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Abstract. The relationship between solar activity and tem-
perature variation is a frequently discussed issue in climatol-
ogy. This relationships is usually hypothesized on the basis
of statistical analyses of temperature time series and time se-
ries related to solar activity. Recent studies (Le Mouël et al.,
2008, 2009; Courtillot et al., 2010) focus on the variabilities
of temperature and solar activity records to identify their re-
lationships. We discuss the meaning of such analyses and
propose a general framework to test the statistical signifi-
cance for these variability-based analyses. This approach
is illustrated using European temperature data sets and ge-
omagnetic field variations. We show that tests for significant
correlation between observed temperature variability and ge-
omagnetic field variability is hindered by a low number of
degrees of freedom introduced by excessively smoothing the
variability-based statistics.

1 Introduction

The detection and attribution of climate change has been
extensively investigated with various statistical methods
(Hegerl et al., 2007). The role of solar activity on climate has
been examined by many authors with climate models (Haigh,
1994; Shindell et al., 2001; Hansen et al., 2005; Meehl et al.,
2009) and by comparing statistically solar and global or re-
gional climate records (e.g.Lean and Rind, 2008, 2009; Ben-
estad and Schmidt, 2009). Although weak in terms of energy
balance, it seems to have played a significant role in vari-
ous episode during the last millennium (Jansen et al., 2007).
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There is an on-going debate on the exact role of solar ac-
tivity on 20th century temperature variations.Siscoe(1978)
pointed out flaws of the many papers debating on the subject,
more than 30 years ago. More recently,Lockwood(2008)
provided a critical assessment of the potential mechanisms
linking solar variations to climate change, and showed that
solar variations are not sufficient to explain the 20th cen-
tury warming from elementary laws of physics and thermo-
dynamics.

Three papers have recently reported statistical analyses of
temperature and solar activity records (Le Mouël et al., 2008,
2009; Courtillot et al., 2010). Those papers introduce and
discuss an unconventional method for time series analysis
(at least in climate sciences). Those authors claim that this
method (called “Mean Squared Deviation”) gives informa-
tion on the time evolution of the autocorrelation of a random
process with slow heteroscedasticity. Our paper illustrates
some statistical properties of such a transform, and provides
tests of its significance from simple random processes. Those
authors use European daily temperature records, and a record
of geomagnetic intensity as a proxy for solar activity. Al-
though this choice is debatable, we decided to be as close as
possible as the framework of (Le Mouël et al., 2008, 2009).

The general message of the paper is that “data snooping”
(White, 2000) can occur when relationships between data
sets are not tested in an appropriate way. This implies that
wrong conclusions can be derived out of statistical coinci-
dences that are not robust to key (or mundane) parameters
of the analyses. Data snooping is sometimes encountered in
fields where the underlying mechanisms remain difficult to
grasp and model. It consists of purposefully (or not) exploit-
ing a feature from a data set that turns out to be a statisti-
cal artefact. This problem can be circumvented if clear null
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Fig. 1. Variations of the annual averages of daily mean temperature
in Paris, De Bilt and a European mean, between 1900 and 2009.
The data are taken from the ECA&D database (Klein-Tank et al.,
2002).

hypotheses are formulated and proper statistical tests are per-
formed. When mathematical transforms (such as the mean
squared deviation) are involved, such tests should explore the
sensitivity of the results to the parameters of the transforms.

Section2 describes the data sets used in the paper. The
methodology is detailed in Sect.3. Three types of results are
provided in Sect.4.

2 Data

We used the daily mean temperature from the ECA&D
database in Europe (Klein-Tank et al., 2002). In particular,
we randomly focused on the Paris-Montsouris (France) and
De Bilt (Netherlands) stations between 1900 and 2009.

We also used a set of European temperatures starting be-
fore 1920 and ending after 2000, and yielding less than 10%
of missing or doubtful data. We computed the spatial average
for each day of this data set, although its spatial distribution
tends to give a lot of weight to Central Europe. The annual
means of the three data sets are shown in Fig.1. They all
exhibit a warming over the 20th century. The exceptional
warming between 2004 and 2009 in the European mean is
due to the fact that a large proportion of “cold” stations (from
central to eastern Europe) have systematic missing values af-
ter 2004. Thus, when the arithmetic mean of the ensemble is
computed after 2004, it tends to be pulled toward higher tem-
peratures. This feature should not be interpreted as an excep-
tional warming, but is an effect of missing data in ECA&D
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Fig. 2. (a)Daily variations of theZ component of the geomagnetic
field measure at Eskdalemuir between 1911 and 2008. The red line
represents the smoothed data with a spline function with 20 degrees
of freedom. (b) Anomaly of theZ component with respect to the
spline smoothing function.

stations after 2004. We point out that the problem of miss-
ing data also appears before 1940. Such a problem could be
circumvented by removing a seasonal cycle from tempera-
ture data. Hence all time series are centered (i.e. with zero
mean), as well as their average. Thus, there is no artificial
drift of the mean due to missing observations. We computed
a mean seasonal cycle from the daily temperature data for the
1960–1990 period, and we removed it from the raw time se-
ries to obtain daily anomalies of temperature. We hence used
daily temperature anomalies in computations of this paper.
For brevity, the term “temperature” now refers to “anoma-
lies of temperature with respect to a seasonal cycle”, unless
otherwise specified.

Homogeneity problems have been detected on daily time
steps, and to our knowledge they have not been corrected
in the ECA&D database (O. Mestre, personal communica-
tion, 2009). The lack of homogeneity (due to changes in
instruments, orientation or simply reporting errors) can gen-
erate artificial non-climatic discontinuities. In this paper, we
do not question or evaluate the quality of the temperature
data, although most stations are indicated as “suspect” on the
ECA&D database. This evaluation is done in a further study
(Legras et al., 2010).

We compare those temperature datasets with records of
solar activity. Before the period of precise irradiance mea-
surements by satellites, there are several ways of approxi-
mating solar activity by using sunspots observed with tele-
scopes (Hoyt and Schatten, 1998; Solanki, 2002), geomag-
netic activity (Mayaud, 1972; Cliver et al., 1998; Lockwood
et al., 1999), the frequency of aurora (review bySilverman,
1992) and cosmogenic isotopes such as10Be and14C (e.g.
Beer et al., 1988; Bard et al., 1997). The variations of the
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geomagnetic field are measured in many stations around the
earth. The intensity of the geomagnetic field is dominated
by dynamo processes of the interior of the earth, varying on
secular time scales. The fast variations, on time scales of
minutes to years, are mainly influenced by solar activity and
galactic cosmic rays, as discovered by Sabine, Wolf, Gau-
tier and Lamont in the 19th century. It is then reasonable
to assume that the fast variations recorded by stations over
the Earth mostly reflect the fluctuations of solar activity (see
Bartels, 1932, for a review). The intensity of the geomag-
netic field is measured in three directions. It appears that the
fast variability of the horizontal and vertical components are
very similar (Le Mouël et al., 2009). Thus we focus on the
vertical component variations (Z) of the geomagnetic field.

In this study, we followed the choice ofLe Mouël et al.
(2009) and used the geomagnetic data from Eskdalemuir
(UK) as a proxy for solar activity. The data was obtained
from the World Data Center for Geomagnetism (www.wdc.
bgs.ac.uk/catalog/master.html). We computed daily averages
from the hourly data, from 1911 to 2008. The time series
shows a steady increase since 1938 (Fig.2). This trend re-
flects secular changes in the geomagnetic field. We thus con-
sider the small variations around this trend.

Mean daily temperature and geomagnetic times series
have no mutual correlation (see Table 1, first column).
Hence, the investigation of a potential relationship between
the two variables motivates a focus on other statistical diag-
nostics. The next section gives an example of such analysis.

3 Method

Auto-regressive processes of order 1 (AR(1)) are often used
in climate studies to define a null hypothesis to describe vari-
ations of temperature time series (Allen and Smith, 1994;
Ghil et al., 2002; Maraun et al., 2004). By definition, an
AR(1) processR(t) is:

R(t +1) = aR(t)+b(t), (1)

where 0≤ a < 1 andb(t) is a centered white noise with un-
known but finite varianceσ 2

b . The parametera gives infor-
mation on the memory of the process from one time step to
the next. We use this simple random process as a pedagogical
benchmark for the study of variability properties of time se-
ries, because they can be explicitly derived for various kinds
of quadratic transforms. This process is commonly denoted
“red noise” because its power spectrum decreases with fre-
quency (Priestley, 1981).

Such a model can be refined to include slow time varia-
tions ofa andσ . Such variations alter the probability distri-
bution ofR(t) and an exaustive list of the properties of such
processes lies beyond the scope of this paper (e.g.Embrechts
et al., 2000).

For a given centered time seriesX(t) (of observations, for
example), one wants to find an AR(1) process that fits “best”

the statistical characteristics ofX(t), like its variance and
auto-covariance. The classical maximum likelihood estimate
(MLE) â for a gives (Priestley, 1981):

â =
CX(1)

CX(0)
, (2)

whereCX(0) is the sample variance ofX andCX(τ ) is its
sample auto-covariance at lagτ :

CX(τ ) =
1

N −τ

N−τ∑
t=1

X(t +τ)X(t).

For the AR(1) processR of Eq. (1), the auto-covariance is
(Priestley, 1981):

CR(τ ) =
σ 2

b a|τ |

1−a2
. (3)

An alternative approach, suggested byLe Mouël et al.
(2009), is to define the mean squared daily variation:ζ2(t)

for a given time window2:

ζ2(t) =
1

2

t+2/2∑
τ=t−2/2

(X(τ +1)−X(τ))2. (4)

For an AR(1) process (R(t) in Eq. (1)), the expected value of
ζR
2 (t) converges to:

E[ζR
2 ] =

2σ 2
b

1+a
,

for all 2. This can be verified by expanding Eq. (4) and using
Eq. (3).

The mean interannual squared variationQ2(t) is defined
as:

Q2(t) =
1

2

t+2/2∑
τ=t−2/2

(X(τ +365)−X(τ))2. (5)

For an AR(1) processR(t), the expected value ofQR(t) con-
verges to:

E[QR
2] =

2σ 2
b

1−a2
,

for all 2. We note that bothE[ζR
2 (t)] andE[QR

2(t)] depend
ona andσb for an AR(1) process, but not on2.

The “lifetime” function is defined byLe Mouël et al.
(2009) as the normalization ofQ2(t) by ζ2(t):

L2(t) = Q2(t)/ζ2(t). (6)

This denomination is not connected with the lifetime notion
in statistical survival theory (e.g.Lawless, 2003). For an
AR(1) process, it follows that the expected value ofLR

2(t)

is:

E[LR
2(t)] =

1

1−a
≡ λ. (7)
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Fig. 3. Bias estimates ofλ from an MLE computation̂λ (red circles)
and mean “lifetime” computation̄λ (black circles). The bars around
the λ̄ estimates indicate the 5th and 95th quantiles ofL2(t) varia-
tions of AR(1) realizations. See text for formulas. The first diagonal
is indicated for reference. The upper axis indicates variations ofa

(as in Eq. (1)).

The interesting point of this quotient is that it no longer de-
pends onσb for an AR(1) process. Thus for a given2, we
obtain an estimator̄λ for λ:

λ̄ = mean(L2(t)),

where mean(.) is the sample mean overt . Thus, in princi-
ple, theL2(t) transform can be used to estimatea for an
AR(1) process (̄a = 1−1/λ̄). However, the properties (bias,
variance) are not a priori known but can be assessed by sim-
ulation (see next section). As a consequence of this con-
vergence, it is hoped that ifa varies slowly in time (over a
scale larger than2) in Eq. (1), then it should be possible to
estimate the variation rate from Eq. (6). This motivates the
L2(t) transform.

The MLE estimate ofa in Eq. (2) also provides an estimate
of λ:

λ̂ =
1

1− â
.

The second goal of the paper is to obtain the signifi-
cance of correlations between the transformationsL2(t) and
Q2(t) of two time seriesX andY .

In general, the non nullity of a correlationrXY between
two time seriesX andY can be tested with a Student t-test
(von Storch and Zwiers, 2001):

t = |rXY |

(
n−2

1−rXY
2

)1/2

, (8)

wheren is the number of dregrees of freedom inX andY .
From the value oft , one can derive a p-value that is the risk
of wrongly rejecting the null hypothesisrXY = 0 (von Storch
and Zwiers, 2001). The value ofn is a priori lower than the
number of data points. When transforms such asQ2(t) or
L2(t) are applied, the upper bound forn can be estimated
by n ≈ N/2, whereN is the number of data points. If the
time series cover one century on daily time steps and2 =

11×365, then the number of degrees of freedomn for Q2(t)

andL2(t) is n ≈ 10.
We remind that when a significant correlation is found be-

tween two time series there is no proof (or even a suggestion)
of causality between the variables because correlation is a
symmetric operator. A fortiori, finding a correlation between
theL2, Q2 or ζ2 quadratic transforms of two time seriesX

andY does not provide any causality relation betweenX and
Y .

4 Results

4.1 Bias

The first step of this study is to verify that theL2(t) trans-
form is indeed a practical estimator ofλ, i.e. with satisfactory
properties of convergence and bias. We designed an ensem-
ble of numerical experiments with AR(1) processes, by sam-
pling the(0,20) interval ofλ values with increments of 0.4.
From those samples ofλ, we takea (= 1−1/λ), and simulate
AR(1) processes, with a unit varianceσ 2

b for b(t) (in Eq. (1)).
The experiments are carried onN = 30000 increments. For
each realization, we computedL2(t) with 2 = 11×365 and
its averagēλ. We also determined the variance and autoco-
variance, to estimatêa in a direct way from Eq. (2). We then
plotted the values of̂λ for both estimates, as functions of the
“real” λ from which the processes were constructed. The
choice of2 = 11×365 is somewhat arbitrary. Its heuristic
justification is that it covers a sunspot cycle of≈11 years.
The exact length of2 should not alter theL2 estimates if an
interpretation in term of memory needs to be done.

The results (Fig.3) show that the MLE estimatêλ gener-
ally performs well. The “lifetime” estimatēλ does not yield
an apparent bias. The confidence intervals forλ̄ seem to in-
crease witha, indicating a higher variability ofL2(t) whena

(or λ) increases. This is explained by the singularity ata = 1.
This exercise can be performed on the Paris or De Bilt

temperature data. We obtain respectivelyâ ≈ 0.8 and ā ≈

0.7. If the same computation is done on daily mean Eu-
ropean temperature, we obtainâ > 0.93. Thus, assuming
temporarily that local temperatures can be represented by
AR(1) processes, this shows that their memories are rather
high (a > 0.8). However, we point out that the average of in-
dependent AR(1) processes isalmost neveran AR(1) process
(Embrechts et al., 2000). This implies that the interpretation
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Fig. 4. (a)Variations of dailyQ2(t) for De Bilt temperature between 1900 and 2008, with2 = 11 years.(b) Same convention as (a) with
L2(t). The colored continous lines show the variations ofL2(t) when the parameter2 is varied from 7 years to 22 years.(c) Same as (a)
for the mean daily Paris temperature.(d) same as (b) for the mean daily Paris temperature.(e) Same as (a) for the mean daily European
temperature.(f) same as (b) for the mean daily European temperature. The vertical confidence intervals indicate the median, 5th and 95th
quantiles for the variations ofQ2(t) (or L2(t)) of an AR(1) process with the same variance and auto-covariance.

of λ̄ of the European mean temperature in term of process
memory is a priori not possible.

4.2 Variability of Q2(t) and L2(t) for temperature

The second step of the study is to investigate the range of
variations ofQ2(t) (the mean squared daily variations) and
L2(t) for a random process (AR(1)). From Eq. (2), we deter-
minedâ andσ̂ for the De Bilt and Paris temperature anoma-
lies. This allows us to simulate AR(1) processes having the
same variance and autocovariance (and length) as those tem-
perature series. For each random realization and the tem-
perature data, we computedQ2(t), ζ2(t) andL2(t). We
determined the 5th, 50th and 95th quantiles ofQ2(t) and
L2(t).

The variations ofQ2(t) for De Bilt and Paris temperature
anomalies and the 90% bounds for red noise are shown in
Fig. 4a, c. Overall, the large deviations ofQ2(t) are signif-
icant, with respect to an AR(1) process. The variations of
L2(t) for temperature anomalies (Fig.4b, d) show generally
similar shapes as those ofQ2(t) for De Bilt and Paris and
they are also significant with respect to an AR(1) process.

We note that when the window2 increases from 11 to 22
years, some of the maxima ofL2(t) lose their significance
with respect to an AR(1) process (Fig.4b, d). Curiously,
the variations ofQ2(t) andL2(t) are different for the mean
European temperature. This can be explained by the fact that
the statistical properties of the mean of time series are not the
same as individual series, in particular in term of persistence.

We note that theL2(t) transform for raw temperature
(i.e. without removing the seasonal cycle) has the same gen-
eral behavior and order of magnitude as for the temperature
anomalies. This feature motivates the use ofL2(t) to inves-
tigate the variability of time series with periodic components
that are potentially complex.

We checked the dependence of the analysis on2 in the
L2(t) estimate. Indeed, the interpretation of a single out-
standing “event” inL2(t) should be robust to the choice
of the window2 in Eq. (6). We hence computedL2(t)

with 2 = 7,11 and 22 years (Fig.4b) for the De Bilt and
Paris daily temperature. This illustrates that an alteration in
the window size changes important details of the transform
L2(t). This provides an additional (albeit more heuristic)
way of verifying the robustness of the oscillations ofL2(t).

www.clim-past.net/6/565/2010/ Clim. Past, 6, 565–573, 2010
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If De Bilt or Paris temperature series are considered, the ma-
jor peaks or troughs ofQ2(t) andL2(t) found for2 = 11
years seem unstable to this parameter, and it is not reasonable
to load them with a physical interpretation.

We have also applied the analysis to the ensemble mean
of temperature from the ECA&D database. The auto-
correlation functionCX(1) of the ensemble daily mean is
larger than for each station. The time variation for the en-
semble mean are coherent with the De Bilt or Paris data, but
with a higher baseline (Fig.4e, f). The conclusions of the
significance of the variations ofL2(t) remain for ensemble
averages of temperature.

4.3 Significance of correlations

Should one persist in usingL2(t) as an estimator of variabil-
ity for a time series, the next question that arises is the sig-
nificance of correlations between two transformed data sets.
TheL2(t) transform intrinsically reduces the number of de-
grees of freedom of a time series: ifN is the number of data
samples,Ndof the number of degrees of freedom of the data,
then the number of degrees of freedom ofL2(t) is approx-
imated by min(Ndof,N/2). In other words, the number of
degrees of freedom ofL2(t) is bounded by the number of
independent windows in the sum in Eq. (6). Further filters,
like moving averages or splines, also contribute to the reduc-
tion of the number of degrees of freedom in a time series.

The goal here is to compare the time variations of the
Q2(t) and L2(t) functions of two time seriesX and Y

through their correlation. The idea of this approach is to
compare the variability ofX andY , although both time se-
ries might be uncorrelated. In any case, we repeat that the
correlation betweenL2(t) transforms does not allow for an
inference of a mutual relation between the original time se-
ries, unless a specific model of covariation is provided.
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Fig. 6. Distribution of absolute values of correlation|r| between
L2(t), Q2(t) and ζ2(t) transforms of two random AR(1) pro-
cesses with the respective variance and autocovariance of ECA&D
European temperatures and geomagnetic field from Eskdalemuir.
The box and whisker plots indicate the 25, 50 and 75th quantiles
q (boxes). The upper whisker corresponds to: min(max(|r|),q50+

1.5× (q75−q25)). The right hand vertical axis shows the p values
for r = 0.3 to 0.7, with increments of 0.1, corresponding to a null
hypothesis of no correlation andn = 10 degrees of freedom. The
horizontal thick dotted lines indicate the 90th quantile of|r| values.

It should be noted that correlatingζ2 variations of one
variable withL2 variations of another variable is very dif-
ficult to justify. Indeed,ζ2 measures mean fluctuations of
one day to the next, andL2 measures fluctuations of days
separated by one year. Nevertheless, in order to have an ex-
tensive view of the correlations among transforms of tem-
perature and geomagnetic data, we compute the correlations
between theL(t) transforms of temperature data sets, and
ζ(t), Q(t) andL(t) transforms for geomagnetic data.

From the behavior of the geomagnetic data (Fig.5a), it
is reasonable to subtract the low frequency part of the time
series, which is connected to slow internal dynamo pro-
cesses, and not relevant to solar activity. We hence smoothed
the data with a spline function with 20 degrees of freedom
(Green and Silverman, 1994), and retained the anomalies
with respect to this spline function. We verified that those
anomalies do not have a trend. TheL2(t) andQ2(t) trans-
forms of the geomagnetic data are actually insensitive to the
removal of the trend. This removal is done to estimate the
variance and auto-covariance of the solar influence on the ge-
omagnetic field, and hence simulate an AR(1) with the same
parameters for Monte Carlo tests.
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The first step is to estimate the probability of spurious
correlation ofL2(t), Q2(t) andζ2(t) for two independent
AR(1) processesX and Y . For the sake of the exercise,
we computed the variance and autocovariance of mean daily
temperature over Europe and the geomagnetic field intensity
anomalies. We then generated 100 independent realizations
of each AR(1) process over 30000 time steps (approximat-
ing the number of days during the 20th century), and com-
putedL2(t), ζ2(t) andQ2(t) for each realization. We took
2 = 11 years for those experiments.

The correlation distributions show that it is relatively fre-
quent (with probabilityp > 0.1) that the correlations be-
tweenQ2(t) of two independent processes exceed 0.5 in
absolute value (Fig.6). The p-values of correlations for
n ≈ 10 degrees of freedom are below 0.07 only whenr >

0.6, see Fig.6 (right axis). This implies thatL2(t) or
Q2(t) transforms of two independent AR(1) processes with
the same auto-covariance features (variance and lag-1 auto-
covariance) as temperature and geomagnetic field are likely
to yield large absolute values of correlation. Conversely, this
means that large absolute values of correlation forL2(t) or
Q2(t) transforms do not necessarily imply statistical signifi-
cance. This emphasizes the importance of correlation testing,
especially when the number of degrees of freedom is low.

In a second step, we computedζ2(t), Q2(t) andL2(t)

for the geomagnetic daily anomaly data anomalies, with the
same parameters asLe Mouël et al.(2009).

From the geomagnetic anomalies, we determined the
AR(1) process with the same variance and covariance, to es-
timate confidence intervals. Theζ2(t) andQ2(t) variations
are overall significant with respect to an AR(1). The vari-
ations ofL2(t) are generally not significant after 1940 be-
cause their amplitude is smaller than for an AR(1) process.
The L2(t) and Q2(t) variations present a major decrease
near 1940, andL2(t) yields relatively weak variations af-
ter this date. The reasons for this change are undocumented,
but could come from changes of instrument, or measurement
frequency.

The (linear) correlations between theL2(t) of daily mean
temperature (resp. Paris, De Bilt and European average)
andL2(t) of Z are generally weak and not significant, as
sumarized in Table1. The correlation even changes signs
when European mean temperature is considered. The cor-
relations betweenL2(t) of temperatures andQ2(t) of Z

are also weak and not significant. The correlations between
L2(t) of temperatures andζ2(t) of Z is higher, and can
reachr = 0.61. But the p-value of the correlation isp > 0.06,
which still make it unsignificant by usual standards, because
of the low number of degrees of freedom.

Overall, this shows that no conclusion about a covariation
diagnostic can be derived from the comparison of theL2(t),
Q2(t) or ζ2(t) transforms of temperature and geomagnetic
activity. We also point out that higher correlation values (al-
though not significant) are obtained with a special choice of
transforms, which have no a priori justification. Thus, chos-

Table 1. Correlations betweenζ2, Q2 andL2 transforms of daily
temperature series and theZ component of the geomagnetic field,
between 1940 and 2009 (2 = 11×365). p-values forn = 10 de-
grees of freedom are indicated in parentheses when the correlation
coefficient exceeds 0.4. Correlations under 0.4 are not considered
significant.

Variables Z ζZ QZ LZ

T Paris 0.07
LParis 0.52 (0.12) 0.14 0.08

T DeBilt 0.06
LDeBilt 0.53 (0.11) 0.33 0.26

T Europe 0.04
LEurope 0.61 (0.06) 0.30 −0.43 (0.21)

ing different kinds of data transforms (i.e.L2(t) vs. ζ2(t))
to compare two data sets, in order to maximize a correlation
can potentially lead to “data snooping”.

4.4 Identification of causality in L2(t)

Although none of the transforms outlined above provide
tools to assess any causal link between two variables, one
mayassumethat such a relationship exists, and determine the
amplitude of the link. For example, consider two generalized
AR(1) variablesX andY such that the memory parameteraY

is controled by a functionFX(t), i.e. aY (t) = FX(t). The
question we want to address is whetherLY (t) is correlated to
the functionFX(t).

In general, the answer to such a question is negative be-
cause Eq. (7) is not true whena varies continuously (even
slowly) with time. We illustrate this point by creating a gen-
eralized AR(1) process:

R(t +1) = a(t)R(t)+b(t), (9)

where 0≤ a(t) < 1 slowly with time andb(t) is a white noise
with zero mean. In this example, we setX to be the mean
squared daily variation of theZ component of the geomag-
netic data after 1940 andY is a mean daily temperature in
Paris modeled by the generalized AR(1) process of Eq. (9).

We generate a functionFX(t) by scalingζ
(Z)
2 (t) (the Z

component of the geomagnetic data ) to vary between the
bounds ofL(Paris)

2 (t) (the mean daily Paris temperature). This
arbitrary choice is motivated byLe Mouël et al.(2009) who
computed the correlation betweenζ

(Z)
2 (t) andL

(Paris)
2 (t) of

temperature. We then determineaY (t) from FX(t). Hence,
aY (t) is directly controled byζ (Z)

2 (t). We simulated 100 such
generalized AR(1) processes and computed the correlation
betweenFX(t) ≡ ζ

(Z)
2 (t) andLY

2(t), with 2 = 11 years. In
those realizations, the variance ofb(t) is the same as the sam-
ple variance of temperature anomalies in Paris.
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We find that the correlation betweenLY
2(t) and ζ

(Z)
2 (t)

is generally positive (in 90% of cases), although the median
correlation isr = 0.53 and is hence not significant because of
the low number of degrees of freedom (n = 7). This synthetic
example shows that when the causality between memory pa-
rametersa(t) is assumed, then theL(t) transforms is barely
sufficient to retrieve the original forcing function. This poor
score, even in an idealized case, is due to the fact that the
variance ofb(t) plays a role inL(t) whena(t) varies with
time in Eq. (9), although it does not appear in Eq. (7). This
further illustrates that an interpretation ofL(t) for a general-
ized AR(1) process with varyinga(t) cannot be obtained in
a satisfactory manner. In general,L(t) does not allow for an
estimate of the time variations of the parameters of a general-
ized AR(1) process, unless those variations follow stepwise
constant functions (as outlined byLe Mouël et al.(2009)).
If the underlying process is more complicated than an AR(1)
(for example if the variance ofb(t) also varies with time),
then the interpretation ofL(t) in terms of process memory is
impossible.

5 Conclusions

We analyzed the potential ofL2(t), ζ2(t) andQ2(t) trans-
forms of time series to characterize the variability of a time
series. Using elementary statistical techniques of hypothe-
sis testing, based on Monte Carlo simulations, we have pro-
vided a framework to check the statistical significance of
such transforms, and hence help with their physical interpre-
tation.

Following Le Mouël et al.(2009), we applied those pro-
cedures to temperature and geomagnetic activity time series.
We found that theζ2(t), Q2(t) andL2(t) variations of those
variables are generally significant with respect to an AR(1)
process. Moreover, a rigorous test between both variables
shows that no significant correlation exists between them. Of
course, we do not exclude that such transforms would not
give significant results with other data sets.

This study can be extended to other transforms and sta-
tistical diagnostics. We emphasize the importance of testing
statistical estimates with respect to reasonably chosen null
hypotheses in order to avoid data snooping. In the case of
L2(t), the most reasonable and simple null hypothesis is an
AR(1) process, for whichL2(t) has a direct interpretation.
But temperature variations generally cannot be modelled by
an elementary AR(1) process (Huong Hoang et al., 2009;
Yiou et al., 2009). If time variations ina andσb are intro-
duced in Eq. (1), their contribution to theζ2(t) andQ2(t)

transforms cannot be separated as simply as for an AR(1).
This strongly limits the use and interpretation of those trans-
forms to diagnose the variability of a time series.

Finally, we point out that all the results presented in this
paper are based on second order statistics of time series. The
L2 diagnostic omits variations of first order, i.e. variations

of the mean. From a quick inspection of Fig.1, it is clear that
the mean temperature evolves with time on multi-annual time
scales. None of the presented analyses allow to explain such
a temperature variation with a geomagnetic series. The in-
crease of temperature (or temperature anomalies) after 1940
is still unexplained by the variations of the geomagnetic field
anomalies.

Supplementary material related to this article is available
online at:
http://www.clim-past.net/6/565/2010/
cp-6-565-2010-supplement.zip.
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Courtillot, V., Le Moüel, J. L., Blanter, E., and Shnirman, M.:
Evolution of seasonal temperature disturbances and solar forcing
in the US North Pacific, J. Atmos. Sol.-Terr. Phys., 72, 83–89,
doi:10.1016/j.jastp.2009.10.011, 2010.

Clim. Past, 6, 565–573, 2010 www.clim-past.net/6/565/2010/

http://www.clim-past.net/6/565/2010/cp-6-565-2010-supplement.zip
http://www.clim-past.net/6/565/2010/cp-6-565-2010-supplement.zip
www.r-project.org


P. Yiou et al.: Statistical issues for solar–climate relationship 573

Embrechts, P., Kluppelberg, C., and Mikosch, T.: Modelling Ex-
tremal Events, Springer-Verlag, 2000.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.,
Mann, M. E., Robertson, A. W., Tian, Y., Varadi, F., and Yiou,
P.: Advanced Spectral Methods for Climatic Time Series, Rev.
Geophys., 40, 1–41, 2002.

Green, P. J. and Silverman, B. W.: Nonparametric regression and
generalized linear models: a roughness penalty approach, Mono-
graphs on statistics and applied probability; 58, Chapman & Hall,
London; New York, 1st edn., 1994.

Haigh, J.: The role of stratospheric ozone in modulating the solar
radiative forcing of climate, Nature, 370, 544–546, 1994.

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt,
G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns,
B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Falu-
vegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley,
M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon,
S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J.,
Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun,
S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M.,
and Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-
Atmos., 110, doi:10.1029/2005JD005776, 2005.

Hegerl, G., Zwiers, F. W., Braconnot, P., Gillett, N., Luo, Y., Orsini,
J. M., Nicholls, N., Penner, J., and Stott, P. A.: Understand-
ing and Attributing Climate Change, in: Climate Change 2007:
The Physical Science Basis. Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Solomon, S., Qin, D., Manning,
M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller,
H., Cambridge University Press, Cambridge, UK and New York,
NY, USA, 2007.

Hoyt, D. and Schatten, K.: Group Sunspot Numbers: A new solar
activity reconstruction, Sol. Phys., 179, 189–219, 1998.

Huong Hoang, T. T., Parey, S., and Dacunha-Castelle, D.: Mul-
tidimensional trends: The example of temperature, Eur. Phys.
J.-Spec. Top., 174, 113–124, doi:10.1140/epjst/e2009-01094-6,
2009.

Jansen, E., Overpeck, J., Briffa, K., Duplessy, J.-C., Joos, F.,
Masson-Delmotte, V., Olago, D Otto-Bliesner, B., Peltier, W.,
Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O.,
Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change
2007: the physical science basis: contribution of Working Group
I to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by Solomon, S., Qin, D.and Manning,
M., Chen, Z., Marquis, M., Averyt, K., Manning, M., and Miller,
H., chap. 6, Cambridge University Press, Cambridge, New York,
2007.

Klein-Tank, A., Wijngaard, J., Konnen, G., Bohm, R., Demaree,
G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-
Hansen, C., Heino, R., Bessemoulin, P., Muller-Westermeier, G.,
Tzanakou, M., Szalai, S., Palsdottir, T., Fitzgerald, D., Rubin,
S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aber-
feld, R., Van Engelen, A., Forland, E., Mietus, M., Coelho, F.,
Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Lopez, J.,
Dahlstrom, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachal-
iuk, O., Alexander, L., and Petrovic, P.: Daily dataset of 20th-
century surface air temperature and precipitation series for the
European Climate Assessment, Int. J. Climatol., 22, 1441–1453,
2002.

Lawless, J. F.: Statistical models and methods for lifetime data, Wi-
ley series in probability and statistics, Wiley-Interscience, Hobo-
ken, N.J., 2nd edn., 2003.
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