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Abstract

We discuss the stabilization of the inverse cascade in the large-scale instability of the Kolmogorov flow described by the
complete Cahn–Hilliard equation with inclusion ofβ effect, large-scale friction and deformation radius. The friction and theβ

values halting the inverse cascade at the various possible intermediate states are calculated by means of singular perturbation
techniques and compared to the values resulting from numerical simulation of the complete Cahn–Hilliard equation. The ex-
cellent agreement validates the theory. Our main result is that the critical values of friction orβ halting the inverse cascade scale
exponentially as a function of the jet separation in the final flow, contrary to previous theories and phenomenological approach.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inverse cascades are a common feature in the large-scale velocity and magnetic fields of geophysical, planetary
and astrophysical two-dimensional flows. Their halting by spontaneous formation of zonal jets has been the object
of great interest and considerable work by many scientists (see among others Refs.[1–5]). The phenomenon of
a halted inverse cascade could play a role in the atmosphere of Jupiter and other Jovian planets which exhibit jet
streams of east–west and west–east circulation.

Frisch et al.[6] showed that the inverse cascade of the large-scale nonlinear instability of the Kolmogorov flow
described by the Cahn–Hilliard equation[7–9] may be stopped by the dispersive Rossby waves, i.e. by the so-called
β-effect. We recall here that in the absence of any stabilizing effect the inverse cascade proceeds by visiting a
family of metastable states with increasing scale until the final largest scale is reached[10]. In a later paper, Legras
et al. [11] have used singular perturbation techniques to calculate the range of theβ values stopping the inverse
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cascade in one of the otherwise (ifβ = 0) metastable state. Their result was different from that obtained by the
standard phenomenology based on dimensional arguments[1] which fails because phenomenology does not take
into account the strong suppression of nonlinearities in the metastable states of the inverse cascade.

In Refs.[6,11] the forcing maintaining the basic flow was chosen parallel to the planetary vorticity contours and
there was no friction or advection. In a more realistic setup, Manfroi and Young[5] studied the stability of a forced
meridional flow on aβ-plane pushing the fluid across the planetary vorticity contours, and including both friction
and advection by a mean flow. They obtained a complete amplitude equation for the leading order perturbation,
from which, with some formal modifications and with a slightly different interpretation of the parameters, the
amplitude equation of Ref.[6] can be recovered (seeSection 2.1). Using this equation, but disregarding the dispersive
contribution fromβ-effect, they showed that random initial perturbations rapidly reorganize into a set of fast and
narrow eastward jets separated by slower and broader westward jets, followed then by a much slower adjustment of
the jets, involving gradual migration and merger. The stabilization discussed in Ref.[5] is only due to friction and
not due to dispersive effects.

In this paper we present a systematic approach to the study of stabilization of the inverse cascade in the supercritical
regime of the large-scale Kolmogorov flow provided both by friction andβ effect. The stabilization byβ effect already
discussed in[11] will be presented here in a greater detail and stabilization by friction will be discussed in the same
mathematical approach as for theβ case. The mathematical framework is based on the kink dynamics introduced
by Kawasaki and Ohta[12] to describe the solutions to the Cahn–Hilliard equation; singular perturbation technique
is used to study the stability of these solutions with respect to small perturbations due to friction andβ effect. The
perturbative calculations are performed analytically for large wavenumbers and numerically for all cases. The results
are compared together and with direct numerical stability and time-dependent solutions of the amplitude equation.

The paper is organized as follows: inSection 2the Cahn–Hilliard equation in itscompleteform is presented; by
completein this context we mean thatβ, friction, advection velocity and deformation terms have been added to the
standard Cahn–Hilliard equation. The perturbation to the steady metastable solution of the Cahn–Hilliard equation
by smallβ and a friction term is presented inSection 3. Section 4discusses the stability of the steady metastable
solutions and provides the main results of this work.Section 5presents the techniques used to solve numerically
the perturbation and the time-dependent problem, and compares the results of those calculations and the analytical
results.Section 6offers a summary and conclusions.

We do not give the detailed presentation of the mean advection effect, which introduces considerable additional
algebraic complications, in order to focus here on the essential mechanisms that stabilizes the Cahn–Hilliard cascade.
The main results in presence of mean advection are, however, given without demonstration inAppendix D.

2. The complete Cahn–Hilliard equation

2.1. Basic equation

Our starting point is the large-scale Kolmogorov flow in its slightly supercritical regime, which is described by
the Cahn–Hilliard equation. We recall here that the basic Kolmogorov flow,u = ( cosy,0), is maintained by a
force f = ν( cosy,0) against viscous dissipation. This flow exhibits a large-scale instability of the negative eddy
viscosity type when the kinematic viscosityν is slightly below the critical valueνc = 1/

√
2 [7–9].

Taking further into accountβ effect, frictionr, external deformation radius 1/S1 and advection effect due to a
nonzero mean velocityγ , we obtain by multi-scale techniques the following adimensional equation for the leading

1 The external deformation radius accounts for the inertial large-scale effect of a free surface in geophysical flows[13].
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order large-scale perturbation:

∂t (1 − S2∂−2
x )(v − γ ) = λ∂2

xW
′(v)− λ∂4

x v − β∂−1
x (v − γ )− r(v − γ ), (1)

where∂−1
x denotes the integration inx defined for the family of functions with zero average over the interval [0, L].

The potentialW(v) is

W(v) = s2

2Γ 2
v4 − s2v2 (2)

and the constants in(1) and (2)are

s = 1√
3
, Γ =

√
3

2
, λ = 3√

2
. (3)

Eq. (1)was derived in[6] with S = r = γ = 0. In this derivation, the Kolmogorov basic flow is oriented in the
zonal direction on theβ-plane and therefore the large amplitude flow develops in the meridional direction. Using
a more realistic setting where the Kolmogorov basic flow is oriented in the meridional direction as an idealized
baroclinic perturbation, and introducing friction and mean advection velocity, Manfroi and Young[5] derived the
following amplitude equation:

∂τA = −r∗A− (2 − γ ∗2
)∂2
ηA− 3∂4

ηA+ 2γ ∗∂η(∂ηA)2 + 2
3∂η(∂ηA)

3 − β∗∂−1
η A, (4)

whereτ andη are the temporal and spatial variables, respectively. In their study, the last term on the right-hand
side, which is the only dispersive term in the equation, was set to zero.2 By the change of variable∂ηA = w − γ ∗

and the rescalingτ = at, η = bx, w = cv, r∗ = r/a, β∗ = β/(ab) andγ ∗ = cγ wherea = 12s4λ/(2 + γ ∗2
)2,

b = (6s2/(2+ γ ∗2
))1/2 andc = (3(2+ γ ∗2

)/(2Γ 2))1/2, this equation is easily transformed into(1) up to the term
in S which is only a trivial modification[13]. We see that the quadratic term in(4) disappears in this transformation.
Theγ term represents the net advection velocity (see[5]) and is also the average value ofv.

In a recent work[14], it is claimed that the Kolmogorov instability exhibits a singular limit whenβ → 0. This
result is established for a very special situation which does not arise here[15]. A more general approach for the
stability of Rossby waves is given by Lee and Smith[16].

2.2. Kinks and antikinks

The pure Cahn–Hilliard equation, is recovered from(1) by settingβ = r = S = γ = 0. It admits a variational
formulation in terms of a Lyapunov functional[8]:

∂tψ(x, t) = − δF
δψ
,

whereψ = ∂−1
x v andF the Lyapunov functional with∫ L

0

(
λ

2
(∂xv)

2 + λW(v)
)

dx.

Consequently, the pure Cahn–Hilliard equation is integrable and all solutions tend to final steady states that locally
minimizeF .

2 The coefficientβ in the last term of the right-hand side of(4) is the product of the planetary vorticity gradient per the small angle between
the Kolmogorov flow direction and the planetary vorticity gradient. Therefore it can be either positive or negative unlike in the derivation of Ref.
[6] where it is always positive.
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Fig. 1. Kink–antikink annihilation in a numerical simulation of the pure Cahn–Hilliard equation withL = 76.95.

This property is preserved in the presence of friction (seeSection 5.5) but is lost in the presence ofβ.3 The
solutions to the pure Cahn–Hilliard equation live essentially, albeit some initial transients, within a slow manifold
of soliton-like solutions with an alternation of plateausv = ±Γ , separated by alternating positive and negative
kinks, that we will call, respectively, kinks and antikinks[17] in the following. For large enough separation between
adjacent kinks, the kink centered inx = xj is locally given by

Mj(x) = εjM(x − xj ) = εjΓ tanhs(x − xj ), (5)

whereεj = 1 for a kink andεj = −1 for an antikink[12]. This solution satisfies the equation

−∂2
xMj +W ′(Mj ) = 0.

Within anx periodic domain of periodL, the Cahn–Hilliard equation exhibits stationary metastable solutions of
periodΛ = L/N withN pairs of alternating and equally spaced kinks and antikinks. These fixed points are unstable
saddle points of the Lyapunov functional, except forN = 1 which corresponds to an absolute stable minimum. The
temporal evolution characterized by a growing total energy is a cascade of annihilations of kink–antikink pairs (see
Fig. 1) leading eventually to the gravest modeN = 1 [12]. It is shown inAppendix Athat the local solution(5) is
modified by terms of order exp(−sΛ) when the periodicity is taken into account.

3. Perturbation of stationary solution under the action ofβ and friction

In order to study the modification of the stationary solutions to the pure Cahn–Hilliard equation under the effect
of a smallβ or friction, we multiply both terms by a small control parameter,ε, keepingβ andr as O(1).

We putγ = 0, leaving the caseγ 	= 0, which is technically much more involved, forAppendix D. We only notice
here thatγ 	= 0 breaks one symmetry and generates narrow intense westerlies and broad narrow easterlies[5].

3 A Lyapunov formulation for the approximated equation is recovered, however, in the limit of largeβ [6].



B. Legras, B. Villone / Physica D 175 (2003) 139–166 143

It is convenient to integrate(1) twice inx to obtain

−1

λ
∂−2
x (1 − S2∂−2

x )∂tv − εβ
λ
∂−3
x v − ε r

λ
∂−2
x v = ∂2

x v −W ′(v)+ h(t), (6)

whereh(t) arises from integration inx. Then the perturbed solution is defined asv̄ = v̄(0)+ εv̄(1)+ ε2v̄(2)+O(ε3),
wherev̄(0) satisfies the stationary CH equation−∂2

x v̄
(0) + U ′(v̄(0)) = 0. We will distinguish two cases forS: (i)

S = 0, associated with synoptic and subsynoptic dynamics, and (ii)S = O(1), associated with planetary motion
(cf. [13]). Whenβ 	= 0, we introduce the phase velocityc = εc1 + ε2c2 + O(ε3) of the traveling framework in
which v̄ is stationary.

3.1. Order 1 perturbation

We first treat the caseS = 0. The first-order perturbation̄v(1) satisfies the linear equation

F(v̄(1)) = Q(0) (7)

with

F(g) = ∂2
xg −W ′′

0 g, W ′′
0 = W ′′(v̄(0)), Q(0) = 1

λ
(c1∂

−1
x v̄

(0) − β∂−3
x v̄

(0) − r∂−2
x v̄

(0)).

∂x v̄
(0) belongs to the kernel ofF: this can be easily verified by multiplying(7) by ∂xv̄(0) and integrating within the

domain. After integration over the spatial period, the solvability condition for(7) gives the first-order contribution
to the phase velocity

c1 = −β
∫ L

0 (∂
−1
x v̄

(0))2 dx∫ L
0 (v̄

(0))2 dx
. (8)

The symmetry of the stationary Cahn–Hilliard equation with respect tox reversal is inherited bȳv(0). The solution
is antisymmetric with respect to kinks locations and symmetric with respect to the middle of the plateaus. The
perturbationv̄(1) is the sum of two parts

v̄(1) = βv̄(1)β + rv̄(1)r ,

wherev̄(1)r has the same symmetry asv̄(0) andv̄(1)β has opposite symmetry.

It is shown inAppendix Athat, up to errors of O(e−sΛ/2) the basic solution̄v(0) can be approximated by a series
of jumps locally described by(5). Over each interval [xj −Λ/4, xj +Λ/4] centered on a kink inxj (see(5)), we
have

∂−1
x v̄

(0) = εj Γ
s

ln

(
coshsx

cosh(1/4)sΛ

)
+ O(e−sΛ/2),

from which the velocityc1 is readily calculated using(8). After some algebra, we get

c1 = −β
(
Λ2

48
− π2

12s2
+ 13ζ(3)

8Λs3

)(
1 − 4

Λs

)−1

+ O(e−sΛ/2), (9)

whereζ is the Riemann zeta function. The phase velocity is directed to the left whenβ > 0 and increases with the
wavelengthΛ. The fact that the error in(9) is exponentially small makes this expression very accurate even for not
so large values ofΛ as we shall check below. By straightforward algebra, one gets

Q(0) = −βΓ
2λ

|x|
(
x2

3
− 1

4
Λ|x| + 1

24
Λ2
)

− rΓ
2λ

|x|
(

|x| − 1

2
Λ

)
+ O(βΛ2 + rΛ). (10)
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Far from the kinks the ratio between the derivative and the potential term inF is O(1/Λ2). At leading order in 1/Λ:

v̄
(1)
β = Γ

24s2λ
|x|
(

|x| − 1

2
Λ

)(
|x| − 1

4
Λ

)
, (11)

v̄(1)r = Γ

8s2λ
x

(
|x| − 1

2
Λ

)
. (12)

These expressions are valid in the interval [−Λ/2,Λ/2] far from the kinks. It can be shown that at O(1) distance
from the kinks,v̄(1)β is O(Λ2), while v̄(1)r is O(Λ).

For S = O(1), the leading contribution of friction is unchanged, but the effect ofβ is deeply affected.Q(0) is
modified as

Q
(0)
S = 1

λ
(c1∂

−1
x v̄

(0) − (β + c1S2)∂−3
x v̄

(0) − r∂−2
x v̄

(0)).

Therefore, the phase speed is now

c1S = − βc1

S2c1 + β ,

wherec1 is given by(9), i.e.:

c1S = − β
S2

+ 48β

Λ2S4
+ O

(
β

Λ3

)
. (13)

Unlike the infinite radius case, the phase speed varies weakly withΛ. Reporting(13) in Q(0)S and solving forv̄(1)β ,
we obtain

v̄
(1)
β = Γ

s2S2Λλ
|x|
(

|x| − 1

4
Λ

)(
1 − 2

|x|
Λ

)
+ O(1) (14)

at large distance from the kinks. The correction to the stationary solution scales asΛ and is considerably reduced
with respect to the caseS = 0, for which it scales asΛ3.

4. Stability

4.1. Stability of the Cahn–Hilliard equation

The stability of the solutionv = 0 is easily obtained by linearizing(1) in the Fourier domain. Whenr = 0, the
solution is unstable to all Fourier modes with wavenumber 0< k < km = √

2s = √
2/3. This result does not

depend on the values ofβ andS. Whenr > 0 the modes neark = 0 andkm are stabilized and the instability band
in k-space shrinks asr grows. The solutionv = 0 is stable forr > r0 = λs4 = (3√

2)−1. The vicinity of this value
has been studied in[5]. We are here interested in the limit of smallr.

The stability of the nonzero stationary solutions to the Cahn–Hilliard equation can be studied using the equation
for kink motion derived inAppendix B. For an arbitrary perturbation, fast transients dissipate rapidly, leaving only
after a short time the part of the perturbation that projects onto kink displacement. Thej th kink being displaced by
δxj , the perturbation tōv(0) is

δv = −
2N−1∑
/=0

∂xM/δx/. (15)
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Then using(B.14), the equation for the displacements is

−4Γ 2

λ

2N−1∑
/=0

(
(−1)j−/G2(xj − x/)+ (−1)j−/

π2

12Ls2
− 1

2s
δj−/

)
δẋ/

= 64s3Γ 2 e−sΛ[2δxj − δxj+1 − δxj−1] − 2Γ εj δh. (16)

It is convenient to use Fourier components defined as

δxj =
2N−1∑
m=0

ψm eiπ(mj/N)

withm ∈ [0,2N−1] andψ2N−m = ψm. The equation forψm is obtained by multiplying(16)by (1/2N)e−iπ(mj/N)

and summing over thej from 0 to 2N−1. Taking into account the regular alternation of kinks and antikinks separated
by intervals of lengthL/2N in the basic solution and using the Fourier transform of the Green function given by
(C.2), one obtains after some algebra:

1

λ

(
Λ

1 + cosθm
− 2

s

)
ψ̇m = 128s3 e−sΛ(1 − cosθm)ψm − 4

N

Γ
δhδ(N −m) (17)

with θm = πm/N . The leading order form of(17)was given by Kawasaki and Ohta[12] with a factor 2 error (see
Appendix B).

The first term in the right-hand side of(17) is destabilizing the stationary solution with the eigenvalue

σ0 = 128s3λe−sΛ

Λ
sin2θm

(
1 − 2(1 + cosθm)

sΛ

)−1

. (18)

This instability is responsible of the inverse cascade in the CH equation. Each value ofm is associated with a real
eigenvalue ofF and a dimension 2 eigenspace. It turns out that an appropriate basis of this eigenspace is provided
by the couple of orthogonal vectors

va(x) =
2N−1∑
j=0

(−1)j cosjθm∂xM(x − xj ), (19)

vb(x) =
2N−1∑
j=0

(−1)j sinjθm∂xM(x − xj ), (20)

which are here given up to an error O(e−sΛ/2). These expressions agree very well with the numerical solution shown
in Fig. 2.

The δh contribution vanishes but on the modem = N . The solutionv(x, t) must average to zero within the
periodic interval [0, L]. In terms of kink motion, this imposes the constraint

2N−1∑
/=0

(−1)/δẋ/ = 0

and thus,ψ̇N = 0. The presence ofδh(t) in (17) is required to impose this condition.
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Fig. 2. Numerical calculation ofva andvb by discretization of the eigenvalue problem forF (cf. Section 5.1) with 128 points forL = 76.953
andm = 4. (a) Thin solid:v̄(0), solid:va , dash:vb; (b) thin solid:∂x v̄(0), solid:va/∂x v̄(0), dash:vb/∂x v̄(0). The scale is arbitrary forva andvb.
Even if the plateaus in̄v(0) are very short for the chosen values ofL andm, the ratios in (b) show the staircase structure ofva andvb over the
kinks as given in(19) and (20)except where∂x v̄(0) vanishes in the middle of the plateaus.

4.2. Stability ofβ-CH equation with infinite radius of deformation

4.2.1. Formulation of the problem
The equation governing the perturbationδv to v̄(0) can be written conveniently forϕ = ∂−1

x δv

∂tϕ = Lϕ (21)

with

L = −λ∂x(∂2
x −W ′′(v̄))∂x − c∂x − εβ∂−1

x − εr. (22)

The reason of usingϕ instead ofδv is thatL is self-adjoint while the corresponding operator forδv is not.
Unlike the caseβ = 0, the slow component perturbation to the stationary solution of theβ-CH equation does not

reduce to the simple motion of kinks. One has also to take into account the dispersive effect of theβ term modifying
the shape of the slow modes and contributing to the stability. Therefore, we expandL as

L = L0 + εL1 + ε2L2 + O(ε3) (23)

with

L0 = −λ∂x(∂2
x − U ′′

0 )∂x, (24)

L1 = λ∂x(W ′′′
0 v̄
(1)∂x)+ c1∂x − β∂−1

x − r, (25)

L2 = λ∂x(W ′′′
0 v̄
(2) + 1

2W
IV
0 v̄

(1)2)∂x + c2∂x. (26)

The eigenvalues of(21)are perturbations of the eigenvalues of(16). For a givenm 	= N , we obtain

σ = σ0 + εσ1 + iεµ1 + εσ2 + iεµ2 + O(ε3). (27)

The functionsϕa = ∂−1
x va andϕb = ∂−1

x vb are orthogonal eigenmodes ofL0 and, it turns out, an appropriate
Jordan basis for the perturbation problem. They are, respectively, modified asϕa + εϕa1 + ε2ϕa2 + O(ε3) and
ϕb + εϕb1 + ε2ϕb2 + O(ε3). The hierarchy of linear problems is

L0ϕa = σ0ϕa, (28)
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L0ϕa1 + L1ϕa = σ0ϕa1 + σ1ϕa − µ1ϕb, (29)

L0ϕa2 + L1ϕa1 + L2ϕa = σ0ϕa2 + σ1ϕa1 + σ2ϕa − µ1ϕb1 − µ2ϕb (30)

and similar equations forϕbi.

4.2.2. Stabilization by friction at first order
The first-order corrections of the eigenvalueσ are obtained as solvability conditions of(29)by

〈ϕa,L1ϕa〉 = σ1〈ϕa, ϕa〉, (31)

〈ϕb,L1ϕa〉 = −µ1〈ϕb, ϕb〉, (32)

where〈f, g〉 ≡ (1/L) ∫ L0 f (x)g(x)dx. In 〈ϕa,L1ϕa〉, the contributions fromβ immediately vanish by integration.
We have, after integration by part

〈ϕa,L1ϕa〉 = −λ〈v2
a,W

′′′
0 v̄
(1)〉 + r〈va, ∂−2

x va〉. (33)

The first contribution to the right-hand side of(33)can be reduced to an integral over a single kink by summing the
trigonometric factors arising fromv2

a :

〈v2
a,W

′′′
0 v̄
(1)〉 = r

Λ

∫
W ′′′

0 v̄
(1)
r (∂xMj )

2 dx. (34)

Herej labels an arbitrary kink and the integral bounds do not need to be specified since∂xMj decays exponentially
for both positive and negativex. This contribution is further transformed using∫

W ′′′
0 v̄
(1)
r (∂xMj )

2 dx = 1

λ

∫
∂−1
x v̄

(0)∂xMj dx,

which is valid up to exponentially small errors. Finally the contribution is reduced to a nonlocal integral by part:

1

Λ

∫
∂−1
x v̄

(0)∂xMj dx = 1

2Λ

∫ xj+(1/2)Λ
xj−(1/2)Λ

∂xv̄
(0)∂−1

x v̄
(0) dx = −1

2
Γ 2 + 2Γ 2

Λs
.

Combining this with(C.2) and (C.8), we obtain

σ1 = −r sin2 1

2
θm + 4r

Λs

(
1 + cos2 1

2
θm

)(
1 − 4

Λs
cos2 1

2
θm

)−1

+ O(e−sΛ/2). (35)

In a similar way, we have

〈ϕb,L1ϕa〉 = −λ〈vavb,W ′′′
0 v̄
(1)〉 + c1〈va, ∂−1

x vb〉 − β〈va, ∂−3
x vb〉. (36)

The first term in the right-hand side of(36)vanishes after the trigonometric summation. Using(C.8) and (C.9)and
(C.1)–(C.3), we obtain

µ1 =
(

−2c1Γ 2

Λ
t − Γ

2Λ

8
t (1 + t2)+ π

2Γ 2

6s2Λ
t

)(
Γ 2

2
(1 + t2)− 2Γ 2

sΛ

)−1

+ O(e−sΛ/2), (37)

or, retaining only the first three orders of the expansion:

µ1 = β
(

−Λt(2 + 3t2)

12(1 + t2) − t (1 + 2t2)

3s(1 + t2)2 + 4

3Λs2
t5

(1 + t2)3

)
+ O

(
β

Λ2

)
(38)

with t = tanπm/2N .
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It is interesting to notice that the nonlinear contribution〈v2
a, U

′′′
0 v̄
(1)〉 is destabilizing the stationary solution.

However, the direct linear damping by friction remains larger and the total effect of friction is always stabilizing.
Therefore, them-mode perturbation to the stationary solution is stabilized by friction for

r > rc = 512
e−sΛ

Λ
s3λ cos2πm

2N
(39)

at leading order.
The corresponding result whenγ 	= 0 is given in(D.6). The mean advection decreases the value of friction

necessary to stabilize a given wavenumber.

4.2.3. Stabilization byβ-effect at second order
At second order inε, σ2 is solution of the solvability condition. Here we setr to zero for simplification as

stabilization byr is already obtained at first order:

〈ϕa,L1ϕa1〉 + 〈ϕa,L2ϕa〉 = σ2〈ϕa, ϕa〉 − µ1〈ϕa, ϕb1〉. (40)

The second term on the left hand side of(40)expands as

〈ϕa,L2ϕa〉 = −λ〈v2
a,W

′′′
0 v̄
(2)〉 − 1

2λ〈v2
a,W

IV
0 (v̄

(1))2〉. (41)

The second term is O(β2Λ3) while the first term is O(β2Λ4) and dominates at leading order. This term can be
transformed in the same way as above for〈ϕa,L1ϕa〉, leading to

〈ϕa,L2ϕa〉 = − λ
Λ

∫
Q(1)∂2

xMj dx + O(β2Λ3),

whereQ(1) is the right-hand side for the second-order version of(7). After dropping out all contributions that vanish
owing to the symmetries, we obtain

〈ϕa,L2ϕa〉 = β
2

Λ

∫
∂−3
x v̄

(1)
β ∂

2
xMj dx + λ

2Λ

∫
W ′′′

0 (v̄
(1))2∂2

xMj dx + O(β2Λ3). (42)

The second term on the right-hand side of(42) is negligible relatively to the first. This later can be calculated using

1

Λ

∫
∂−3
x v̄

(1)
β ∂

2
xMj dx = 1

2Λ

∫ xj+(1/2)Λ
xj−(1/2)Λ

∂−3
x v̄

(1)
β ∂

2
x v̄
(0) dx = 1

2Λ

∫ xj+(1/2)Λ
xj−(1/2)Λ

∂−1
x v̄

(1)
β v̄

(0)

and(11). We obtain

〈ϕa,L2ϕa〉 = β2Λ4Γ 2

92,160s2λ
+ O(β2Λ3). (43)

The other contributions in(40) involveϕa1 andϕb1. These quantities can be approximated in the same way asv̄(1)

at distance from the kinks. We have

4s2λϕa1 = −λ∂−1
x (W

′′′
0 v̄
(1)va)− c1∂−1

x ϕa + β∂−3
x ϕa − µ1∂

−2
x ϕb (44)

and a similar expression forϕb1. Then, after some algebra and dropping the terms which do not contribute to the
leading order, we have

4s2λ〈ϕa,L1ϕa1〉 = c21〈va, ∂−2
x va〉 + β2〈va, ∂−6

x va〉 − 2βc1〈va, ∂−4
x va〉 − µ1β〈va, ∂−5

x vb〉
+µ1c1〈va, ∂−3

x vb〉 + O(β2Λ3).



B. Legras, B. Villone / Physica D 175 (2003) 139–166 149

Using the results ofAppendix C, we obtain

〈ϕa,L1ϕa1〉 = − β2Γ 2Λ4

92,160s2λ
(1 + 6t2 + 15t4)+ O(β2Λ3).

and

〈ϕa, ϕb1〉 = − βΓ
2Λ3

4608s2λ
(t + 3t3)+ O(βΛ2).

Finally

σ2 = − β2Λ4

69,120s2λ

t2(4 + 9t2)

(1 + t2)2 + O(β2Λ3). (45)

The contribution fromr2 is a correction to the first-order stabilization obtained inσ1. Theβ term does not appear at
first order and is stabilizing in(45). Though the effect is small, it increases algebraically withΛwhile the nonlinear
coupling of kinks decreases exponentially in(18). Therefore, ifr = 0, stabilization of them-mode perturbation to
the stationary solution is obtained at leading order for

β > βc =
(

35,389,440
e−sΛ

Λ5
s5λ2 1

4 + 9t2

)1/2

. (46)

The condition is the most restrictive form = 1, that ist = tanπ/(2N).

4.3. Stability ofβ-CH equation with finite radius of deformation

In this caseL1 andL2 are modified as

L1 = λ∂xW ′′′
0 v̄
(1)∂x + c1∂x − (β + c1S2)∂−1

x − r, (47)

L2 = λ∂x(W ′′′
0 v̄
(2) + 1

2U
IV
0 v̄

(1)2)∂x + c2(∂x − S2∂−1
x ). (48)

At first order inε, the imaginary part of the eigenvalue is

µ1 = −c1 〈va, ∂−1
x vb〉

〈vfb, ∂−2
x ϕb〉

+ (β + S2c1)
〈va, ∂−3

x vb〉
〈vfb, ∂−2

x ϕb〉
= −4βt(2 + 3t2)

ΛS2(1 + t2) + O

(
β

Λ2

)
(49)

At second order inε, σ2 is still given by(40). The contribution〈ϕa,L2ϕa〉 is now

〈ϕa,L2ϕa〉 = β(β + c1S2)

Λ

∫
∂−3
x v̄

(1)
β ∂

2
xMj dx + O

(
β2

Λ

)
.

After integration by part and using(14), we obtain

〈ϕa,L2ϕa〉 = − β2Γ 2

40s2S4λ
+
(
β2

Λ

)
.

Similarly, we have

〈ϕa,L1ϕa1〉 = − β2Γ 2

40s2S4λ
(1 + 6t2 + 15t4)+ O

(
β2

Λ

)
, 〈ϕa, ϕb1〉 = − Γ 2Λ

96s6S2λ
t (1 + 3t2)+ O(1).
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Finally, we obtainσ2 as

σ2 = − β2

30s2S4λ

3 + 7t2 + 9t4

(1 + t2)2 + O

(
β2

Λ

)
. (50)

The stability cross-over forβ is now

βc =
(

15,360s5S4λ2 3 + 7t2 + 9t4

t2

e−sΛ

Λ

)1/2

. (51)

Therefore, the stabilizing effect ofβ is much reduced compared to that with infinite radius of deformation.
All the perturbative calculations ofSections 3 and 4have been checked with Mathematica.

5. Numerical results

The analytic results established inSection 4are valid in the double limit of smallε and largeΛ. These asymptotic
results are complemented and compared with three types of numerical calculations: (i) numerical solution of the
perturbative problem for several values ofΛ, (ii) direct numerical simulation of the Cahn–Hilliard equation in the
Fourier space and (iii) direct stability calculation.

5.1. Numerical solution of the perturbative problem

We relax here the hypothesis on the large value ofΛ by solving numerically the perturbative equations forv̄(1),
v̄(2), ϕa1 andϕb1, and numerically evaluating the solvability conditions.

The calculation is performed according to the following algorithm:

(1) The basic solution̄v(0) is defined by the approximate form given inAppendix A.
(2) The inverse derivatives∂−1

x v̄
(0), ∂−2

x v̄
(0) and∂−3

x v̄
(0) are calculated by Fourier transform and tabulated to

obtainQ(0).
(3) c1 is calculated by discrete evaluation of(8).
(4) (7) is discretized as a tridiagonal problem and solved forv̄

(1)
β andv̄(1)r .

(5) Q(1) is built in the same way asQ(0) from the inverse derivatives ofv̄(1)β andv̄(1)r .

(6) v̄(2) is calculated by inverting a tridiagonal discretized problem.
(7) The eigenvectorsva andvb are defined using(19) and (20).
(8) ϕa andϕb are calculated by Fourier transform and tabulated.
(9) σ1 andµ1 are calculated according to(25), (31) and (32).

(10) ϕa1 andϕb1 are obtained using(29)and solving a tridiagonal discretized problem.
(11) σ2 is obtained from(25), (26) and (40).

This algorithm admits O(e−sΛ/2) errors, but all the steps generating errors of algebraic order in the asymptotic
expansion are here solved numerically. The implementation has been done as a Mathematica notebook available
from the authors. The number of grid points and Fourier modes has been adjusted as a function ofL andN in order
to provide at least three digits of accuracy in the results. The symmetries have been exploited to distinguish the
solutions and reduce the number of points.
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5.2. Numerical solution of the complete Cahn–Hilliard equation

We have done numerical simulations of the complete Cahn–Hilliardequation (1)for the caseγ = S = 0. For
practical convenience, the spatial period has been kept fixed to 2π by rescalingx asx → px, henceL = 2πp. The
complete Cahn–Hilliard equation then reads

∂tv = λ

p2
∂2
xW

′(v)− λ

p4
∂4
x v − pβ∂−1

x v − rv. (52)

Since Fourier modes are discretized by the periodicity condition, the numbern of unstable modes forv = 0 is the
integer part ofp(2/3)1/2.

5.2.1. Time-dependent simulations
The simulations are performed using a standard semi-spectral method where the number of retained real Fourier

modes is 256. The collocation grid in the spatial domain has 512 points in order to fully remove the aliasing due to
the cubic term in(52). We have checked that using higher resolution does not modify the results within the explored
parameter range. The temporal integration is performed with an Adams–Bashforth second-order scheme. Initial
conditions are a random white noise in the spatial domain. We have made a large number of runs by varying the
initial conditions (changing the seed of the pseudo-random number generator and the amplitude of the noise), the
values ofr andn.

Section 4shows the existence of multiple stable solutions induced byβ and friction but does not provide indications
about the attraction basins of these solutions. In the inverse cascade of the standard Cahn–Hilliard equation, the
interaction of a pair of neighboring kink and antikink scales as exp(−s7x), where7x is the distance between
the kink and the antikink (seeAppendix B). When frictionr is just above the critical valuerc(N) stabilizing the
solution withN pairs, we may conjecture that the stabilizing effect is of the order O((r − rc(N))δx), whereδx
is the departure of a kink from its equilibrium position (this is clear from the shape of the eigenmodesva andvb
(cf. Section 4.1)). This effect, however, cannot extend very far inδx as the attraction to the next antikink grows
as exp(sδx). Moreover, the time-dependent solutions do not need to pass in the vicinity of theN -pair fixed point
during the cascade of kink–antikink annihilations. Therefore, we expect that the fraction of the solutions halting on
theN -pair stable state will be small in the vicinity of the criticalrc and will be significant only when the stabilizing
effect is felt over a distance of orderΛ. Once this is obtained, very few solutions should jump to lowerN states.

Fig. 3 shows how the inverse cascade evolves as a function ofr for the same initial conditions, with the corre-
sponding steady states shown inFig. 4. The final state wavenumber increases withr and stays bounded by the value
of the most unstable eigenmode of the Kolmogorov flowk = (2/3)1/2n which is the unique mode excited whenr
approachesr0. The total energy calculated as the sum of the various energiesE(k) of the single modesk, decreases
as the friction increases.

Fig. 5 compares the halting of the inverse cascade by friction and byβ effect for the same initial conditions. It
is apparent fromFig. 3that friction simply halts the cascade by stabilizing one of the intermediate steps. Here, the
effect of theβ-term is more complex: oscillatory transients are excited and, paradoxically, the cascade is accelerated.
In Fig. 5 the transitions toN = 3 and toN = 2 occur much earlier than in the absence ofβ. Other examples can
be found in[11,18]. In the final state, theβ effect breaks the symmetry between the kinks and the antikinks which
is preserved by friction.

5.2.2. Numerical stability calculations
In order to compare the results from the analytic and numerical perturbation approaches to the direct simulation of

the complete Cahn–Hilliard equation, we have developed a direct analysis of stability by the same technique as for
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Fig. 3. Temporal evolution of the energiesE(k) of the Fourier modes and their sumEtot. The three shown cases, are forr = 0, r = 3 × 106

andr = 105, with β = 0, n = 10 and the same realization of white noise as initial condition. Forr = 0 the inverse cascade is complete to
N = 1; for the other values the cascade stops, respectively, onN = 2 and onN = 3. Note thatEtot is constant between two annihilation events.
Increasingr further enables to stop the cascade on largerN configurations (not shown).

the time-dependent simulations. The core of this analysis is to calculate the Jacobian matrix of the right-hand side of
(52) linearized around a given statev, with respect to each of the Fourier component. This is done by differentiating
(52) and calculating the columns of the Jacobian matrix by the semi-spectral method applied to the differentiated
equations for each Fourier component.

The stability calculation is performed as follows. First an estimate of the stationary solution based onAppendix A
is refined by a Newton–Raphson algorithm which usually converges within a few steps. The degeneracy due to

Fig. 4. The corresponding asymptotic velocity profile for the three cases presented inFig. 3. Note that the kinks–antinkinks pairs are equidistant,
unlike theN = 2 orN = 3 configurations ofFig. 1which are only metastable.
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Fig. 5. Comparison between two temporal evolution ofEtot andE(k), for the same initial conditions and for very similar final solutions with
sameN and final energyEtot � 0.5535. Top:r = 10−5 andβ = 0. Bottom:r = 0 andβ = 9.7 × 10−3.

thex-invariance of the complete Cahn–Hilliard equation is removed by setting to zero the imaginary part of the
dominating Fourier mode and removing the corresponding row and line from the Jacobian matrix. In the caseβ 	= 0,
the solution is stationary in a frame traveling at a velocityc. This phase velocity is treated as an additional unknown
increasing the dimension of the Jacobian matrix by 1. The stability of this numerical solution is then found by
finding the eigenvalues and the eigenmodes of the Jacobian matrix using a standard QR algorithm from LINPACK.
In this procedure, we find both the slow components associated to kink dynamics and the highly damped modes
associated with fast relaxing transients. The conditioning of the eigenvalue problem gets very bad asΛ increases
as a result of the large separation between slow and fast eigenvalues, thus limiting the parameter range for the
numerical calculation of stability. There is enough overlap, though, with the validity domain of the perturbative
theory to provide detailed comparison. The number of Fourier modes used in this analysis has been 128, 256 or
384, depending on the values ofL andN .

5.3. Comparison of stability results

Table 1compares the critical values of friction andβ estimated from the analytic perturbative expansion, the
numerical solution to the perturbation problem and the numerical stability analysis. In the numerical stability analysis
the value of the parameter is adjusted by dichotomy from two values bracketing the transition. There is an excellent
agreement between the three values of critical friction whenΛ is large. At the largest values, however, the QR
algorithm fails to converge and no results are obtained for the numerical stability. WhenΛ is not large, that is when
the kinks are not distant enough to neglect the contribution of O(e−sΛ/2), significant discrepancies occur between
the different estimates. We see from the table that this occurs when e−sΛ/2 � 3 × 10−2.

There is also an excellent agreement betweenβ
pert
c andβnum

c for the same range ofΛ values as forrc. The
analytical prediction(46), however, provides only an order of magnitude and is wrong by at least a factor 2 when the
two other quantities agree by four digits. The reason is that the error in(46)depends algebraically onΛ unlike the
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Table 1
Critical values of friction andβ as a function of the number of unstable modesn (or equivalently the size of the domainL = n(3/2)1/2) and
the wavenumberN of the stationary solutiona

n N e−sΛ/2 ran
c r

pert
c rnum

c βan
c β

pert
c βnum

c

7 2 4× 10−4 6.8478× 10−7 6.8484× 10−7 6.848× 10−7 1.06× 10−4 2.0522× 10−4 2.0523× 10−4

3 6× 10−3 2.7469× 10−4 2.7705× 10−4 2.779× 10−4 5.88× 10−3 1.6329× 10−2 1.6385× 10−2

4 2× 10−2 5.5655× 10−3 5.9149× 10−3 6.147× 10−7 5.58× 10−2 0.216 0.222
5 5× 10−2 3.4908× 10−2 3.9614× 10−2 5.139× 10−2 0.260 1.473 1.379

20 2 2× 10−10 6.8832× 10−20 6.8825× 10−20 NA 3.93× 10−12 4.82× 10−22 NA
3 4× 10−7 4.1846× 10−13 4.1847× 10−13 NA 2.50× 10−8 3.42× 10−8 NA
4 2× 10−5 1.0438× 10−9 1.0439× 10−9 1.009× 10−9 2.41× 10−6 3.780× 10−6 3.716× 10−6

5 1× 10−4 1.1756× 10−7 1.1756× 10−7 1.1751× 10−7 4.23× 10−5 7.782× 10−5 7.782× 10−5

6 6× 10−4 2.8135× 10−6 2.8143× 10−6 2.8144× 10−6 3.13× 10−4 6.858× 10−4 6.858× 10−4

7 2× 10−3 2.7738× 10−5 2.7778× 10−5 2.7795× 10−5 1.40× 10−3 3.706× 10−2 3.710× 10−2

8 4× 10−3 1.5681× 10−4 1.5750× 10−4 1.580× 10−4 4.52× 10−3 1.468× 10−2 1.479× 10−2

9 7× 10−3 6.1103× 10−4 6.1582× 10−4 6.242× 10−4 1.18× 10−2 4.676× 10−2 4.827× 10−2

10 1× 10−2 1.8329× 10−3 1.8416× 10−3 1.921× 10−3 2.68× 10−2 0.124 0.138
11 2× 10−2 4.5418× 10−3 4.4508× 10−3 4.965× 10−3 5.24× 10−2 0.287 0.373
12 2× 10−2 9.7452× 10−3 8.9096× 10−3 1.135× 10−2 9.58× 10−2 0.551 1.01
13 3× 10−2 1.8708× 10−2 1.4927× 10−2 2.392× 10−2 0.164 0.951 2.11

a The columnsran
c andβan

c show the analytical predictions given by(39) and (46)for m = 1. The columnsrpert
c andβpert

c show the critical
values obtained by numerically solving the perturbation problem as indicated inSection 5.1, again form = 1. The columnsrnum

c andβnum
c show

the critical values obtained from the direct numerical stability study of the complete Cahn–Hilliard equation, as indicated inSection 5.2.2.

error in(39)where the error exhibits an exponential dependence. Very large values ofΛ are required to make(46):
for n = 200 andN = 5, we obtainβpert

c = 2.24× 10−42 andβnum
c = 2.35× 10−42, while forN = 2 we obtain

β
pert
c = 1.842× 10−101 andβnum

c = 1.808× 10−101. This difficulty with β is entirely due to the need to solve
completely the perturbation at order 1. The phase speedc1 and the frequencyµ1, which are obtained as solvability
conditions at order 1, are known with the same accuracy asrc, as can be checked inTable 2.

5.4. Comparison of stability properties and time-dependent solutions

In order to assess the distribution of final states among the multiple stable steady states we have performed
ensemble simulations for a number of values ofr andβ. Each numerical integration of the time-dependent numerical
model described inSection 5.2.1is characterized byn, r, β and the initial condition. We choose for this a white
noise with amplitudeA in the spatial domain. For each value of the parameters and for two values of the amplitude,
A = 0.1 andA = 1.0, we performed an ensemble of 100 independent simulations by varying the seed of the random
number generator. After some time, all simulations converge to a final stationary or uniformly traveling state (if
β = 0 or β 	= 0, respectively). The nonconvergent cases are due to fast transients leading to nonlinear numerical
instabilities.

Table 3shows the dependence onr whenβ = 0 andn = 20. The distribution of final states agree qualitatively
with the analysis presented inSection 5.2.1. Stationary states associated to given value ofN are only reached for
r larger than the critical valuerc(N). The proportion of solutions reaching these stationary states is about 15% for
A = 0.1 and 10% forA = 1.0 whenr/rc(N) ≈ 3. This proportion grows rapidly asr increases further while the
number of states reaching solutions with smallerN falls dramatically. In practice, it is difficult to find values of
r where more than three steady states are obtained. It is also visible that larger amplitude of the initial conditions
favor smaller finalN and more dispersion of the final states.
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Table 2
Values of the phase speed of the basic solution and the frequency of them = 1 mode as a function ofn andNa

n N can
1 /β c

pert
1 /β cnum/β µan

1 /β µ
pert
1 /β µnum/β

7 2 −17.6492 −17.6492 −17.649 −6.01296 −6.01298 −6.0127
3 −8.05199 −8.0485 −8.0486 −2.21915 −2.22148 −2.222
4 −4.61026 −4.57267 −4.5730 −1.16117 −1.18408 −1.1876
5 −3.11049 −2.93650 −2.9368 −0.63701 −0.73943 −0.74685

20 2 −133.043 −133.043 −133.04 −16.4572 −16.4571 NA
3 −60.8209 −60.8209 −60.821 −5.86179 −5.86179 NA
4 −35.0024 −35.0024 −35.002 −3.08063 −3.08063 −3.0806
5 −22.8122 −22.8122 −22.812 −1.92726 −1.92726 −1.9273
6 −16.0670 −16.0669 −16.067 −1.33119 −1.33123 −1.3312
7 −11.9316 −11.9310 −11.931 −0.979702 −0.979894 −0.97994
8 −9.20895 −9.20716 −9.2074 −0.753012 −0.753716 −0.75386
9 −7.32184 −7.31636 −7.3170 −0.596714 −0.59863 −0.59900

10 −5.96367 −5.95021 −5.9514 −0.482911 −0.487182 −0.48791
11 −4.95971 −4.93139 −4.9335 −0.395862 −0.404176 −0.40547
12 −4.20511 −4.15177 −5.1550 −0.325842 −0.340601 −0.34263
13 −3.63500 −3.54226 −3.5452 −0.266160 −0.290808 −0.2927

a The columnsc1an/β andµan
1 /β show the analytical predictions given by(8) and (37). The columnscpert

1 /β andµpert
1 /β show the values

obtained by numerically solving the eigenvalue problem.µan
1 andµpert

1 are calculated form = 1. The columnscnum/β andµnum/β show
the values obtained from the direct numerical stability study of the complete Cahn–Hilliard equation near the critical value ofβ. µnum is the
frequency of the critical mode.

Table 4shows the corresponding results as a function ofβ whenr = 0. They are qualitatively similar to the
precedings although up to seven different final states are now observed forβ = 1.

5.5. Attracting solutions and Lyapunov functional

In the presence of friction, the Lyapunov functional is

F =
∫ L

0

(
r

2
ψ2 + λ

2
(∂xv)

2 + λW(v)
)

dx, (53)

where we have setγ = S = 0 for simplicity. By using the same approximations as inSection 3, we obtain

F = Γ 2L

{
r

(
Λ2

96
+ 11/12π − 1

4s2
+ ζ(3)

4Λs2

)
+ 8λs

Λ
− λs

2

2

}
. (54)

Manfroi and Young[5] observed that minimizingF with respect toΛ yields r ∼ Λ−3
min and suggested that final

steady states should satisfy this scaling in the presence of friction. From(54), we have

Λmin =
(

128s

r
+ 12ζ(3)

s3

)1/3

. (55)

It is easy to check that this wavelength is always larger than the critical value provided by the stability condition
(39). In a finite domain, it is necessary to find the minimum ofF over the discrete set of the steady states. We
have performed this calculation forn = 20 and all the values of friction inTable 3. Both (54) and the numerical
calculation ofF from the steady state calculated inSection 5.2.2with (53) provide the same wavenumberNm
minimizingF . This wavenumber is indicated inTable 3to be compared with the criticalN bounding the stability
domain and the distribution of final steady states. It is clear that the solutions initialized with a white noise do not
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Table 3
Distribution of solutions as a function ofN for n = 20,β = 0 and increasing values ofra

rc r Nm N A = 0.1 A = 1.0

2.81× 10−6 6
10−5 1 4 4% 19%

5 81% 71%
6 15% 10%

1.78× 10−5 1 4 1% 8%
5 57% 69%
6 42% 23%

2.78× 10−5 7
3.16× 10−5 1 4 0% 1%

5 44% 52%
6 56% 41%

5.62× 10−5 1 5 23% 30%
6 74% 67%
7 3% 3%

10−4 1 5 9% 16%
6 76% 75%
7 15% 9%

1.57× 10−4 8
1.78× 10−4 2 5 1% 2%

6 50% 65%
7 49% 33%

3.16× 10−4 2 6 18% 34%
7 75% 64%
8 7% 2%

5.62× 10−4 2 6 1% 19%
7 63% 62%
8 36% 2%

6.16× 10−4 9
10−3 3 6 0% 6%

7 29% 40%
8 69% 54%
9 2% 0%

1.78× 10−3 3 7 1% 20%
8 74% 71%
9 25% 9%

1.84× 10−3 10
3.16× 10−3 4 7 0% 3%

8 26% 57%
9 68% 69%

10 6%
4.45× 10−3 11

5.62× 10−3 5 8 2% 20%
9 66% 70%

10 32% 10%
8.90× 10−3 12

10−2 6 8 0% 3%
9 20% 51%

10 66% 45%
11 14% 1%

1.49× 10−2 13
1.78× 10−2 7 9 1% 9%

10 33% 59%
11 62% 32%
12 4% 0%

3.16× 10−2 8 10 3% 17%
11 48% 59%
12 48% 23%
13 1% 1%

a The statistics is calculated out of an ensemble of 100 cases for each value ofr andA. The cases are obtained by varying the seed of the random generator. The fifth and
the sixth columns show the percentages of solutions ending on the stableN -pair solutions withN in the fourth column. The first column gives the critical linear stabilityrc as
a function ofN (same line in the fourth column), provided by the numerical solution to the perturbative problem (seeSection 3). The third column gives for each value ofr
the steady state wavenumber with the minimum value of the Lyapunov functional.
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Table 4
Same asTable 3but for the distribution of solutions as a function ofN for n = 20,r = 0 and increasing values ofβ

βc β N A = 0.1 A = 1.

7.78× 10−5 5
10−4 3 12% 13%

4 85% 87%
5 3% 0%

6.86× 10−4 6
10−3 4 17% 36%

5 82% 63%
6 1% 1%

3.71× 10−3 7
10−2 5 0% 2%

6 74% 68%
7 26% 30%

1.47× 10−2 8
4.68× 10−2 9

0.1 7 2% 10%
8 56% 78%
9 42% 12%

0.124 10
0.288 11
0.551 12

1.0 7 0% 1%
8 0% 2%
9 0% 17%

10 16% 26%
11 65% 46%
12 18% 8%
13 1% 0%

reachNm but cluster over a few wavenumbers near the criticalN as described inSection 5.4. This suggest that the
attraction basin of the most stable solution is indeed very small in the phase-space of the solutions.

6. Summary and conclusion

We have investigated the stabilization induced by friction andβ effect in the inverse cascade of the large-scale insta-
bility of the Kolmogorov flow. This problem has been treated by solving the unidimensional complete Cahn–Hilliard
equation using both numerical simulations and perturbation techniques.

In the standard Cahn–Hilliard equation, the kinks and antikinks are coupled by interactions decreasing expo-
nentially as a function of their separation. The number of kinks decreases with time and their average separation
increases as a result of the inverse cascade. Therefore the Cahn–Hilliard coupling also decreases with time.

The basic effect of friction is to damp uniformly the motion of the kinks and antikinks. Nonlinear effects due to
the deformation of the kinks tend to reduce this damping but cannot invert it. When the separation is large enough,
the damping overcomes the destabilizing Cahn–Hilliard coupling halting the inverse cascade before it reaches the
gravest mode. The dependence of the critical frictionrc upon the kink separationΛ/2 scales asrc ∼ (e−sΛ/Λ). The
perturbative approach yields a very accurate analytical expression ofrc because the leading contribution torc esΛ,
which is algebraic inΛ, can be obtained exactly leaving out only terms which are exponentially small inΛ.

Stabilization byβ-effect is more complex. It does not contribute to the linearization of Cahn–Hilliard equation
around a steady state and appears only at the second order of the perturbative expansion inβ. As the first-order step
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of the perturbation expansion is only solved for the leading contribution in a 1/Λ expansion, the analytic expression
of the criticalβc is fairly inaccurate when compared to numerical solution of the perturbative problem or to direct
stability calculations. Its scalingβc ∼ (e−sΛ/Λ5)1/2 is, however, correctly predicted.

The presence of a finite radius of deformation 1/S slows down the fastest Rossby waves and provides less efficient
stabilization by theβ effect. The criticalβc then scales asβc ∼ (eS4−sΛ/Λ)1/2.

In the presence of mean advection, as in Ref.[5], the eastward jets are narrow and strong while the westward jets
are broad and slow. The critical value of friction is reduced (see(D.6)) and scales asrc ∼ (e−sΛ(1−γ /Γ )/Λ).

Stabilization is demonstrated near the modified steady states of the Cahn–Hilliard equation. The attraction basin
of these steady states depends on the stability of time-dependent solutions and has been investigated numerically.
The results suggest a fairly simple pattern where, for most values of the parameters, the phase-space is filled by the
attraction basins of only two or three stationary solutions. The boundary of these basins might be very complicated,
even fractal. The most attracting solution has a wavenumber smaller than the critical wavenumber by one to two
units and larger than the wavenumber corresponding to the minimum of the Lyapunov functional (when this is
defined later). It is quite possible that the addition of external stochastic forcing to the dynamics would help the
solutions to jump over the barriers between the different attraction basins and reach the minimum of the Lyapunov
functional. This has not yet been investigated.

We have observed in the numerical simulations of the pure Cahn–Hilliard equation that the inverse cascade does
not always begin by the most unstable stateN = km; however it is in principle always possible to stop the cascade at
such a state by enhancing the friction. The same is not true forβ, which is not always able to stop the cascade at the
scale corresponding to the most unstable state. As already noticed,β dispersive effect is more complex than friction
effect. While the inverse cascade prior to the halting by friction does not differ from the pure Cahn–Hilliard case,
theβ effect is generally accelerating the cascade before halting. We speculate that this is due to the propagation of
fast Rossby waves superimposed to the kinks and increasing their coupling.

The scaling of the criticalβc also differs from the scalingβc ∼ Λ−3 which would arise from standard phe-
nomenology[1] by balancing the nonlinear and the dispersive term in(1). The reason lies in the suppression of
nonlinearities in the slow manifold for solutions of the complete Cahn–Hilliard equation once the initial transients
have been dissipated. In more realistic two-dimensional or quasigeostrophic flows, the presence of strong dominat-
ing jets and/or coherent eddies is similarly inducing a reduction of nonlinearities with respect to a plain dimensional
estimate. This is why the prediction of ak−3 energy spectra[19] is usually not observed in forced two-dimensional
flows [20] with the possible exceptions of the smallest quasi-passive scales of the motion.
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Appendix A. Approximate solution of the Cahn–Hilliard equation

The stationary form of the Cahn–Hilliard equation∂2
x v − U ′(v) = 0 can be recasted as

∂xU = 1
2∂x(∂xv)

2 (A.1)

from which the solution is obtained by quadrature. By integrating(A.1) once, we obtain

U = 1
2(∂xv)

2 − C, (A.2)



B. Legras, B. Villone / Physica D 175 (2003) 139–166 159

whereC is a constant which determines the value of∂xv on the kinks and the periodicity of the solution. For the
single-kink solution(5), we haveC = (1/2)s2Γ 2 and the asymptotic value ofU is −C. Let us now assume

C = 1
2s

2Γ 2(1 − µ),
whereµ is assumed a small perturbation and try a solution under the form

v = Γ tanhsx+ µṽ. (A.3)

By replacing in(A.2) and expanding, we obtain, at first order inµ:

2∂xṽ = −4sṽ tanhsx− Γ s cosh2sx. (A.4)

This equation can be solved as

ṽ = − Γ
16

(
(3 + cosh2sx) tanhsx+ 3sx

cosh2sx

)
, (A.5)

where the conditioñv(0) = 0 has been used. We can relateµ to the period of the solution by using∂xv = 0 for
x = Λ/4, leading to

µ

{
1

8
sΓ

(
tanh2sx(3 + 2 cosh2sx)+ 3s tanhsx

cosh2sx

)
− 1

2
Γ s cosh2sx

}
+ s sΓ

cosh2sx
= 0. (A.6)

WhenΛ is large the main contribution is

µ = 64 e−sΛ. (A.7)

Comparison with numerical solutions of(1) shows that(A.3) with (A.5) and (A.7)approximates periodic stationary
to less than 0.2% forΛ > 10. One can build a solution over the whole domain by using(A.3) over contiguous
intervals containing a kink matched at mid-distance between adjacent kinks. The approximate solution is continuous
and the discontinuity of its derivative at matching points is O(exp(−s|xAK −xK |))where|xAK −xK | is the distance
between adjacent kinks.

Appendix B. Kink motion in the Cahn–Hilliard equation

This Section is adapted from Kawasaki and Ohta[12] and corrects one error found in that paper.
We assume that the solution is a combination of kinks which are individually described by(5). As ∂2

xM/(x) and
W ′(M/) decay rapidly away fromx = x/, the solution in the vicinity of thej th kink is the sum ofMj(x) and small
contributions from adjacent kinks which are the small deviations from their asymptotic values. We write

v(x, t) = Mj(x)+ ṽj (x, t), (B.1)

whereṽj is small in the vicinity of thej th kink, but takes finite value at large distance. A valid expression in the
vicinity of neighboring kinks is

ṽj (x, t) =
∑
/<j

(M/(x)−M/(+∞))+
∑
/>j

(M/(x)−M/(−∞)), (B.2)

whereM/(+∞) andM/(−∞) are the asymptotic values at infinity for the basic kink profile. Here we assume that
kinks and antikinks alternate (i.e.εj εj+1 = −1), and that they are numbered from 0 to 2N − 1 within the periodic
interval [0, L]. The time dependence is entirely contained within the positions of the kinks{xj (t)}.
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The temporal evolution of the solution is then given by

∂tv(x, t) = −
2N−1∑
/=0

ẋ/(t)∂xM/(x), (B.3)

wherev(x, t) is governed by

−1

λ
∂−2
x ∂tv = ∂2

x v −W ′(v)+ h(t). (B.4)

The functionh(t) arises from the integration inx. The other terms arising from the integration vanish owing to the
periodicity inx.

In order to estimate the motion of thej th kink, we useM ′
j as a test function by multiplying(B.4) and integrating

over the domain. Then we obtain∫ L
0

1

λ

2N−1∑
/=0

ẋ/∂xMj∂
−1
x M/ dx

︸ ︷︷ ︸
A

=
∫ L

0
(∂2
x v −W ′(v))∂xMj dx︸ ︷︷ ︸

B

+
∫ L

0
h∂xMj dx︸ ︷︷ ︸
C

. (B.5)

ContributionA can be written as

A = −1

λ

2N−1∑
/=0

ẋ/

∫ L
0

∫ L
0
∂xMj (x)G2(x − x′)∂xM/(x′)dx dx′, (B.6)

whereG2 is the Green function solution of

−∂2
xG2(x) = δ(x).

∂xMj and∂xM/ are two well separated functions which contribute to the integral in(B.6), respectively, in the
close vicinity ofxj andx/. By expandingG2(x − x′) nearG2(xj − x/) and summing local contributions using∫
(x − xj )2∂xMj dx = (−1)jπ2Γ/6s2 and

∫∫ |x − x′|∂xMj∂xM/ dx dx′ = 4Γ 2/s, we obtain

A = −4Γ 2

λ

2N−1∑
/=0

ẋ/

(
(−1)j−/G2(xj − x/)+ (−1)j−/

π2

12Ls2
− 1

2s
δj−/

)
. (B.7)

Using the expression forG2 within the interval [0, L], one obtains

A = −2LΓ 2

λ

2N−1∑
/=0

(−1)j−/ẋ/

(
((xj − x/)[L])2

L2
− (xj − x/)[L]

L
+ 1

6
+ π2

24L2s2
− 1

4Ls
(−1)j−/δj−/

)
.

(B.8)

ContributionB is expanded using

W ′(v) = W ′(Mj )+W ′′(Mj )ṽj +W ′
NL(Mj , ṽj ). (B.9)

Like ṽj ,W ′
NL is small in the vicinity of thej th kink but finite at large distance. We have

B = −
∫ L
O

W ′
NL∂xMj dx +

∫ L
O

(∂2
xMj −W ′(Mj ))∂xMj dx +

∫ L
O

(∂2
x ṽj −W ′′(Mj )ṽj )∂xMj dx. (B.10)
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The second integral in(B.10) vanishes and the third one vanishes also after integration of its first term by part.
Therefore, we are left with

B = −
∫ L
O

W ′
NL∂xMj dx. (B.11)

Using(2) we find

W ′
NL = 2s2

Γ 2
ṽ2
j (3Mj + ṽj ).

In the vicinity ofxj , ṽj is of the order of the tails ofMj+1(xj )−Mj+1(−∞) andMj−1(xj )−Mj−1(∞), that is
O(max(e−2s(xj+1−xj ),e−2s(xj−xj−1))). In the vicinity ofxj+1 andxj−1, ṽj is O(1) while ∂xMj is O(e−2s(xj+1−xj ))
and O(e−2s(xj−xj−1)). Therefore, the two main contributions toB in (B.11) arise from the vicinities ofxj+1 and
xj−1. In the vicinity ofxj+1 we use

ṽj = Mj+1 + εj+1Γ

so that

ṽ2
j (3Mj + ṽj ) = εjΓ 3(2 − tanhs(x − xj+1))(1 + tanhs(x − xj+1))

2.

Using also

∂xMj = 4sεjΓ e−2s(x−xj )

and replacing in(B.11)with similar contributions from the vicinity ofxj−1, we obtain

B = −32s2Γ 2(e−2s(xj+1−xj ) − e−2s(xj−xj−1)). (B.12)

Finally, contributionC gives

C = 2εjΓ h(t). (B.13)

Summarizing the results, one gets

2LΓ 2

λ

2N−1∑
/=0

(−1)j−/
(
((xj − x/)[L])2

L2
− (xj − x/)[L]

L
+ 1

6
+ π2

24L2s2
− 1

4Ls
(−1)j−/δj−/

)
ẋ/

= 32s2Γ 2(e−2s(xj+1−xj ) − e−2s(xj−xj−1))− 2εjΓ h(t). (B.14)

Eq. (B.14)shows that two neighboring kink and antikink attracts themselves. A stationary solution is obtained when
B vanishes for all values ofj . This condition is satisfied if the kinks and antikinks are equispaced over the interval
[0, L]. Then,h(t) = 0.

Eq. (B.14)can be used to determine the motion of the kinks far from the equilibrium, under the condition that
the kinks and antikinks remain far enough to satisfy the approximations of the above calculation.

The calculation of Kawasaki and Ohta[12] slightly differs from our own and is limited to the leading order. They
fail to take into account the exponential variation ofṽj nearxj+1 andxj−1. Therefore, their result for the leading
order ofB contains an error, being too small by a factor of 2.
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Appendix C. Green function in the periodic domain and calculations of coupling coefficient

Within the periodic domain [0, L], theδ function is made periodic by adding a constant value−1/L everywhere
but at the origin. One can also use

δ(x) = 1

L

∑
n	=0

exp

(
i
2πn

L
x

)
.

The solution to

∂nxGn(x) = −δ(x)
is

Gn(x) = Ln−1gn

( x
L

)
,

where

g1(x)= [1] − 1
2, g2(x) = 1

2((x[1])2 − x[1] + 1
6), g3(x) = 1

4(
2
3(x[1])3 − (x[1])2 + 1

3x[1]),

g4(x)= 1
24((x[1])4 − 2(x[1])3 + (x[1])2 − 1

30), g5(x) = 1
720(6(x[1])5 − 15(x[1])4 + 10(x[1])3 − x[1]),

g6(x)= 1
720((x[1])6 − 3(x[1])5 + 5

2(x[1])4 − 1
2(x[1])2 + 1

42).

wherex[1] meansx modulo 1.
The calculation of the perturbed motion requires to calculate the Fourier transform

Ĝn(m) ≡
2N−1∑
j=0

(−1)jGn

(
jΛ

2

)
e−iπ(jm/N),

which can be written as a function of

sm(p) ≡
2N−1∑
j=0

(−1)j
(
j

2N

)p
e−iπ(jm/N).

Form 	= N , sm(p) can be calculated using the following relations:

P(z, x, J, p) ≡
J−1∑
j=0

jpzjx =
(

1

ln z

)p
∂
p
x

J−1∑
j=0

zjx, sm(p) =
(

1

2N

)p
P (−e−i(πm/N),1,2N,p).

We get

sm(0) = 0, sm(1) = − 1

1 + a , sm(2) = − 1

1 + a + a

N(1 + a)2 ,

sm(3) = − 1

1 + a + 3a

2N(1 + a)2 + 3a(1 − a)
4N2(1 + a)3 ,

sm(4) = − 1

1 + a + 2a

N(1 + a)2 + 3a(1 − a)
2N2(1 + a)3 + a(1 − 4a + a2)

2N3(1 + a)4 ,

sm(5) = · · · + 5a(1 − 11a + 11a2 − a3)

16N4(1 + a)5 , sm(6) = · · · + 3a(1 − 26a + 66a2 − 26a3 + a4)

16N5(1 + a)6 ,
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wherea = exp(−iθm) with θm = πm/N . We also have

sN(0) = 2N, sN(1) = N − 1

2
, sN (2) = 1

12N
(2N − 1)(4N − 1), sN(3) = 1

8N
(2N − 1)2,

sN (4) = 1

240N3
(2N − 1)(4N − 1)(12N2 − 6N − 1), sN(5) = 1

96N3
(2N − 1)2(8N2 − 4N − 1),

sN(6) = 1

1344N5
(2N − 1)(4N − 1)(48N4 − 48N3 + 6N + 1).

Using these relations, the Fourier transforms are readily calculated. Form 	= N , we have

Ĝ1(m) = sm(1)− 1
2sm(0)+ 1

2 = −1
2 it, (C.1)

Ĝ2(m) = 1
2L(sm(2)− sm(1)+ 1

6sm(0)) = 1
8Λ(1 + t2), (C.2)

Ĝ3(m) = 1
4L

2(2
3sm(3)− sm(2)+ 1

3sm(1)) = i 1
32Λ

2t (1 + t2) (C.3)

with t = tanπm/2N . Since the Fourier transform̂Gn scales asΛn−1, it depends only on the O(1/Nn−1) term in
sm(n). Therefore, the higher order transforms are, form < N :

Ĝ4(m) = − 1
384Λ

3(1 + t2)(1 + 3t2), (C.4)

Ĝ5(m) = −i
Λ4

1536
t (1 + t2)(2 + 3t2), (C.5)

Ĝ6(m) = Λ5

30,720
(1 + t2)(2 + 15t2 + 15t4). (C.6)

Using this formalism, it is possible to calculate〈va, ∂−nx va〉 for evenn as

〈va, ∂−nx va〉 = − 1

L

∫ L
0

∫ L
0
va(x)Gn(x − x′)va(x′)dx dx′

= − 1

L

2N−1∑
j=0

2N−1∑
l=0

cosjθm coslθm

∫ L
0

∫ L
0
∂xMj (x)∂xMl(x

′)Gn(x − x′)dx dx′. (C.7)

This integral contains two types of contributions. Type I arises from the interaction of distant kinks and type II is a
local correction arising from the autocoupling of a given kink and taking into account the discontinuity ofGn(x) or
its derivatives inx = 0. At first, we consider only the type I contribution for whichGn(x − x′) can be developed as
a Taylor series aroundxj − xl in order to separate the double integration in two independent integrations around
the kinks

Gn(x − x′)= Gn(1
2(j − l)Λ)+ Gn−1(

1
2(j − l)Λ)((x − xj )− (x′ − xl))

+ 1
2Gn−2(

1
2(j − l)Λ)((x − xj )− (x′ − xl))2 + · · · .

Now we replace in(C.7)and calculate the local contributions using∫
∂xMj dx = 2Γ (−1)j ,

∫
(x − xj )∂xMj dx = 0,

∫
(x − xj )2∂xMj dx = π

2Γ

6s2
(−1)j .



164 B. Legras, B. Villone / Physica D 175 (2003) 139–166

We also expand the trigonometric factor and find that the only nonvanishing contribution depends onj − l. After
relabeling, we obtain

〈va, ∂−nx va〉I = −4Γ 2

Λ

2N−1∑
j=0

cos
πmj

N
(−1)jGn

(
jΛ

2

)
− π

2Γ 2

3s2Λ

2N−1∑
j=0

cos
πmj

N
(−1)jGn−2

(
jΛ

2

)
,

i.e.:

〈va, ∂−nx va〉I = −4Γ 2

Λ
Ĝn(m)− π

2Γ 2

3s2Λ
Ĝn−2(m)+ O(Λn−6) (C.8)

for evenn. A similar relation is obtained for oddn:

〈va, ∂−nx vb〉I = −4Γ 2

Λ

1

i
Ĝn(m)− π

2Γ 2

3s2Λ

1

i
Ĝn−2(m)+ O(Λn−6). (C.9)

The local type-II contributions must be examined case by case. Forn = 2, G2(x) is continuous inx = 0 but its
derivative is not. Nearx = 0, we have

G2(x) = L
2

(
1

6
−
∣∣∣ x
L

∣∣∣+ x2

L2

)
.

The two terms(1/6)+ (x2/L2) are taken into account in type-I contribution. The complementary contribution is

〈va, ∂−2
x va〉II = 1

2Λ

∫∫
∂xM(x)∂xM(x

′)|x − x′| dx dx′.

After a bit of algebra, we obtain

〈va, ∂−2
x va〉II = 2Γ 2

Λs

and finally

〈va, ∂−2
x va〉 = −Γ

2

2
(1 + t2)+ 2Γ 2

Λs
. (C.10)

Forn = 4,G4(x) has a discontinuity on its third derivative inx = 0. It brings an O(1/Λ) correction in〈va, ∂−4
x va〉,

which is of higher order than the terms in(C.9).
For odd orders, includingn = 1, the sine factor cancels the type-II contribution. Notice that forn = 1,G1(x) is

discontinuous inx = 0. We have arbitrarily assumed thatG1(0) = 0 in (C.7) but this is not important since only
the imaginary part of̂G1(m) is used in the sine transform.

Some other quantities may need to be calculated, of the type〈fva, ∂−nx va〉 wheren is odd andf is a period-Λ
nonlocalized function which is odd over the kinks. In this case, the nonvanishing contributions are those arising
from the odd derivatives ofGn. At leading order, we obtain

〈fva, ∂−nx va〉 = −2Γ

Λ
Ĝn−1(m)

∫
xf(x)∂xM(x)dx + · · · . (C.11)

The same expression holds whenva is replaced byvb. The casen = 1 is special, we have

〈fva, ∂−1
x va〉 = 1

2Λ

∫
f (x)∂xM

2(x)dx.
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Appendix D. The effect of mean advection

The caseγ 	= 0 has been studied numerically and near the linear limitr0 (seeSection 4.1) in Ref.[5]. It is possible
to study the stability properties of steady solutions for smallr in the same way as forγ = 0 but this is to the price
of a considerable increase of complexity in the algebra. It is beyond the scope of this manuscript to describe the
details of these cumbersome calculations. We provide here the results without demonstration.

Whenγ 	= 0, the equilibrium positions of the kinks and antikinks are given by

x2p = pΛ− 1
4∆, x2p+1 = (2p + 1)1

2Λ+ 1
4∆,

where∆ is related toγ by

16Γ e−s∆ sinhs∆ = −∆Γ
Λ

+ γ. (D.1)

We define alsod = ∆/Λ.
Similarly toSection 4.1, it is convenient to expand the displacements of the kinks with respect to the equilibrium

in terms of Fourier components. One has now to separate the kinks and antikinks as

δx2p =
N−1∑
m=0

ψ−
meiπ(2mp/N), δx2p+1 =

N−1∑
m=0

ψ+
meiπ((2p+1)m/N).

By combining these components into

Φm = 1√
2

(
1 1

e−iθm eiθm

)(
ψ−
m

ψ+
m

)
,

we obtain

Φ̇m = A sin2θm

Em

(
1 − C coshs∆−Qm 0

0 1− C coshs∆+Qm

)
Φm (D.2)

with

A= 128λe−sΛ

(1 − d2)Λ
D, Em = 1 − 4

sΛ(1 − d2)
+ 4 sin2θm

s2Λ2(1 − d2)
, B = d coshs∆− sinhs∆

D
,

C= 2

sΛD
, D = coshs∆− d sinhs∆, Qm = (B+ 2C sinhs∆+ 1

2C
2( cosh 2s∆+ cos 2θm))

1/2.

This result generalizes(18).
Now, the stabilization effect by friction is still given at first order of the perturbative expansion for smallr. We

first need to define

ρm = 2(B cos2θm +Qm sin2θm)
1/2

cosφ1m = 2

ρm
(B cosθm), sinφ1m = 2

ρm
(Qm sinθm), cosφ2m = 2

ρm
(B+ C sinhs∆ sin2θm),

sinφ2m = − 1

ρm
(C sin 2θm coshs∆).
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The stabilization effect is

σ1 = −r + r sin2θm

2

(
1 − d2 − 4

sΛ

)

×
(

1 + d sinθm sin(φ2m − φ1m)− cosθm cos(φ2m − φ1m)− 2 sin2θm

sΛ

)−1

. (D.3)

These results have been checked numerically with the same accuracy as those presented forγ = 0.
In the case of largeΛ and whend is not small, that is when the asymmetry is strong, we can neglect all terms

O(e−s∆) in front of terms which are O(1) or larger.Eqs. (D.2) and (D.3)then simplify considerably. We obtain

Φ̇m = 128s3λe−s(Λ−∆)

(1 + d)EmΛ
(
((1 − d)sΛ)−1 0

0 1

)
Φm (D.4)

and

σ1 = −r + r
2

(
(1 − d2)− 4

sΛ

)(
1 + d − 2

sΛ

)−1

. (D.5)

As a consequence, the critical value for friction is, at leading order:

rc = 256s3λe−s(Λ−∆)

(1 + d)2Λ . (D.6)

Notice that this relation is not valid for smalld and does not match(39) for d = ∆ = 0.
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