Clouds and turbulent moist convection

Caroline Muller Laboratoire de Météorologie Dynamique Ecole Normale Supérieure

What are clouds ?

Cloud formation

Courtesy : Octave Tessiot

Cloud formation

Courtesy : Octave Tessiot

Clouds and turbulent moist convection

Sir Arthur Charles Clarke (1917-2008) British science fiction writer, science writer and futurist, inventor, undersea explorer amd television series host.

Most famous for co-writing the screenplay of « 2001: A Space Odyssey »

"How inappropriate to call this planet Earth, when clearly it is Ocean." - Arthur C. Clark

Clouds and turbulent moist convection

Sir Arthur Charles Clarke (1917-2008) British science fiction writer, science writer and futurist, inventor, undersea explorer amd television series host.

Most famous for co-writing the screenplay of « 2001: A Space Odyssey »

What are clouds ?

Distribution of cloud amount

What are clouds ?

Cloud amount was underestimated

Courtesy Bjorn Stevens

What are clouds? Key actors of climate

What are clouds? A Grand Challenge

Clouds, Circulation and Climate Sensitivity

How do clouds couple to circulations in the present climate? How will clouds and circulation respond to global warming or other forcings? How will they feed back on it through their influence on Earth's radiation

budget?

Limited understanding of clouds is the major source of uncertainty in climate sensitivity, but it also contributes substantially to persistent biases in modelled circulation systems.

As one of the main modulators of heating in the atmosphere, clouds control many other aspects of the climate system. Read more in the white paper.

Clouds, Circulation and Climate Sensitivity

Leadership			
Activities			
Initiat	tives		
Pr	ojects.		
Meeti	ngs		
Documents	6		

Cloud visualization from space

IR Info on temperature => indicates high-level clouds and deep clouds

WV

Info on flow and water vapor advection. Smooth field

VIS Info on clouds, low and high, thick enough to impact visible light. Partial coverage

Cloud visualization from space

Earth from rocket 1946 Earth From Weather Satellite 1960

Blue Marble 1972

Tintin on the moon 1952

Distribution of clouds

A Year of Weather 2015

This visualisation, comprised of imagery from the geostationary satellites of EUMETSAT, NOAA and the JMA, shows an entire year of weather The satellite data layer is superimposed over NASA's 'Blue Marble Next Generation' ground maps, which change with the seasons.

=> Different characteristics at low and high latitudes

Distribution of clouds

Water vapor from satellite

Larger-scale extratropical convection

Small-scale tropical « pop corn » convection

Deep convective system over Brazil

Clouds are coupled with circulation

Clouds and Circulation: ITCZ

P (mm/day) 1981-1999 climatology, multimodel mean

Clouds and Circulation: ITCZ

Small in Subtropics (descent)

Large in Tropics (ascent)

[Trenberth 2011]

Clouds and Circulation: ITCZ

Courtesy Gilles Bellon

Clouds and Circulation: Hadley cell

Deep cumulonimbus Fair weather cumulus

stratus

Clouds and Circulation: Walker cell

in the equatorial Pacific

Clouds and Circulation: Walker cell

Courtesy Gilles Bellon

Clouds and Circulation: El Nino

Clouds and Circulation: Monsoon

Asian monsoon

West-African monsoon

Clouds are coupled with circulation

Convective organization: equatorial waves

Convective organization: equatorial waves

Convective organization: MJO

MJO composite life cycle

Convective organization: equatorial waves

Convective organization: equatorial waves

Mesoscale convective systems

Tropical cyclones

Transitions between organized structures

a6 VAPOR 06/17/97 00002 HBL Montecey Code 7541

Convective systems in an african easterly waves

Hurricane Isabel off the coast of Africa

courant-jet polaire

High latitudes => clouds embedded in low/high pressure systems and associated fronts NASA

Figure 6 : représentation d'un courant-jet d'altitude. Figure 7 : représentation d'une dépression et ses fronts associés.

Figures 8 et 9 : cartes atmosphériques d'une situation météorologique (pression de surface et fronts).

Clouds in frontal systems

Cross sectional view

Warm front

Cold front

280

Clouds from space

Figure 16 : image satellite (canal infrarouge) correspondant à un front froid et un front chaud. Figure 17 : canal vapeur d'eau. Figure 18 : canal visible. WV

VIS

IR