigenvectorsE1

andE2 belonging to eigenvaluess and2s, wheres is the
rate of strain:

s5Aa21b2. ~6!

E1 makes an angleq(t)P@2p/2,p/2# with the unit vector
l̂, where q is given implicitly by a5s cos 2q and b
5s sin 2q. In strain coordinates, the rotation rateVeff of the
local flow—coined theeffective rotation ratein Ref. 41—
appears as

Veff5V2q̇, ~7!

whereq̇ is the rotation rate of the strain axes relative tol̂
along a particle trajectory:

q̇5
1

2s2 ~aḃ2ȧb!. ~8!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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More recently, Hua and Klein22 and Lapeyreet al.23,24

applied the Okubo–Weiss criterion in strain coordinates,
distinguished three regions of flow according to the para
eter r :

r[Veff /s, ~9!

ur uH .1 elliptic
51 parabolic
,1 hyperbolic

. ~10!

The above is sometimes called the Hua–Klein–Okub
Weiss criterion, which we abbreviate as theHKOW criterion.
As s and Veff are invariant to the transformationl̇→l̇
1constant, the HKOW criterion is independent of the ro
tion of the reference frame.

Figure 1 depicts the morphology of the local flow field
strain coordinates as a function ofr . The strain eigenvector
E6 are645° lines in Fig. 1. Two significant features abo
the local flow in strain coordinates must be highlighted
the arguments in Sec. III.

~1! For ur u.1, the minimum angular speed around a traje
tory occurs along the major axis of the elliptical flo
pattern. It is readily shown to have a value
uVeffu2s.

~2! Even asr changes with time, the horizontal and vertic
axes in Fig. 1 always experience no extension or co
pression. They constitute thezero-strain set.39 The zero
strain set divides the local flow field into four quadran
In two quadrants, particles always recede from the o
gin, while in the other two quadrants, particles alwa
approach the origin.

FIG. 1. The streamfunctionc as r[Veff /s varies.@Let j andh be nondi-
mensionalized infinitesimal displacements from a particle A in the zonal
meridional directions, respectively. Then,c[(11r 2)21/2(cS1rcR), where
cS[(j22h2)/2 andcR[(j21h2)/2, wherer is parameter in the HKOW
criterion. Note thatc is contoured at intervals of 0.1. Key: dotted lin
<20.3, 20.2< dashed line<0.2, and solid line>0.3.#
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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Note that the ‘‘EPH’’ partition of Haller39 is actually
equivalent to the HKOW criterion, but instead of using t
parameterr , the EPH partition is defined in terms of flui
fluxes across the zero-strain set.

III. LAGRANGIAN HYPERBOLICITY AND ELLIPTICITY

As r changes nontrivially along a particle trajectory ow
ing to variations ofs, q̇ and/orV, a particle may experience
different local flow at different times: sometimes hyperbol
sometimes parabolic, and sometimes elliptic. So how d
one ascribe the notions of Lagrangian hyperbolicity and
lipticity to a particle trajectory? The approach adopted in t
paper to answer this question is reviewed in the following
different approach, which yields results that are not invari
to the transformationl̇→l̇1constant, can be found in Re
42.

We quote from Haller39 the following definitions: over a
finite time intervalI ,

~1! A material line isrepelling if all infinitesimal perturba-
tions transverse to it strictly increase throughoutI as
time flows forward.

~2! A material line isattracting if all infinitesimal perturba-
tions transverse to it strictly increase throughoutI as
time flows backward.

~3! A hyperbolic material line is either an attracting or
repelling material line.

~4! An elliptic material line is not hyperbolic, and stays in a
elliptic region throughoutI .

In this paper, we shall say that a trajectory is hyperbo
over I if it is contained in a hyperbolic line throughoutI , and
that it is elliptic overI if it is contained in an elliptic line
throughoutI .

A notable contribution in Haller39 is that separate neces
sary and sufficient conditions for hyperbolic and elliptic tr
jectories were derived. We paraphrase these conditions
low for a finite time intervalI .

Sufficient condition for Lagrangian hyperbolicity. Sup-
pose a trajectorys(t) does not leave a hyperbolic regio
~where ur u,1! for tPI . Then the trajectory is hyperbolic
over I .

Necessary condition for Lagrangian hyperbolicity. Sup-
pose a trajectorys(t) is hyperbolic overI . Then, the follow-
ing are true.

~1! The trajectory can only be in parabolic region
~whereur u51! at isolated time instances.

~2! If I E,I denotes any time interval over which th
trajectory stays in an elliptic region~where ur u.1!—there
can be more than one such time intervalI E—then

E
I E

uf0~s~ t !,t !u dt,
p

2
, ~11!

where

uf0u5uVeffu2s. ~12!

~The expression forf0 in Ref. 39 is actually more compli-
cated, and is based on a different physical notion than

d
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one described in the following. Nevertheless, Haller’suf0u is
equivalent to the above-given expression, as demonstrate
the Appendix.!

Sufficient condition for Lagrangian ellipticity. Suppose a
trajectory s(t) stays in an elliptic region~where ur u.1!
throughoutI and

E
I
uf0~s~ t !,t !u dt>

p

2
. ~13!

Then the trajectory is elliptic overI .
The reader is referred to Ref. 39 for the mathemati

proofs of the above-given conditions. In the present pa
we provide a simple geometric understanding ofuf0u and the
integral constraints in inequalities~11! and ~13!.

From the end of Sec. II B,uf0u in Eq. ~12! is evidently
the minimum angular speed of neighboring particles ab
the trajectory s(t) at time t. Hence, the integra
*Juf0(s(t),t)u dt is the minimum angular distance that an
neighboring particle travels around the trajectorys(t) over
the time intervalJ.

Therefore,*Juf0(s(t),t)udt>p/2 means that, during the
interval J, all neighboring particles arounds would at some
point leave their original quadrant that is demarcated by
zero strain set. So no neighboring particle approaches o
cedes from the trajectorys monotonically overJ. Hence, by
definition, the trajectorys cannot be hyperbolic overJ. Thus,

~1! for the trajectorys staying in an elliptic region over time
interval I , the inequality~13! implies that the trajectorys
is not hyperbolic and hence elliptic overI ;

~2! violation of inequality~11! for any I E,I implies that the
trajectorys is not hyperbolic overI . By contraposition,s
being hyperbolic overI implies inequality~11! for all
I E,I .

IV. COMPUTATIONAL METHODS

A. Treatment of the stratospheric flow

Analyzed winds in the lower stratosphere from the E
ropean Center for Medium-range Weather Foreca
~ECMWF! were interpolated onto isentropic levels using
smooth interpolation scheme, the Akima scheme,43 which
minimizes spurious over- and under-shoots, unlike the cu
spline. Subsequent work was focused on the 500 K isen
pic surface, which lies in the lower stratosphere.

Next, the irrotational wind component was put to zero
yield the nondivergent wind field (u,v). This procedure is
necessary because the above-mentioned theoretical ana
assume two-dimensional nondivergent flow. We are ass
ing that the irrotational wind~on isentropic surfaces! plays a
minor role in the chaotic dynamics of tracer filaments in t
stratosphere over a period of 2–3 weeks.

The absolute vorticityzu normal to isentropic surface
was also computed from the ECMWF analyzed wind da
The distribution ofzu was used to elucidate the position a
internal structure of the polar vortex, because it is direc
related to the isentropic nondivergent wind used in our di
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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noses of hyperbolic and elliptic trajectories.zu is the curl of
the nondivergent wind along isentropic surfaces, written f
mally as

zu5@R~12m2!#21F S ]V

]l D
u

2~12m2! S ]U

]m D
u
G , ~14!

wherem[sinw, U[u cosw andV[v cosw. In contrast, Er-
tel potential vorticityP is given by

P52gzu

]u

]p
.

P contains additional information on the vertical potent
temperature profile, which is not considered in our work w
the two-dimensional nondivergent wind field. Hence,zu is
more useful for understanding the relation between vor
structure and the wind field, whileP is the actual dynamica
tracer that is conserved on a time scale of a few weeks in
lower stratosphere.

B. Calculation of r

The isentropic nondivergent winds (u,v) were used to
advect a grid of particles initially placed one degree apart~in
both north–south and east–west directions! and spanning the
region south of 25 °S. This was done by solving advect
equations, written formally as

l̇5
U~l~ t !,w~ t !,t !

R~12m2!
, ẇ5

V~l~ t !,w~ t !,t !

R~12m2!1/2 ,

using the fourth-order Runge–Kutta method with a time s
of 30 min. The (U,V) at each particle’s position (l(t),w(t))
at time t were obtained using bilinear interpolation from th
values of (U,V) on the ECMWF Gaussian grid.

To compute the rotationV relative to thel̂ axis, we
rewrite Eq.~4! as

V5
1

2R~12m2! F]V

]l
2~12m2!

]U

]m
22mUG . ~15!

To compute the strain rates from Eq.~6!, we need to rewrite
Eqs.~1!–~3! for nondivergent flows as

a5
1

2
~a2c!5

1

2R~12m2! F]U

]l
2~12m2!

]V

]m
22mVG ,

~16!

b5
1

2R~12m2! F]V

]l
1~12m2!

]U

]m
12mUG . ~17!

Both V ands were calculated on the same Gaussian grid
(U,V), with the gradients of (U,V) evaluated spectrally
first. Bilinear interpolation was used to obtain valuesV and
s at each particle’s position.ȧ and ḃ were calculated by a
backward-difference scheme using values ofa andb along a
particle trajectory over consecutive time steps. The rotat
rate q̇ of the strain axes relative to thel̂ axis was then
computed using Eq.~8!. Finally Veff and r were computed
for each particle at every time step using Eqs.~7! and ~9!,
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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respectively. The HKOW criterion in Eq.~10! was used to
determine if each particle was in an elliptic, parabolic,
hyperbolic region.

C. Evaluation of Haller’s conditions

From the sufficient condition for hyperbolic trajectorie
we see that any particle that is in a hyperbolic region at ti
T must be hyperbolic over the time interval@T2tb ,T
1t f #, whereT2tb is the time it enters the hyperbolic regio
~i.e., ur u changes from>1 to ,1!, andT1t f is the time it
leaves the hyperbolic region~i.e., ur u changes from,1 to
>1!. t f and tb are computed via forward- and backwar
time advection of the particles, respectively, from timeT.
Therefore, for each particle in a hyperbolic region at timeT,
we obtain

~1! the length of time (tb1t f) for which the particle satis-
fies the sufficient condition, i.e., for which it is known t
be hyperbolic;

~2! the ‘‘strength’’ of the hyperbolicity, as measured by th
integral*T2tb

T1t f L dt whereL[As22Veff
2 is the positive

eigenvalue of the velocity differential matrix“veff in
strain coordinates.

As regards the necessary condition for hyperbolic traj
tories, the integral on the left-hand side of inequality~11!
clearly increases monotonically withtn , for I E5@T,T1tn#
or @T2tn ,T#. Thus, a particle that is in an elliptic region
the initial timeT will satisfy the necessary condition until th
time T1tn in forward-time advection, or the timeT2tn in
backward-time advection, when the integral reaches
value of p/2. If the integral does not reachp/2 before the
particle leaves the elliptic region~i.e., ur u changes from.1
to <1!, or if the particle is not in an elliptic region at th
initial time T, then the necessary condition is satisfied un
the integral eventually does reachp/2 at a later or earlier
time ~for forward- and backward-time advection, respe
tively! when the particle is in an elliptic region again.~Note:
The value of the integral is reset to zero every time the p
ticle leaves an elliptic region.! Hence, forall particles at time
T, we separately obtain the following for forward- an
backward-time advection.

~1! The length of timetn for which the necessary con
dition is satisfied, i.e., for which the particle may possibly
hyperbolic.

~2! The ‘‘strength’’ of the hyperbolicity, as indicate
roughly by the integral* ILdt, where I 5@T,T1tn# ~for
forward-time advection! or I 5@T2tn ,T# ~for backward-
time advection!, and

L[HAs22Veff
2 if ur u,1

0 otherwise
. ~18!

From the sufficient condition for elliptic trajectories, w
see that any particle that is in an elliptic region at timeT
must be elliptic over the time intervalI 5@T2tb ,T1t f #,
whereT2tb is the time it enters the elliptic region~i.e., ur u
changes from<1 to .1!, andT1t f is the time it leaves the
elliptic region ~i.e., ur u changes from.1 to <1!, provided
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that inequality~13! is satisfied.t f andtb are computed, re-
spectively, via forward- and backward-time advection of t
particles. Therefore, for each particle in an elliptic region
time T, we compute

~1! the length of time (tb1t f) for which the particle stays
in an elliptic region;

~2! the ‘‘strength’’ of the ellipticity, as measured by the in
tegral * I uf0u dt where I 5@T2tb ,T1t f #. Then, we
pick out those particles for which* I uf0udt>p/2, i.e.,
which satisfies the sufficient condition for elliptic traje
tories. These are the known elliptic trajectories.

V. RESULTS

Figure 2 shows the distribution of potential vorticityP
and absolute vorticityzu on the 500 K isentropic surface i
the southern extratropics on 11 October 1996 at 12UTC.
500 K surface was chosen because it lies in the lower str
sphere where much ozone depletion occurs during early
tral spring, and hence where the transport and mixing
ozone-poor and ozone-rich air is very significant. The pot
tial vorticity field shows a strong austral winter polar vorte
south of about 60 °S, with a well-mixed surf zone in th
midlatitudes. Shedding of a filament is seen around 90 °E
theP field ~cf. the225 PVU contour!. Filament shedding is
the hallmark of chaotic stirring in the stratosphere. The
solute vorticity field reveals that the polar vortex has a r
internal structure, as far as chaotic kinematics in the stra
spheric flow is concerned@recall the direct relation betwee
zu and the wind field in Eq.~14!#. There are two ridges o
strong cyclonic absolute vorticity near the vortex edg
flanking a less cyclonic plateau at the vortex center. T
ridged feature of the polar vortex will be seen to have i
portant consequences on chaotic stirring within the vorte

Let us examine the known elliptic trajectories on t
500 K surface first. These are the trajectories that satisfy
sufficient condition for Lagrangian ellipticity for some tim
interval that includes 12UTC 11 Oct 1996. Figure 3 sho
these trajectories obtained from 9-day advections fr
12UTC 11 Oct 1996 both forward and backward in time. T
plot on the left shows the total time (tb1t f) for which these
trajectories stayed continually in an elliptic region (ur u.1)
straddling the time 12UTC 11 Oct 1996. The longest that
trajectories ever satisfy the sufficient condition for Lagran
ian ellipticity is only 2.6 days. However, this doesnot mean
that the trajectories are only elliptic for up to 2.6 days, b
that the sufficient condition is too strong to detect the ell
ticity beyond this time. A prominent streak of elliptic trajec
tories is present just outside the polar vortex in the sec
(0 °E,60 °E). A smaller streak is also present on the d
metrically opposite side of the polar vortex. These ellip
coherent structures, as Haller39 labels them, are aligned pa
allel to the strong absolute vorticity ridges in the vorte
They survive for at least about 1 day, as far as we know fr
the present~rather strong! sufficient condition for Lagrangian
ellipticity. Elliptic coherent structures are barriers to tran
port and so we estimate that the barrier to cross-edge tr
port in the polar vortex has a minimum leakage time of*1
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 2. ~Color! Distribution of potential vorticityP ~left! and absolute vorticityzu ~right! on the 500 K isentrope on 11 Oct 1996 at 12UTC. Here and in F
3–6, the 0° meridian is denoted by a straight black line, the latitudes 30 °S and 60 °S are demarcated by closed circles, and stereographic projectiore used.
Potential vorticity units are in PVU (1 PVU51026 K kg21 m2 s21).
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day, which is undoubtedly an excessively low bound ba
on our current knowledge of the polar vortex.

The plot on the right-hand side of Fig. 3 show
log10(* uf0udt) over the period for which the particles satis
the sufficient condition for Lagrangian ellipticity. Recall th
the integral* uf0u dt denotes the lower-limit estimate of th
total angular rotation of the local flow around an ellipt
trajectory. ~The use of logarithm in Fig. 3 and subseque
figures is in order to reflect the wide range of plotted value!
For the two elliptic coherent structures just outside the po
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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vortex, * uf0udt'p ~or log10(* uf0udt)'0.50! means that

neigboring particles in these structures vascillate toward
away from one another at least once. Other patches of elli
trajectories are seen in Fig. 3, but it is difficult to see if th
are definitely associated with dynamical flow features su
as cyclonic vorticity patches because of the noisy nature
vorticity data. We may perhaps speculate that their locat
at around 30 °S is associated with the subtropical trans
barrier.44
panel:
FIG. 3. ~Color! Trajectories satisfying the sufficient condition for Lagrangian ellipticity for some time interval including 12UTC 11 Oct 1996. Left-hand
period (tb1t f) for which the elliptic trajectories stay in an elliptic region; right-hand panel: log10(* uw0udt) for this period.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. ~Color! Trajectories satisfying the sufficient condition for Lagrangian hyperbolicity for some time interval including 12UTC 11 Oct 1996. Lef
panel: time spent in hyperbolic regions, (tb1t f); right-hand panel: strength of hyperbolicity over this time, measured by log10(*L dt).
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Figure 4 shows the trajectories on the 500 K surface
satisfy the sufficient condition for Lagrangian hyperbolic
for some time interval that includes 12UTC 11 Oct 199
Again, results from 9-day forward- and backward-time a
vections from 12UTC 11 Oct 1996 have been combined. T
left-hand plot shows the total time (tb1t f) spent in hyper-
bolic regions ~i.e., ur u,1!; the right-hand plot shows th
strength of the hyperbolicity, denoted by log10(*L dt) com-
puted over this time@cf. Eq. ~18! for the definition ofL#.
Evidently, the trajectories that satisfy the sufficient conditi
for the longest time and experience the strongest hyperb
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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ity all lie within the polar vortex. This indicates persiste
and strong stirring within the polar vortex that we attribute
the presence of the two strong cyclonic absolute vortic
ridges within the polar vortex seen in Fig. 2~right-hand
plot!. As for the filament-shedding seen in Fig. 2~left-hand
plot!, we expect to see the hyperbolic trajectories respons
for this event to lie outside the polar vortex.37,45 However, it
appears that the sufficient condition is too strong to de
these hyperbolic trajectories.

Next, we examine the trajectories satisfying the nec
sary condition for Lagrangian hyperbolicity. In Fig. 5, a
FIG. 5. ~Color! Trajectories satisfying the necessary condition for Lagrangian hyperbolicity fortn59 days in forward-time~left-hand side! and backward-
time ~right-hand side! advection from 12UTC 11 Oct 96. The colors indicate log10(*Ldt) over the 9 days.
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390 Chaos, Vol. 12, No. 2, 2002 T.-Y. Koh and B. Legras
particles plotted satisfy the necessary condition for the
9-day duration of forward-time ~left-hand plot! and
backward-time~right-hand plot! advections from 12UTC 11
Oct 1996. Some subset of these particles is the set o
hyperbolic trajectories for the 9-day period of forward-tim
~left-hand plot! and backward-time~right-hand plot! advec-
tion. To estimate the location of this subset, we color-cod
each particle with the value of log10(*L dt) computed along
its trajectory for the 9 days in forward~left-hand plot! and
backward~right-hand plot! time, whereL is given by Eq.
~18!. The particles with higher log10(*L dt) ~i.e., warmer
colors in Fig. 5! are good candidates for hyperbolic traject
ries, as they experience strong local hyperbolicity during
9 days. However, we still cannot identify these candid
hyperbolic trajectories as hyperbolic trajectories proper,
cause they only satisfy the necessary condition. Nonethe
the clustering of candidate hyperbolic trajectories within
polar vortex is consistent with the same clustering of hyp
bolic trajectories in the polar vortex detected by the suffici
condition in Fig. 4. Moreover, the cyan-green regions in F
5 provide convincing indications of hyperbolic lines in th
stratospheric flow: two repelling lines~left-hand plot! and
two attracting lines~right-hand plot! are located on diametri
cally opposite sides of the polar vortex. We explain next h
we know that the hyperbolic lines picked out in Fig. 5 a
repelling in the left-hand plot, and attracting in the righ
hand plot.

Because fluid volume is conserved in nondiverg
flows, repelling lines shorten as they repel the surround
fluid away from them.~This process is analogous to flatte
ing a ball of putty: the putty becomes short as its circumf
ence expands outwards.! The shortening of the repelling
lines in the left-hand plot of Fig. 5 brings the particles on t
lines closer to the polar vortex, where there is stronger lo
hyperbolicity. Therefore, repelling lines show up with hig
values of*L dt. In contrast, attracting lines lengthen as th
attract the surrounding fluid, and so carry the particles
them away from the polar vortex. Thus, the values of*L dt
remain low on attracting lines, making attracting lines unn
ticeable in the left-hand plot of Fig. 5. However, attracti
lines shorten in reverse time, and therefore, they~and not the
repelling lines! show up with high values of*L dt in the
right-hand plot of Fig. 5. Beware that the attracting and
pelling lines revealed in Fig. 5 apply to different time pe
ods: 9 days before and 9 days after 12UTC 11 Oct 19
respectively.

One attracting line in Fig. 5~right-hand plot! is colo-
cated with the filament breaking in Fig. 2~left-hand plot!.
But paradoxically, there are no filaments associated with
other attracting line in Fig. 5~right-hand plot!. This point
illustrates the complex relation between tracer filaments
attracting lines: on one hand, attracting lines encourage t
ers in the polar vortex to break outward via the mechan
of lobe dynamics30,45thereby forming filaments. On the othe
hand, filament-shedding erodes the polar vortex, causing
vortex edge to retreat polewards. Thus, the tracers in
vortex eventually get beyond the reach of the attracting lin
preventing further filament-breaking.~Of course, on longer
time scales, vertical advection and tracer sources will hav
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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restore the equatorward reach of the polar vortex to acc
plish a quasiequilibrium situation with intermittent filame
shedding.!

In contrast to attracting lines, the repelling lines in Fig
~left-hand plot! are not associated with any obvious trac
features in Fig. 2~left-hand plot!. This is not surprising, as
repelling lines represent well-mixed surf-zone air that will
entrained into the vortex-edge region, also called thesto-
chastic layerin Ref. 37. As such, identification of repellin
lines in the surf zone using dynamical-system methods is
the more significant, as they locate the otherwise unmar
sources of surf-zone air for the vortex-edge region.

We repeated the computations of candidate hyperb
trajectories for shorter and longer advections to test the s
sitivity of * IL dt to the length of time intervalI , and hence
gauge the suitability of* IL dt as a marker of hyperbolic
lines in stratospheric flow. Figure 6 shows the trajector
satisfying the necessary condition for Lagrangian hyper
licity for 5-day ~left! and 18-day~right! forward-time advec-
tions from 12UTC 11 Oct 1996. The colors deno
log10(*L dt) for the corresponding 5-day and 18-day pe
ods, using the same color scale as Fig. 5. The left-hand
shows that 5 days is too short for log10(*L dt) to pick out
the hyperbolic lines. This signifies that the time scale
chaotic stirring in the stratosphere is longer than 5 da
Comparing the right-hand plot of Fig. 6 and the left-ha
plot of Fig. 5, we see that both 9-day and 18-day advecti
pick out practically the same hyperbolic lines. Hence,
deduce that the*L dt statistics have probably converged f
tn*9 days and the hyperbolic lines thus picked out by h
*L dt values are robust features of the stratospheric flow

In addition to above-mentioned case study surround
the filament-shedding event of 12UTC 11 Oct 96, we p
formed a similar case study using 5-, 9-, and 18-day fowa
time and backward-time integrations from 12UTC 21 Oct 9
The results obtained were similar to the presented case s
in this paper.

VI. FINITE-SIZE LYAPUNOV EXPONENTS

In order to compare the results of rigorous Haller’s co
ditions with that of other, nonrigorous, methods, we pres
here calculations of thefinite-size Lyapunov exponen
~FSLE! first used for dispersion by Artaleet al.46 and already
applied to the polar stratosphere in Refs. 37 and 47. The
of the various methods mentioned in Sec. I of this work
either to estimate the local stirring properties of the fluid
to draw the skeleton of the hyperbolic properties of the flo
that is to find the main stable and unstable hyperbolic lin
As we shall see in the following, the FSLE provides info
mation on both aspects by varying a unique internal para
eter.

The FSLE is based on the finite dispersion of parti
pairs. For a given finite initial separationd(x,t,0)5d0 at
time t and a growth factorr, the FSLE is

lr~x,t,d0!5
1

t
ln r, ~19!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. ~Color! Trajectories satisfying the necessary condition for Lagrangian hyperbolicity fortn55 days~left-hand side! andtn518 days in forward-time
advection from 12UTC 11 Oct 96. The colors indicate log10(*L dt) over thetn days.
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wheret is such that the separation at timet1t is d(x,t,t)
5rd0 . Hencet is the required time to increase the sepa
tion by a factorr. Whenr is of the order of a few units,l
describes the stirring properties at scaled0 and can be inter-
preted as the inverse of a local turbulence time.46,48 One
expects this time to be highly scale dependent in thr
dimensional turbulence but its scale dependence shoul
weak, at most logarithmic, for layerwise motion governed
quasigeostrophic dynamics.49 When r@1, the unstable and
stable hyperbolic material lines are obtained by plotting
extrema ofl for, respectively, forward- and backward-tim
advections. Here the resolutiond0 is limited by the need to
grow the separation to synoptic scale within a durationt of
the order of the integral scale.

The advantage of using the FSLE instead of the pl
dispersion@proposed by Bowman50 and obtained by lettingt
be fixed and measuringd(x,t,t)# has been discussed in Re
37. The basic reason is that plain separation is liable to s
ration effects and provides a ‘‘fuzzy’’ view of the hyperbol
structure compared to FSLE. It has been shown in sev
examples of dynamical systems that FSLE maps the st
and unstable hyperbolic manifolds.37

Our implementation of the FSLE method is as follow
First, we initialize a quasiuniform grid of particles in th
flow domain, which is the 500 K isentropic surface fro
25 °S to the pole. ConsideringN5260 equally spaced para
lels in this latitude range separated byDf50.25°, we put
(2p/Df)cosf regularly spaced points on each circle of la
tudef, resulting inM5191074 points to cover the latitud
range with a resolution of 26 km. Then, we consider for ea
point of the reference distribution four perturbed points
arc-distance 1/2d050.05° in the four cardinal directions
This generates two pairs separated by 11 km in the me
onal and zonal directions around each pointxj of the grid.
Then, we calculate the evolution of the four particles forwa
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and backward in time from timet and we measure the pa
separation at timet1t corresponding to pointxj as the
maximum arc-distance among the two pairs initializ
aroundxj at timet. We check the timest i j at which this pair
separation first crosses predefined threshold distances g
by d i5r id0 , wherer i is chosen among$5,10,20,50,75,100%.
Then, we use Eq.~19! to define the FSLElr i

(xj ,t,d0)

5 logri /tij . If a threshold distance is not reached by t
particle in the finite-time of consideration~20 days in our
calculations!, FSLE values are zeroed out for such lea
stretching points and this threshold. Finally, we map
FSLE values onto the initial locations of points in the refe
ence distribution.

Figure 7 shows the FSLE chart for a growth ratior
5100. Here only the points with largestl100 are plotted.
They are distributed along well-defined alignments which
good candidates for the main hyperbolic lines of the flo
They agree with the lines of maximum hyperbolicity streng
in Fig. 5. The stable and unstable lines intersect many tim
in particular within the collar around the vortex, generating
number of lobes. It was shown in Ref. 37 that the lob
within the collar are associated with the turnstile mechan
of fluid going in and out the collar along the hyperbolic line

Figure 8 shows FSLE charts for 20 days forward a
backward integrations from 12 UTC 11 Oct 1996 and
growth ratio r55. The white patches show the region
where the separation has grown over less than a factor 5
20 days. Sincel550.179 day21 for t59 days, we see tha
the pairs separating between 9 and 20 days are shown b
lowest colors in each chart. Therefore, the main patterns
Fig. 8 are obtained fort,9 days, that is over the optima
duration found for the necessary hyperbolic condition in S
V. Integrating over 20 days only add details in the weak
stretched regions. In both forward and backward directio
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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392 Chaos, Vol. 12, No. 2, 2002 T.-Y. Koh and B. Legras
the vortex edge is visible as a well-defined minimum inl5

that follows approximately the location of the maximum P
gradient on the vortex edge, revealing a thin continuous
rier around the vortex that the sufficient ellipticity conditio
failed to capture.~There is also a region of smalll5 sitting at
the core of the vortex indicating weak mixing in this regio
in agreement with the results shown in Fig. 5.!

The vortex is surrounded by a collar with large values
l5 , the largest values being located near the tips of the
tex from which arms detach and expand within the midla
tude surf zone. In Fig. 8~right-hand side!, the broadest arm

FIG. 7. ~Color! FSLE for growth ratior5100 at 12UTC 11 Oct 96 for
backward~red! and forward~blue! time advection. The selected points a
those which reach the required separation within less than 10 days. P
shown in the background according to the color scale.
Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP
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extends along the PV filament being expelled from the v
tex. This arm and the others agree with the locations of
hyperbolic lines detected in Fig. 5. These results suggest
mixing in the extratropical winter stratosphere is maxim
within a collar surrounding the polar vortex and in a broa
band along the hyperbolic lines connecting this collar to
surf zone. It was shown in Ref. 37 that fast two-way e
changes occur between the surf zone and the collar along
hyperbolic lines, with time scales of the order of 2–3 days
is clear here that this mechanism is to a large extent disc
nected from the exchanges across the vortex edge which
cur over much longer time scales~see Sec. VII!.

VII. CONCLUSION AND DISCUSSION

We have shown that the application of rigorous Lagran
ian hyperbolicity criteria providesper selimited insight on
the dynamics of the Antarctic stratospheric polar vortex. T
is not totally surprising since the proofs of these criteria co
tain severe approximations of the hyperbolic properties
the flow ~see Ref. 39!. The mere existence of such criter
which can be applied and tested with real observed winds
however, a significant result. In practice, improved pheno
enological criteria can be derived by measuring the stren
of hyperbolicity or from the properties of pair separatio
The apparent success of these nonrigorous methods in
vealing the hyperbolic structure of the flows, here in t
atmosphere, but also in numerical and experimental turbu
flows,39,51clearly calls for further theoretical development
explain these results. One possibility is to improve the n
essary and sufficient conditions for hyperbolicity and ell
ticity. Another possibility, recently considered in Ref. 52 is
provide a rigorous way to test the hyperbolic nature o
candidate hyperbolic line once it has been found by any c
venient method. It would be very interesting to apply su
tests to FSLE.

is
res.

FIG. 8. ~Color! FSLE for growth ratior55 at 12UTC 11 Oct 96 for forward~left-hand side! and backward~right-hand side! time advection. The colors
indicatel5 with logarithmic scaling. PV contours225, 255 and275 PVU are plotted in dashed lines. The projection is the same as in previous figu
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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393Chaos, Vol. 12, No. 2, 2002 Lines and the polar vortex
The determination of the hyperbolic structures leads
principle to the possibility to calculate isentropic transport
the stratosphere using lobe dynamics. A first complicatio
that one has to distinguish not only the vortex and the s
zone but also a collar surrounding the vortex. A second co
plication is that stable and unstable material lines are alm
parallel within the collar region, hence many lobes are v
elongated and difficult to identify owing to numerical ina
curacies. A third difficulty is that the finite-time hyperbol
material lines do not necessarily need to cross and f
lobes in aperiodic flows. In practice it seems that this te
nique may apply to the calculation of the exchanges betw
the collar and the surf zone but is hardly applicable to
much weaker exchanges between the polar vortex and
exterior.37,45

Another possibility to derive exchange coefficients is
interpret the FSLE for smallr as the inverse of a local mix
ing time. The findings provided by Fig. 8 are indeed simi
in several respects to those obtained byeffective diffusivity.53

In particular, effective diffusivity identifies the vortex edg
barrier as a minimum, and there is a maximum located
equatorward of it. The advantage of effective diffusivity
that it is based on a rigorous equation obtained by avera
the advective diffusive equation along a tracer contour;54 its
drawback is to assume that a single value of effective
fusity is valid all along a tracer contour, however the trac
contour deforms. In contrast, the FSLE is defined indep
dently of the tracer concentration and its contours are cle
crossing the PV contours in many instances. The tendenc
tracer contours to align with hyperbolic lines24 induces, how-
ever, alignment of FSLE contours and tracer contours at
vortex edge and the surrounding collar. Normally,l5 is
partly due to the effect of the shear along tracer lines wh
results in practically no mixing. So, 1/l5 is usually a lower
bound of the mixing time. But at the vortex edge, the eff
of the shear is limited because the edge is also close
maximum of the horizontal wind. The FSLE indicates th
the exchange time between the interior and the exterio
the vortex is of the order of 3 weeks at least.
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APPENDIX: THE EXPRESSION FOR zf0z

Haller39 defines

f0[min@f1,f2#, ~A1!

f6[
1

2

^j6,Mj6&
uj6uuSj6u

, ~A2!

M[2S"¹v1Ṡnrot,

where (j1,j2) is the zero-strain set andṠnrot is the rate of
change of the strain matrixS in a nonrotating frame of ref-
erence. In spherical coordinates, the rate of change of
strain matrixṠ is

Ṡ5Ṡnrot1Ṡbasis, ~A3!
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whereṠbasisis the apparent rate of change that arises from
rotating basis set (l̂,ŵ) along a trajectory. Hence,

M[2S"¹v1Ṡ2Ṡbasis. ~A4!

First, consider that the unit vectorl̂ rotates byml̇ dt in
the tangential plane of the spherical surface over timedt,
wherem[sinw. Hence, the change inS due to the rotation
of the basis is

dSbasis5eSe212S, ~A5!

where

e[S cos~ml̇ dt ! sin~ml̇ dt !

2sin~ml̇ dt ! cos~ml̇ dt !
D .

To first order indt,

e'S 1 ml̇ dt

2ml̇ dt 1
D ,

e21'S 1 2ml̇ dt

ml̇ dt 1
D .

Substituting the above into Eq.~A5!, we get

Ṡbasis[ lim
dt→0

dSbasis

dt
52ml̇S b 2a

2a 2bD . ~A6!

Next, we substitute Eq.~A6! into Eq. ~A4! to get

M5S 2s212bV1ȧ 22aV1ḃ

22aV1ḃ 2s222bV2ȧ
D . ~A7!

Now, the vectorsj6 making up the zero strain set make a
angle of 7p/4 with the strain axisE1. Let E1 make an
angleq with the l̂ vector. Hence,

j65S cos~q7p/4!

sin~q7p/4! D . ~A8!

Substituting Eqs.~A7! and ~A8! into Eq. ~A2!, and then us-
ing the identities:a[s cos 2q, b[s sin 2q, and recalling
Eqs.~6! and ~8!, we get

H ^j6,Mj6&52s262~bV1ȧ!sin 2q6~2aV2ḃ!cos 2q
uSj6u5s

⇒f65s6~V2q̇ !.

And usingVeff defined in Eq.~7!, Eq. ~A1! becomes

f05min~s1Veff ,s2Veff!5min~s1uVeffu,s2uVeffu!

5s2uVeffu.

In an elliptic region,uVeffu.s so that

uf0u5uVeffu2s.
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