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ABSTRACT

The EOLE experiment is revisited to study turbulent processes in the lower stratosphere circulation from a
Lagrangian viewpoint and to resolve a discrepancy on the slope of the atmospheric energy spectrum between
the work of Morel and Larchevêque and recent studies using aircraft data. Relative dispersion of balloon pairs
is studied by calculating the finite-scale Lyapunov exponent, an exit-time-based technique that is particularly
efficient in cases in which processes with different spatial scales are interfering. The main goal is to reconciliate
the EOLE dataset with recent studies supporting a k25/3 energy spectrum in the 100–1000-km range. The results
also show exponential separation at smaller scales, with a characteristic time of order 1 day, and agree with the
standard diffusion of about 107 m2 s21 at large scales. A remaining question is the origin of a k25/3 spectrum in
the mesoscale range between 100 and 1000 km.

1. Introduction

The EOLE project (Morel and Bandeen 1973) con-
sisted of the release of 483 constant-volume pressurized
balloons, in the Southern Hemisphere midlatitudes
throughout the period September 1971–March 1972, at
approximately 200 hPa. The lifetime of these balloons
was from a few days to about 1 yr, with an average
value of about 120 days. Their motion was basically
isopycnal except for small diurnal volume variations of
the envelop of less than 1% and inertial oscillations of
a few meters in the vertical, excited by wind shear and
small-scale turbulence. The position of the balloons and
meteorological parameters were periodically transmitted
to satellite by the ARGOS system. The trajectories of
the EOLE experiment still provide nowadays the most
extensive dataset of experimental quasi-Lagrangian
tracers in the atmosphere for observing the properties
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of the medium to large-scale motion at the tropopause
level.

Both Eulerian and Lagrangian analyses have been
performed by several authors. Morel and Desbois (1974)
deduced the mean circulation around 200 hPa from the
balloon flights, as formed by a midlatitude zonal stream
with a meridional profile characterized by a typical ve-
locity ;30 m s21 inside the jet, overlaid to meridional
velocity field disturbances of much smaller intensity,
;1 m s21, and to residual standing waves acting as
spatial perturbations of the zonal velocity pattern, pro-
ducing the typical shape of a meandering jet. These
results have been largely confirmed by operational anal-
ysis since then.

Morel and Larchevêque (1974, hereafter ML) inves-
tigated the synoptic-scale turbulent properties. They
measured the mean-square relative velocity and the rel-
ative diffusivity of balloon pairs, and found essentially
two major regimes for Lagrangian dispersion: exponen-
tial separation for time delays less than 6 days, and
standard diffusion for longer times. These authors ob-
served that the scaling of the relative diffusivity with
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the separation length between two balloons agreed with
a direct 2D turbulent cascade, with energy spectrum
E(k) ; k23, or steeper, in the range 100–1000 km, while
the same could not be said for the mean-square relative
velocity, which was found to be inconsistent with the
relative diffusivity.

Further Eulerian analyses of large-scale velocity spec-
tra by Desbois (1975) were compatible with the scenario
proposed by Morel and Larchevêque (1974) about iso-
tropic and homogeneous 2D turbulence with a k23 en-
ergy distribution up to scales ;1000 km. Other results
about the relative dispersion of stratospheric balloons
come from the analysis of the Tropical Wind, Energy
Conversion and Reference Level Experiment (TWERLE)
dataset (see Er-El and Peskin 1981), where they also
found exponential separation below 1000 km, even
though at a different level (150 mb) and with noisier
statistics with respect to the EOLE data.

Later, other authors reached for different conclusions
after observing energy spectra in the low stratosphere,
measured from experimental data recorded from com-
mercial aircraft flights (Gage 1979; Lilly 1983; Nastrom
and Gage 1985). Their picture suggested a 2D turbulent
inverse cascade, characterized by the E(k) ; k25/3 spec-
trum, inside the interval of scales 100–1000 km.

More recently, velocity spectra obtained from data
recorded during the Measurement of Ozone from Airbus
in Service Aircraft (MOZAIC) program were found in
agreement with the k25/3 scenario (see Lindborg and Cho
2000, 2001; Cho and Lindborg 2001). These authors
suggested a dynamical mechanism different from 2D
inverse cascade where energy is injected in the large
scales by breaking gravity waves (see Bacmeister et al.
1996 for a discussion on gravity wave spectra) and gen-
erates a chain process down to smaller scales. Their
hypothesis is supported by the observation of a down-
scale energy flux, whereas a 2D inverse cascade should
exhibit upscale energy flux (Lindborg and Cho 2000).

We wanted to reconsider this issue by performing a
new analysis of the relative dispersion properties of the
EOLE balloons within the framework of a dynamical
system theory. Relative dispersion properties are ana-
lyzed through the computation of the finite-scale Lya-
punov exponent (FSLE; Aurell et al. 1997; Artale et al.
1997; Boffetta et al. 2000a). The FSLE is based on the
growth rate statistics of the distance between trajectories
at a fixed scale, and is a better tool to analyze scale-
dependent properties than plain dispersion, as explained
below. This new method has been already exploited for
studies of relative dispersion in atmospheric and oceanic
systems (Lacorata et al. 2001; Joseph and Legras 2002;
Boffetta et al. 2001; LaCasce and Ohlmann 2003; Gioia
et al. 2004) and also in laboratory convection experi-
ments (Boffetta et al. 2000b).

This paper is organized as follows: in section 2 we
describe the FSLE methodology; section 3 contains the
results obtained from our analysis of the EOLE exper-
imental data; in section 4 we discuss the physical in-

formation that can be extracted from this paper and
possible perspectives.

2. Finite-scale relative dispersion

Generally speaking, most flows exhibit different rang-
es of scales over which fluid motion is expected to dis-
play different characteristics: a small-scale range where
the velocity variations can be considered as a smooth
function of space variables, a range of intermediate
lengths corresponding to the coherent structures (and/
or spatial fluctuations) present in the velocity field over
which velocity variations are rough but highly corre-
lated, and a large-scale range over which spatial cor-
relations have definitely decayed. In each of these rang-
es, relative dispersion between trajectories is governed
by a different physical mechanism (chaos, turbulence,
diffusion), which can be, in principle, identified from
the observations. In fully developed three-dimensional
turbulence, motion is only smooth under the Kolmo-
gorov dissipative scale. In the free stratified atmosphere
(above the planetary boundary layer), turbulence is a
relatively rare event: motion is most often smooth but
for some localized convective or turbulent events, as-
sociated with mesoscale systems, that mix momentum
and tracers. Hence, one expects to find a smooth (cha-
otic) dispersion range ending at a scale characteristic of
the spacing of mixing events, followed by a range cov-
ering the mesoscale to synoptic range, and finally stan-
dard diffusion at planetary scale. This view is supported
by the ubiquitous observation of long-lived laminated
structures in the free troposphere (Newell et al. 1999).

In order to fix some terminology, we will use both
symbols R and d to indicate the distance between bal-
loons: the former will be considered as a quantity func-
tion of time, the latter as an argument for scale-depen-
dent functions.

a. Diffusion and chaos

Diffusion is characterized in terms of diffusion co-
efficients, related to the elements of a diffusion tensor,
defined as

1
D 5 lim ^[x (t) 2 ^x (0)&][x (t) 2 ^x (0)&]&, (2.1)i j i i j j2tt→`

where xi(t) and xj(t) are the ith and jth coordinates at
time t, with i, j 5 1, 2, 3. The average operation denoted
by angle brackets ^ & is meant to be performed over a
large number of particles. The diagonal elements are
just the diffusion coefficients. When the Diis are finite,
then the diffusion is standard. This means that at long
times, after the Lagrangian velocity correlations have
decayed (Taylor 1921), the variance of the particle dis-
placement follows the law

2^\x(t) 2 ^x(0)&\ & . 2Dt. (2.2)

In presence of a velocity field characterized by co-
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herent structures, it is more useful to observe the relative
dispersion between the trajectories, rather than the ab-
solute dispersion from the initial positions, given by
(2.2), which is unavoidably dominated by the mean ad-
vection.

In the case of the EOLE experiment, where observing
the expansion of balloon clusters with more than two
elements is a rare event (ML), a measure of relative
dispersion is given by the mean-square interparticle dis-
tance:

2 (m) (n) 2^R (t)& 5 ^\x (t) 2 x (t)\ &, (2.3)

averaged over all the pairs [x (m) , x (n)], where m and n
label all the available N trajectories. Notice that the
norm in (2.2) and (2.3) must be defined accordingly to
the geometry of the fluid domain; that is, in the at-
mosphere we use the arc distance on the great circle of
the earth connecting the two points. The quantity in (2.3)
can be measured for both initially close pairs, balloons
released from the same place at short time delay; and
so-called chance pairs, balloons initially distant, which
come close to each other at a certain time and, later,
spread away again (ML). Consistency of the average in
Eq. (2.3) requires all the trajectory pairs to have nearly
the same initial distance, a condition that strongly limits
the statistics. At long times, ^R(t)2& defined in Eq. (2.3)
is expected to approach the function 4Dt, where the 4
factor accounts for relative diffusion. When it happens
that ^R(t)2& ; t2n with n . 1/2 instead, the Lagrangian
dispersion is considered as superdiffusion. A well-
known example is the Richardson’s law for the particle
pair separation in 3D turbulence, for which n 5 3/2
(Richardson 1926).

On the other hand, in the limit of infinitesimal tra-
jectory perturbations, much smaller than the character-
istic lengths of the system, the evolution of the particle
pair separation is characterized by the Lyapunov ex-
ponent (Lichtenberg and Lieberman 1982), such that

1 R(t)
l 5 lim lim ln . (2.4)

t R(0)t→` R(0)→0

If l . 0, the growth is exponential and the motion is
said chaotic. Chaos is a familiar manifestation of non-
linear dynamics, leading to strong stirring of trajectories
(Ottino 1989). The process, for example, of repeated
filamention around the polar vortex is basically due to
Hamiltonian chaos (Legras and Dritschel 1993). For fi-
nite perturbations within a smooth flow, the properties
of exponential separation are observed for a finite time.

b. Finite-scale Lyapunov exponent

The idea of FSLE (Aurell et al. 1997; Artale et al.
1997) was formerly introduced in the framework of the
dynamical systems theory in order to characterize the
growth of noninfinitesimal perturbations (i.e., the dis-
tance between trajectories). If d is the scale of the per-

turbation, and ^t (d)& is the mean time that d takes to
grow a factor r . 1, then the FSLE is defined as

1
l(d) 5 lnr. (2.5)

^t(d)&

The average operation is assumed to be performed over
a large ensemble of realizations. For factors r not much
larger than 1, l(d) does not depend sensitively on r. If
r 5 2, then ^t (d)& is also called doubling time. Oper-
atively, N 1 1 scales are chosen to sample the spatial
range of perturbation, d0 , d1 , · · · , dN, and a growth
factor r is defined such that di 5 rdi21 for i 5 1, N. Let
lmin and lmax be the smallest and the largest characteristic
length of the system, respectively. If d0 K lmin, then the
FSLE characterizes the doubling time of infinitesimal
perturbation. In the opposite side of the range, if dN k
lmax, then the FSLE follows the scaling law of diffusion
l(d) ; d22 for d → dN, as can be deduced by noticing
that the mean-square particle distance must grow line-
arly in time, see (2.2). In general, if the mean-square
size of a tracer concentration follows the ^R2& ; t2n law,
the FSLE scales as l(d) ; d21/n, and vice versa. As we
have seen before, for standard diffusion, n 5 1/2, while
for Richardson’s superdiffusion, n 5 3/2. The main in-
terest of FSLE is to select processes occurring at a fixed
scale. We stress that definition (2.5) differs substantially
from

21 d^R &
l9(d) 5 , (2.6)

2 )^R & dt 2 2^R &5d

which is a dispersion rate function of the (mean) sep-
aration between trajectories but defined through a totally
different averaging procedure: ^R2& is computed at fixed
time, while t (d) is computed at fixed scale. As a result,
a physical situation that is well characterized in terms
of FSLE, either for scaling properties or the existence
of transport barriers, may be less easily characterized
by studying the time growth of trajectory separation
(Boffetta et al. 2000b; Joseph and Legras 2002). One
reason is that ^R2(t)& depends on contribution from dif-
ferent regimes, as seen, for example in 3D turbulence
where a dramatic dependence of R2(t) upon R2(0) is
observed, even at very large Reynolds number (Fung
et al. 1992).

In cases where advection is strongly anisotropic, for
example, in the presence of a structure like the strato-
spheric jet stream, it may be useful to define the FSLE
in terms of meridional (cross stream) displacement only:

1
(mer)l [d ] 5 lnr, (2.7)mer (mer)^t[d ]&

where d (mer) is the latitude distance (or meridian arc)
between two points.

Information about the relative dispersion properties
is also extracted by another fixed-scale statistic, the fi-
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TABLE 1. Number of balloon pairs analyzed for each scale during
the computation of the FSLE. The first column is the order of the
scale dn 5 r n d0, with r 5 Ï2; the second, third, fourth, and fifth
columns refer to the initial thresholds d0 5 25, 50, 100, and 200 km,
respectively.

n 25 km 50 km 100 km 200 km

0
1
2
3
4

495
344
391
414
440

1037
782
867
895
951

2025
1670
1806
1855
1877

3979
3649
3699
3764
3722

5
6
7
8
9

442
456
442
448
440

955
950
944
928
906

1892
1857
1829
1749
1703

3687
3563
3471
3327
3131

10
11
12
13
14

428
418
397
389
368

865
845
794
756
642

1617
1511
1277

2648

15
16

346
290

FIG. 1. Mean-square balloon separation. The four curves refer to
four different initial thresholds: line a: 25, line b: 50, line c: 100,
and line d: 200 km. All the curves except 25 km have been shifted
in time in order to collapse together for ^R2& . 107 km2. The eddy
diffusion coefficient corresponding to the indicated slope is DE . 2.9
3 106 m2 s21.

nite-scale relative velocity (FSRV), named by analogy
with FSLE, which is defined as

2n (d) 5 ^dv(d) &,2 (2.8)

where
2 (1) (2) 2dv(d) 5 (ẋ 2 ẋ ) (2.9)

is the square Lagrangian velocity difference between
two trajectories x (1) and x (2) on scale d, that is, for | x (1)

2 x (2) | 5 d. The FSRV can be regarded as the second-
order structure function of the Lagrangian velocity dif-
ference and provides a complementary analysis to the
FSLE diagnostics. In particular, in the regime of Rich-
ardson’s superdiffusion, the expected behavior for the
FSRV is n2(d) ; d2/3.

We report in the next section the results of our anal-
ysis.

3. Analysis of the EOLE Lagrangian data

After a preliminary data check, the number of bal-
loons selected for the analysis has been reduced to 382.
This has been obtained by discarding ambiguous iden-
tification numbers (some identification numbers have
been used twice during the campaign), discarding tra-
jectories that cross the equator and short tracks of less
than 10 points.

Successive points along a balloon trajectory were
mostly recorded at a time interval of 1021 day (2.4 h),
but the overall distribution of the raw data does not
uniformly cover the time axis. Hence, each of the co-
ordinates (longitude and latitude) of every balloon tra-
jectory has been interpolated in time by a cubic spline
scheme, with a sampling rate of 25 points per day. Be-
cause of possible data impurities, each Lagrangian ve-
locity value is monitored at every time step (0.04 day),

and data segments with abnormally fast motions are
discarded.

As pointed out by ML, a way to measure the dis-
persion between balloons is waiting for one of them to
get close to another one, at a distance less than a thresh-
old d0, and then observing the evolution of their relative
distance in time. This procedure is repeated for each
balloon trajectory until the whole set of pairs is ana-
lyzed. The dataset includes original pairs of balloons
that were launched within a short time interval and
chance pairs of balloons meeting suddenly after a num-
ber of days. For the largest values of the threshold used
in this study, the number of chance pairs largely exceeds
the number of original pairs. In this way, global prop-
erties of the Lagrangian transport are extracted from the
contributions of balloon pairs randomly distributed all
over the domain. The number of balloon pairs and its
evolution as the separation crosses the N scales defined
above are described by Table 1.

In Fig. 1, four global relative dispersion curves are
plotted, referring to four different initial thresholds d0

5 25, 50, 100, and 200 km. The statistical samples vary
roughly in a proportional way with d0. Relative dis-
persion depends sensitively, as expected, on the initial
conditions; the four curves meet together for separation
larger than about 2500 km and saturation begins for
separation larger than 4500 km, leaving room only for
a short standard diffusive regime between these two
separations and over a time duration of less than 10
days. The eddy diffusion coefficient DE, estimated by
fitting the linear law 4DEt, results in DE . 2.9 3 106 m2

s21, a value compatible with what was found by ML.
The prediffusive regime is not very clear, we can say
that the behavior of the balloon separation looks like a
power law with exponent (changing in time) between 3
and 1.
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FIG. 2. Mean logarithmic growth of the balloon separation (1).
The initial separation is #25 km. The two clusters A (*) and B (3)
have four balloons each and were launched with a 3-day lag in Nov
1971. The e-folding time of the exponential growth is .0.4 days.
The two horizontal lines mark the 100–1000-km range (natural log-
arithm units). The straight line ML is the result found by Morel and
Larchevêque (1974) in their Fig. 8.

FIG. 3. FSLE of the balloon pairs [see Eq. (2.5)]. The four curves
have the same initial thresholds as in Fig. 1: 25 (3), 50 (V), 100
(*), and 200 (M) km. The eddy diffusion coefficient is DE . 107 m2

s21. The quantity a3 gives the order of magnitude of the relative
kinetic energy growth rate (for unit mass) between balloons in the
Richardson’s regime ; d22/3.

We report in Fig. 2 the mean logarithmic growth of
the balloon relative separation over all pairs selected by
the 25-km threshold. At very short times (,1 day) the
slope corresponds to an exponential growth rate with
e-folding time of .0.4 day that we consider as a rough
estimate of the largest Lagrangian Lyapunov exponent
(LLE). At later times, the slope gradually decreases as
the separation growth tends to a power-law regime. In
the same figure we also show the mean logarithmic
growth of the interballoon distance computed for two
four-element clusters (labeled A and B), launched with
a time interval of 3 days between them. A linear be-
havior (exponential growth) for both clusters is ob-
served for short intervals; we observe that the expo-
nential regime lasts longer for the A cluster (.3 days)
than for the B cluster (.1 days). This illustrates the fact
that the duration of a dispersion regime, here the chaotic
one, may exhibit large fluctuations generally due to dif-
ferent meteorological conditions. As a result, average
time-dependent quantities, such as ^R2(t)&, sample dif-
ferent regimes at once and are poor diagnostics of dis-
persion properties. Incidentally, in ML, the behavior of
the relative dispersion between 100 and 1000 km is fitted
by means of an exponential with characteristic e-folding
time of .2.7 days (see ML, Fig. 8), which is compatible
with the growth rate of Fig. 2 between the two horizontal
lines marking the 100–1000-km range, if one wants to
fit it with an exponential curve.

Figure 3 shows the global FSLE relatively to the same
four initial thresholds used for the relative dispersion,
where the amplification ratio r is set to . Error barsÏ2
are estimated from the variance of subsamples of the
FSLE, 100 pairs, relatively to the mean FSLE computed
for each scale. The main result of this study is that up
to about 1000 km there is evidence of Richardson’s
superdiffusion, compatible with a k25/3 spectrum, dis-

played by the behavior l(d) 5 ad22/3. The best fit is
obtained for the initial thresholds 100 and 200 km,
which encompass a much larger number of pairs than
smaller thresholds (see Table 1). The quantity a3 is
physically related to the mean relative kinetic energy
growth rate (for unit mass) between balloons moving
apart. This quantity is compatible with the energy flux
e as reported in Lindborg and Cho (2000), a3 ø e 5 6
3 1025 m2 s23. Standard diffusion is approached at
scales larger than 2000 km. The value of the eddy dif-
fusion coefficient is estimated by fitting the FSLE in the
diffusive range with (4 lnr)DEd22, as shown in Boffetta
et al. (2000a) by means of a dimensional argument. We
find that this value is DE . 107 m2 s21. At small scales
(100 km or less) the FSLEs tend to a plateau of level
;1 day21, suggesting an exponential separation. Notice
that the initial threshold does not much affect the general
behavior in the large-scale range (.100–200 km), ex-
cept for obvious changes in the statistical samples.

In order to appreciate the difference between the
fixed-scale and fixed-time statistics, in Fig. 4 we show
the dispersion rate l9(d) as defined in Eq. (2.6), to be
compared to the FSLE l(d) defined in Eq. (2.5). The
diffusivity l9(d) has a slope that is rather sensitive to
the initial conditions and affected by a noisier statistic
than the FSLE. In no way are l(d) and l9(d) expected
to have necessarily the same behavior for the reasons
discussed above.

Figure 5 shows global (mainly zonal) and meridional
[lmer, see (2.7)] FSLEs of the balloon pairs with initial
threshold 100 km. We find that the dispersion is basi-
cally isotropic up to scales of about 500 km, which is
in rough agreement with the results of Morel and Lar-
chevêque [they give a value 3 times larger, but their
analysis (see their Fig. 7) does not display a well-defined
cutoff]. At scales larger than 500 km, the two compo-
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FIG. 4. Diffusivity function of the (mean) separation, as defined in
Eq. (2.6). The initial thresholds are the same as in the previous figures:
25 (1), 50 (3), 100 (*), and 200 (M) km. The ;d22/3 scaling law
is plotted for comparison. The slopes are noisier and depend more
sensitively on the initial conditions than the FSLE’s.

FIG. 5. FSLE of the balloon pairs, (2) describing total and (3)
meridional dispersion, with initial 100-km threshold. The meridional
FSLE is lmer defined in Eq. (2.7). The meridional eddy diffusion
coefficient is DE . 1.5 3 106 m2 s21.

FIG. 6. FSRV [see Eq. (2.8)], of the balloon pairs for initial 50-
km threshold. The reference velocity is u0 5 100 km h21. The slope
2/3 corresponds to the Richardson’s law.

nents of the FSLE decouple, and the meridional dis-
persion rate follows the standard diffusion law ;d22

with a meridional eddy diffusion coefficient DE ; 106

m2 s21.
In order to compute the FSRV, the relative velocity

between balloons is approximated by the finite differ-
ence formula ( | R(t 1 Dt) | 2 | R(t) | )/Dt, where | R(t) |
is the absolute value of the great circle arc between two
balloons at time t, and Dt 5 0.04 days is the time in-
terval between two successive points along a trajectory.
The properties of the Lagrangian relative velocity are
shown in Fig. 6. The FSRV confirms the results obtained
with the FSLE: between 100 and 1000 km, the behavior
is ;d2/3, corresponding to the Richardson’s law; as-
ymptotic saturation sets in beyond this range (fully un-
correlated velocities).

4. Discussion and conclusions

We have revisited the dispersion properties of the
EOLE Lagrangian dataset using a new approach, the
finite-scale Lyapunov exponent, which is better suited
to analyze scale-dependent properties than standard
tools that were used, for example, by ML in a previous
study of the same dataset. We were motivated by the
fact that ML found results supporting a k23 inertial range
between 100 and 1000 km, whereas more recent studies
based on aircraft data found a k25/3 behavior in the same
range of scales. Moreover, ML did not find consistency
between relative diffusivity and mean square relative
velocity, the latter being compatible with a Richardson’s
regime (see ML’s Fig. 9).

The main result of our improved analysis is that the
EOLE dataset supports a k25/3 behavior in the range
100–1000 km, as shown by the scaling properties of
FSLE in this range, indicating Richardson’s superdif-
fusion. At distances smaller than 100 km, our results

suggest an exponential separation with an e-folding time
of about 1 day, in rough agreement with ML. At scales
larger than 1000 km, the dispersion tends to a standard
diffusion before saturating at the planetary scale. Since
the large-scale flow is dominated by the meandering
zonal circulation, estimated diffusion coefficient is 10
times larger for total dispersion (107 m2 s21) than for
meridional dispersion (106 m2 s21). Results coming
from fixed-scale mean dispersion rates, the FSLE, and
fixed-scale mean square relative velocities, the FSRV,
are consistent with each other.

The physical reasons underlying a k25/3 spectrum are
still open to debate. Possible explanations may concern
2D inverse energy cascade, gravity wave breaking with
direct energy cascade, or shear (zonal) dispersion in a
diffusive (meridional) field.

Our study of the EOLE experiment has shown that
this still unparalleled dataset of Lagrangian trajectories
in the atmosphere is in agreement with results obtained
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from aircraft data. The challenge is now to compare
these trajectories with the global wind fields produced
by the recent reanalysis by operational weather centers.
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