4
MOIST THERMODYNAMIC PROCESSES

As most of the rest of this book is concerned with the dynamics of moist
convective processes, it is fitting to pause to review the elementary thermo-
dynamics of atmospheres with variable water vapor content and with phase
changes of water substance. The latter makes a very major contribution to
atmospheric thermodynamics and introduces a variety of new dynamical
processes with no analogs in dry convection.

It is assumed that the student has had a college-level course in ther-
modynamics and has been or will be exposed to the fundamentals of cloud
microphysics. A detailed treatment of moist thermodynamics can be found
in the work of Iribarne and Godson (1973), while the student is referred to
Rogers and Yau (1989) or Pruppacher and Klett (1978) for expositions on
cloud microphysical processes. The present chapter should be considered
an overview of these subjects.

This chapter begins with a brief exposition of water vapor variables
and moist thermodynamic variables and constants. Section 4.2 describes
the thermodynamics of moist but unsaturated air. “Virtual” temperatures
that are useful in describing density fluctuations in moist and in cloudy and
precipitation-filled air are described in Section 4.3, while phase equilibrium
is the subject of Section 4.4. In Section 4.5, we derive certain conserved
moist thermodynamic variables. The various physical processes that lead
to phase change are described in Section 4.6 and the thermodynamics of
cloudy, saturated air are reviewed in Section 4.7. The chapter concludes
with brief reviews of cloud microphysical processes and of the thermody-
namics of the ice phase.

4.1 Moisture variables

The amount of water vapor in the atmosphere may be described by a
number of related variables, the most commonly used of which are the
mizing ratio (r), which is the mass of water vapor per unit mass of dry
air; the specific humidity (q), the mass of water vapor per unit mass of
air (including the vapor); the vapor pressure (e),! the partial pressure of
water vapor; and the vapor density (p,), the mass of vapor per unit volume.

1 Logically, the vapor pressure should be labeled py. Here we retain e to conform

to widespread usage, and for greater ease of notation.
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These and other moist thermodynamic variables are listed in Appendix 1.
The mixing ratio is related to vapor density by

>

) 4.1.1
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where pq is the mass of dry air per unit volume, while use of the ideal gas
law in the above gives a relation between r and e:

po BT _Ra_ e _ e (4.1.2)
ps/RdT  R,p—-e p—e

where pq is the partial pressure of dry air, R4 is the weighted mean gas

constant for all the constituents of air other than water vapor, and R, is the

gas constant for water vapor. We have also used Dalton’s law, p = pg + e.

We define € as the ratio of R4 to R,; it is also the ratio of the molecular

weight of water to the mean molecular weight of dry air, where the latter

is defined
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where M; is the mass of the ith constituent of dry air and m; is its molecular
weight.

The specific humidity, g, is related to vapor pressure and mixing ratio
by p T €e

v
= i+p 141 p-ell—¢e (4.1.4)

The mixing ratio, specific humidity, and vapor pressure that would ob-
tain if the atmosphere were saturated at the same temperature and pressure
are denoted, respectively, as the saturation mizing ratio (r*), saturation spe-
cific humidity (¢*), and saturation vapor pressure (e*). Since e* is a function
of temperature alone (see Section 4.4), all these are state variables; that is,
they are functions of temperature and pressure alone.

The relative humidity (H) is the ratio between the actual and satura-
tion vapor pressure?:

_6
=~

~ (4.1.5)

In terms of mixing ratios, we have, from (4.1.2),

_r (1+_’"/“) | (4.1.6)

™ 1+r/e

Condensed water may virtually always be considered to be in suspen-
sion in the air; that is, all water drops and ice crystals or pellets can be

2 The relative humidity is sometimes defined as the ratio of the actual mixing

ratio to the saturation mixing ratio.
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considered to be falling at their terminal velocities. We may describe the
liquid water content by the liguid water mizing ratio (r;), which is the mass
of liquid per unit mass of dry air. We also define a total water content (r;)3
by

Te =T+ Ty (4.1.7)

r; is therefore the total water content (except ice) per unit mass of dry air.

The ice content can be described by the ice mizring ratio (r;), and the
sum of the vapor and ice contents is r;,. We may also define a net water
content T = r + 1, + ;. Since the saturation vapor pressure over ice is
different from that over water, we define e# as the former and also define
r#, g%, and H; based on e¥*.

In addition to the above, there are other density and thermodynamic
variables listed in Appendix 1 that are defined as they are introduced in
subsequent sections. The student is advised that, although it is tedious,
committing these to memory will greatly facilitate the comprehension of
the rest of this book as well as research papers on the subject of moist
convection and phase changes in the atmosphere.

4.2 Thermodynamics of unsaturated moist air

The thermodynamics of dry and moist (but unsaturated) air differ in that
the effective heat capacities are influenced by the presence of water vapor.
Water vapor is a triatomic molecule whose state may be described by three
translational and three rotational coordinates, giving six quadratic terms
in the expression of its kinetic energy. The equipartition theorem would
give

Coo = 3R, = 1384.53 J kg™! K™!
and
cpy = 4R, = 1846.04 J kg™' K™,

where c¢,, and ¢, are the heat capacities of water vapor at constant volume
and constant pressure, respectively. Here it is assumed that the molecule is
in the ground state; that is, that vibrational energy does not contribute to
heat capacity. But at atmospheric temperatures and pressures, vibrational
states do occur so that experimental values of the heat capacities exceed
these by an amount that depends on temperature and pressure. Over the
range of tropospheric conditions, these variations are less than 3% and will
be ignored here, so that as listed in Appendix 2,

Cop ~ 1410 J kg™! K71,
cpp =~ 1870 T kg™! K71

The total water content is sometimes denoted by Q.
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The effective heat capacities of a mixture of dry air and water va-
por may be deduced from the first law of thermodynamics, which may be
written

dQ = dU + pdV, (4.2.1)

where dQ is the total heat input,® U is the total internal energy, and V is
the volume. At constant volume, we may write the above as

(Mv + Md) dQ = (Mdcvd + Mvcw) dT, (4.2.2)

where dQ is the specific heat input; M, and My are the masses of water
vapor and dry air, respectively; and c,q is the heat capacity of dry air at
constant volume. Dividing through by My and making use of the definition
of mixing ratio, we have

BQ . 1+ rcvv/cvd —
<8T)v = Cyq ( o r > =c, (4.2.3)

where we have defined ¢, as the effective heat capacity. Since r is always
much smaller than 1 in the atmosphere, the above is approximately

Ci, ™ Cyd [1 +7r (Cv—v - 1)] ~ Cyg (1 +0.947) . (4.2.4)
Cud

By a similar procedure, the effective heat capacity at constant pressure

1+r2 ¢
Cpd | —=| ~cpg |[1+7 |2 -
e . [ (cpd )] (4.2.5)

~ cpq (1 + 0.857).

Using these quantities, the first law becomes

is

I —
Cp—

dQ = ¢, dT + pda (4.2.6)
or, equivalently,
dQ = ¢, dT — adp, (4.2.7)

where « is the specific volume, that is, the volume per unit mass of (moist)
air. This may be expressed

o= |4 _ aq _RdT 1
Mg+ M, l14+r pg 147
_RyTps+e 1  RyT1+r/e

p pg 147 p 147

=R-, (4.2.8)

Sl

4 In general, dQ is not a perfect differential!
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where a4 is the volume per unit mass of dry air and Ry is the gas constant
for dry air. Thus, we have derived the effective gas constant (R'):

1+7/e
R =R )
d 1+r7r

(4.2.9)

Since € < 1, the effective gas constant is larger than Rj.
In an adiabatic process, the temperature varies with pressure, from
(4.2.7) and (4.2.8), according to

T

cp, dT = R'— dp,
p
which may be written
RI
dInT = —dlnp. (4.2.10)
Cp

Since r is constant in a reversible, unsaturated process, this may be exactly
integrated (ignoring the small temperature dependence of c;) to define a

R,/C’

Ry 1+r/e

po Cpd 147 CI’II/de
T (—
p

%(1—0.2@)
:T(%) , (4.2.11)

o

6

where py is a reference pressure usually taken to be 1000 millibars. The po-
tential temperature () thus defined is conserved in adiabatic displacements
of unsaturated air. This shows that, due to the increased heat capacity of
moist air, the temperature will change less rapidly with pressure in moist
air. Since r is generally less than 0.04 in the atmosphere, the exponent in
(4.2.11) varies by less than 1%; this variation is usually ignored.

4.3 Virtual and density temperatures

According to (4.2.8) the specific volume (1/p) of air varies with water vapor
content at constant temperature and pressure, so that moist air is lighter
than dry air at the same p and T. (Some scientists during the nineteenth
century thought that this was responsible for updrafts in cumulus clouds.)
It has become conventional to absorb this water vapor dependence of den-
sity into a modified temperature, called virtual temperature (T,), so that

RdTv = R'T,
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or

14+7/e
1+r

The virtual temperature is therefore greater than the temperature. It can
be thought of as the temperature dry air would have to have to yield the
same density as moist air at the same pressure.

The virtual potential temperature is defined by neglecting the water
vapor dependence of the exponent of (4.2.11) and replacing the temperature
by the virtual temperature:

p R(l / Cpd
%zn(f) (4.3.2)

A comparison of two air masses of differing 6, at the same pressure will
thus yield a comparison of their virtual temperatures and, therefore, their
densities. Since r and # are conserved in reversible processes, 6, is a (very
nearly) conserved variable in unsaturated air and is also directly related to
density. For this reason, the vertical gradient of 8, is the relevant stability
parameter in moist unsaturated air, as shown in Chapter 6. The convective

atmospheric boundary layer is therefore characterized by nearly constant
6,.

T,=T

~ T (1 + 0.608r) . (4.3.1)

When air is filled with cloud droplets, ice crystals, and /or precipitation
of any type, the particles may always be considered to be falling at their
terminal velocities, to a good approximation. From this point of view, cloud
and precipitation may be considered to be in suspension. For many purposes,
the mixture of air and condensed water may be considered as a single,
heterogeneous system rather than as two coupled systems, though there are
exceptions to this rule. But if the scale of density-driven motions that we are
interested in is much larger than typical distances between condensed water
particles, as is usually the case, then it is natural to consider the condensed
water as contributing to the density of the heterogeneous system. We can
then write the specific volume of the system as

o= Vo +VI+V;
Mg+ M, + M, + M,’

(4.3.3)

where V,, V|, and V; are the volumes occupied by moist air, liquid water,
and ice, respectively, and the M'’s are the masses of dry air, vapor, liquid
water, and ice. Dividing through by M, gives

oo 1+ 7 (u/ag) +1i(0s/aq) (43.4)
¢ 1+rr ’ e

where a; and «; are the specific volumes of liquid water and ice, respec-
tively, and r7 is the net water mixing ratio, 77 = r + r; + r;. Since the
specific volumes of liquid and ice are each about 3 orders of magnitude less
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than the specific volume of air, and since r; and r; are typically of order
1073, the last two terms in the numerator of (4.3.4) are negligible. Using
this and the ideal gas law, together with the definition of vapor mixing
ratio (4.1.2), gives

R4T 1 R4T 1 T1
a~ 2 = d- Pd te = R4— + r/e. (4.3.5)
pda 1+ P pd l+rr pl+ry
This leads naturally to the definition of density temperature (T,):
1+7/e
=T . 4.3.
p 14+7rp ( 3 6)

T, may be thought of as the temperature dry air would have to have to yield
the same density as moist, cloudy air. Depending on the relative amounts
of condensed water and water vapor, T, may be either greater than or
less than the actual temperature. Once again, when used in the ideal gas
law, T, reflects the actual density of the heterogeneous system; that is,
a = R4T,/p. Note that T, is a special case of T),, since when condensed
water is absent rp = 7.

4.4 Phase equilibrium of water substance

The phase diagram for water substance is presented in Figure 4.1. The
features of this diagram are as follows:

1) The triple point of water substance lies at O; here all three phases are
in equilibrium. This is characterized by

To = 273.16 K = 0.01°C,
eo = 6.112 millibars.

2) The vapor-liquid curve ends at C, the critical point, beyond which
there is no phase discontinuity between vapor and liquid. This occurs
at

eer = 221,000 millibars.

3) The portion of the curve A-C below the triple point represents equi-
librium between supercooled water and vapor.

4) The curve O-B represents phase equilibrium between vapor and solid;
liquid—ice equilibrium is represented by O-D.

5) The liquid-solid transition has a negative slope as a consequence of
the fact that ice is less dense than water. This is a relatively unusual
property of materials, and has important geophysical consequences
(e.g., ice floats and glaciers move since greater pressure lowers the
freezing point). The slope of this curve is so nearly vertical, however,
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Fig. 4.1 Phase diagram for water substance. The letters L, V, and I denote
liquid, vapor, and ice phases, respectively. O is the triple point and “C” is the
critical point. The curves O-C, O-D, and O-B represent phase equilibria for
liquid—vapor, liquid-ice, and ice-vapor. The curve A-O represents equilibrium
between ice and supercooled water.

that the equilibrium may be considered to occur at 0°C over a large
range of atmospheric pressures.

The phase equilibria are determined by integration of the Clausius-
Clapeyron equation, which is derived from the definition of latent heat and
from the chemical, mechanical, and thermal equilibria conditions.

The latent heat pertaining to the phase transition of a substance is
defined as the difference between the heat contents, or enthalpies, of the
two phases:

Lii = kii — ks, (4.4.1)

where k is the specific enthalpy and the subscripts (z) and (:2) refer to the
two phases. The dependence of L; ;; on temperature and pressure may be
obtained by differentiating (4.4.1):

(5),- () |+ [(52),-(3).]

Ooay; oa;
=dT Cpii — Cp; +dp{aii—ai+ [( “) —( l) ]}, 4.4.2
(p pi) p ap i ap - ( )

where we have used the definition of enthalpy

dLi,‘ii = dT

k =u+ pa,
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where u is the specific internal energy. From the definition of ¢,

)&,

Directing our attention to the term determining the pressure dependence
of dL; ;;, we first note that for an ideal gas o = —p(da/dp)r. Also, for
liquid water and ice, both a@ and da/0p are very small. Thus, to a good
approximation, we may neglect the pressure dependence of L in (4.4.2),
resulting in Kirchhoff’s equation:

dLi,ii

aT = Cpii — Cpi- (443)

Since the heat capacities of liquid water and water vapor do not vary much
over the range of atmospheric temperatures, (4.4.3) may be integrated to
get

Li i =~ Lj ii0 + (cpis — cpi) (T —273.16 K) , (4.4.4)

where L; ;o is the latent heat at the triple point.
The phase equilibria are determined by requiring that the two phases
be in thermal, mechanical, and chemical equilibrium:

T; = T,
pi = P, (4.4.5)
9i = Giis

where g is the Gibbs free energy:
g=u+pa—-Ts=k-Ts, (4.4.6)

where s is the specific entropy. If we produce a reversible, infinitesimal
change while maintaining equilibrium, it follows that

dg; = dgis, (4.4.7)
or substituting (4.4.6),
a;dp — s, dT = a;; dp — s;; dT, (4.4.8)
where we have made use of the first law of thermodynamics:
T ds = du + pda.

It follows from (4.4.8) that

dp Sii — Si
— = — 4.4.9
(dT)i,ii Qig — Qq ( )
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We also have, from (4.4.6) and (4.4.1), together with (4.4.5),
Liii = ki — ki = T(s4 — s4),

so that (4.4.9) can be written

dp _ Li,'ii
(ﬁ>i,ii a T(aii - ai)' (4‘4'10)

This is the Clausius-Clapeyron equation.
For liquid—ice equilibrium, the specific volumes are nearly constant
and (4.4.10) is approximately

(%) ~ —1.344 x 10° millibars K™,
ice,vapor
showing that the melting temperature changes by only 0.007 K for a 1000
millibars change in pressure.

In the case of liquid—vapor equilibrium, we can, to a good approxima-
tion, ignore aiquid compared to Qyapor, and using the ideal gas law,

de* L,e*
T = RT2’ (4.4.11)

where e* is the saturation vapor pressure and L, the latent heat of vapor-
ization. If we use (4.4.4) to approximate the temperature dependence of
L,, then integration of (4.4.11) gives

e* Lyo — (cpw —a)To (1 1 cpw—c, T
| = . In —, 4.4.12
"6.107 R, g, g (4412

To, T

where ¢, is the heat capacity of liquid water, L, is the latent heat of va-
porization at Top = 273.15 K, and e* is in millibars. Several approximations
are involved in (4.4.12), including ignoring the specific volume of liquid
water in (4.4.10), treating water vapor as an ideal gas, and ignoring the
temperature dependence of the heat capacities. Moreover, in the deriva-
tion (4.4.10) we have neglected the influence of the pressure exerted by
dry air and also the fact that the liquid phase contains dissolved gas. Even
so, (4.4.12) is accurate to within 0.5% of experimental values in the range
—20°C < T < 30°C. An improvement can be made to (4.4.12) pertain-
ing to pure phase equilibrium (without dry air) by slightly modifying the
coefficients. This gives

6743.769
Ine* = 53.67957 —~ —<— —4.8451InT, (4.4.13)
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with e* in millibars and T in K. This matches the values given in the
Smithsonian Meteorological Tables (List, 1951) to better than 0.006% in the
range 0°C < T < 40°C. Measurements of equilibrium below 0°C between
supercooled water and vapor are not entirely accurate, but the above fits
the values in the Smithsonian tables to within 0.3% down to —30°C and
within 0.7% as low as —40°C. A somewhat simpler, if slightly less accurate,
formula has been suggested by Bolton (1980) as a modification of Tetens’s
(1930) formula:

(4.4.14)

17.67T
e* =6.112exp ( 0 ) ,

T + 243.5

with T in degrees Celsius. In the range —35°C < T < 35°C this is accurate
to within 0.3%.

The phase equilibrium between water vapor and ice may be found
from the Clausius-Clapeyron equation (4.4.10) with similar approximations
made to arrive at an equation like (4.4.11) but with Lg, the latent heat of
sublimation, and thence to a relation analogous to (4.4.12) but with L,
and c¢; replacing ¢;. Once again, a slight modification of the coefficients
gives a better fit to the values in the Smithsonian tables, with the equation

6111.72784

Ine# = 23.33086 —
ne T

+0.15215In T, (4.4.15)

accurate to within 0.14% in the range —80°C < T < 0°C.

The effects of the departures of water vapor from an ideal gas, the
partial pressure of dry air, and the presence of dissolved gas in equilib-
rium introduce a slight pressure dependence of e# and e*. These can be
accounted for by an empirical correction factor, f, such that

e*’ — fe*
and (4.4.16)
e#l = fie#a

where e* and e* are the corrected saturation pressures. Some values of
f are listed in Table 4.1. Using a mean value of 1.003 will result in total
errors less than 0.3% over a large range of tropospheric conditions.

4.5 Conserved moist thermodynamic variables

We will find it useful to define several thermodynamic variables that are
conserved under several thermodynamic processes. First consider a system
that undergoes phase changes of water at constant pressure. Then if no
heat is added other than latent heat associated with the phase changes,
the total enthalpy is conserved since

dQ = dk — adp.
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Table 4.1 Some values of the empirical
correction factors. [From Iribarne and

Godson (1973)]

p (millibars)

T (°C) 30 100 1100

f

—-40 1.0002 1.0006 1.0060

0 1.0005 1.0008 1.0047

40 — 1.0019 1.0054
fi

-80 1.0002 1.0008 1.0089

—-40 1.0002 1.0006 1.0061

0 1.0005 1.0008 1.0048

The enthalpy, k,% of the heterogeneous system consists of the specific
enthalpies of dry air, water vapor, and liquid water (ice is considered later):

Myk = Mykq + Mk, + Mk, (4.5.1)

where k is the total enthalpy per unit mass of dry air and the M’s denote
masses of each phase denoted by d (dry air), v (vapor), and r; (liquid
water), respectively. Dividing through by M, gives

k = kg + roky + ik, (4.'5.2)
By the definition of latent heat, (4.4.1), we have
Ly(T) = ky — ki,
so that (4.5.2) may be written
k=kqg+ L,r + ks, (4.5.3)

where r; is the total water content. Substituting the definitions of k4 and
k; and using the ideal gas law gives

k = (cpa + mect)T + L. (4.5.4)

5 Enthalpy is often denoted by h. Here we use k to avoid confusion with h, which
is widely used to denote the moist static energy.
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This is usually referred to as the moist enthalpy, but we refer to it merely
as the enthalpy.
Since the quantity

Ly — (cpy — a1)To = Ly — (cpy — a)T

is a constant, and since r; is a constant, we can form another conserved
variable by subtracting 7¢ [Lyo — (¢py — ¢1)To] from (4.5.4), giving

kw = (cpd + TtCpy)T — Lyry. (4.5.5)

This is called the liquid water enthalpy. It is important to realize that k
and k, are conserved under an isobaric process as long as no external
heat is applied or mass lost from the system, regardless of whether the
transformations are reversible, since we have used only the first law of
thermodynamics.

We next consider quantities conserved under reversible moist adiabatic
processes. As we assume reversibility, the heterogeneous system must be in
phase equilibrium at all times. In this case the total entropy (s) is conserved.

By analogy to (4.5.2), the total specific entropy (entropy per unit mass
of dry air) may be written

S =84+ TSy + 7S, (4.5.6)

where s4 is the specific entropy of dry air, s, is the specific entropy of water
vapor, and s; is the specific entropy of liquid water.
Writing the Clausius-Clapeyron equation as

Lv = T(S: - Sl),

where s} is the specific entropy of water vapor in equilibrium with liquid
water, and substituting this into (4.5.6) gives

L
S =8q+T18 + —;,—T + 7(sy — 53). (4.5.7)

Using the definitions of specific entropies:

Sd = ¢cpaInT — RqInpy,
Sy =cppyInT — Ry Ine,
Sy = CpyInT — Rylne*,)
and
si=¢InT, (4.5.8)
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(4.5.7) may be written

s =(cpd + i) InT
L,r

T

— Rglnpy + —rRy In(H). (4.5.9)

Note that the last term vanishes when the air is saturated (H = 1) and also
in the limit of r — 0, reaching its maximum magnitude for intermediate
H. The quantity s, defined by (4.5.9), is conserved under reversible moist
adiabatic transformations.

It has become conventional to express entropy in terms of an equivalent
potential temperature 6., which is defined so that

(cpd + Tec1) Inbe = s + RqInpy, (4.5.10)

where py is a reference pressure. Substituting (4.5.9) gives

Do R‘l/(cl,,['f‘cl rt)
5(2)
Pd
—rR./(cpatcire) Lyr 4 5 11
(H) 5P [(cpd+cz7't)T]. (451D

When r =0, 6. = 6, the potential temperature.

It is of interest to note the conditions under which entropy, as repre-
sented by s or 6., is not conserved. Obviously, s will change when external
sensible heating such as radiation or conduction is applied, or when latent
heating is applied externally as occurs, for example, when water evaporates
into air from oceans and lakes. Even when transformations are adiabatic,
however, small entropy increases will occur due to irreversible effects. An
important example of this is the evaporation of rain into unsaturated air.
By differentiating (4.5.9) and using the first law of thermodynamics, the
Clausius-Clapeyron relation, and Kirchhoff’s relation, it can be shown that
there is an irreversible increase of entropy associated with this process,
given by

(ds)irr = —Ry In(H) dr. (4.5.12)

This is always nonnegative since H < 1 and dr > 0, the latter being
the case since it is impossible for condensation to occur in subsaturated
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transformations. Comparing this term with the internal energy term of the
first law of thermodynamics, we can calculate that the evaporation of 10 g
kg~! of liquid water into air at 50% relative humidity increases the entropy
by an amount equivalent to a diabatic temperature increase of about 1°C.
Thus, bringing dry air to saturation by evaporating rain into it increases
its entropy by a small, but not always negligible, amount.

There are two other entropy variables that we shall find useful: the
liquid water potential temperature 6, and the liquid water virtual potential
temperature 0),. Starting again with (4.5.6),

S =84 + 78y + TSI
=S4 + TSy + 11(S1 — Sv)
= 84 + TSy + T1(S1 — S} (4.5.13)
The last equality results because in thermodynamic equilibrium s, = s
whenever r; # 0. Using the definitions of entropies, (4.5.8), the Clausius-

Clapeyron equation,
L, =T(s; — si1),

€E+rT
. p
= ()

and also making use of the relation r = r, — r;, (4.5.13) becomes

and the relations

Sw = (cpd + TtCpy) InT — (Rg + ¢ R,) Inp

— — L‘U
+ (R4 +reRy)In (1 + 2 : ”) —rRyIn (” ”) - T”. (4.5.14)
€

By adding the conserved quantity
T T
(Ra +7Ry) lnpo — (Ra +reRy) In (1 + f) +7¢RyIn (?‘)

to (4.5.14), dividing the result through by (cpq + 7tcpy) and then taking the
exponent of the resulting quantity, we arrive at the definition of the liquid
water potential temperature, 6;:

— B
X (1 - ﬂ) exp [ Ly ] : (4.5.15)
T (cpd + TeCpy)T
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_ [ Ri+ 1R,
X=\"T"1T-")

e
7= Cpd + TtCpy .

This quantity is also conserved under reversible, adiabatic transformations.
It has the virtue of reducing exactly to potential temperature (4.2.11) when
r; = 0. This can also be expressed in terms of virtual temperature, or virtual
potential temperature, by making use of the definition of the former and
the relation r = r; — r;:

1 1471 —
T=T,,( +:>=Tv trnon) (4.5.17)
1.}.2 1+ﬂ_"'L

€

in which

(4.5.16)

(Note that we have used virtual temperature, not density virtual tem-
perature.) Substituting (4.5.17) in (4.5.15) and dividing the result by the
conserved variable (1 + r;)/(1 + r¢/€) gives the definition of liquid water
virtual potential temperature:

X x—1
et (3) (- 55) (- 25)
P 1+7¢ €+ T

x (1 _ ﬂ) K exp [( Lo ] , (4.5.18)

Cpd + TtCpy)T

with x and « given by (4.5.16). This quantity reduces to the virtual poten-
tial temperature (4.3.2) when r; = 0.

One further thermodynamic quantity will prove to be useful in dealing
with moist convective processes: the static energy h. It is conserved in adia-
batic displacements in which the pressure change is entirely hydrostatic. We
derive it using the adiabatic form of the first law together with Kirchhoff’s
relation (4.4.3):

0 = (cpd + rec1)dT + d (Lyr) — aq dp. (4.5.19)
We also have, from (4.3.4),
ag ~ a(l +1), (4.5.20)

where we have neglected the very small contributions of the specific volume
of liquid water. For a strictly hydrostatic pressure change,

adp = —gdz, (4.5.21)
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where z is altitude. Combining (4.5.19) to (4.5.21) gives
0 = (cpd + rec1) dT + d(Lyr) + (1 4+ 1¢)g dz = dh. (4.5.22)

If r, is also conserved, the above may be integrated to yield

h = (cpa +reat)T + Lyr + (1 4+ 1¢) 92, (4.5.23)

where 2z is now the geopotential height, which is defined to account for
variations in the gravitational acceleration, g. Note that we have made no
assumptions about the existence of two phases in deriving h, so that h s
conserved for adiabatic, saturated or unsaturated transformations in which
mass is conserved and in which the pressure change is strictly hydrostatic.
We can also define a dry static energy, hy,® conserved under hydrostatic
unsaturated transformations:

ha = (cpa + repy)T + (1 4+ 1)g2. (4.5.24)

Also, by subtracting the conserved variable
Tt [Lwo — (cpw — c1)To) = r¢ [Ly — (cpo — )T

from (4.5.23), we obtain a new conserved variable called the liqguid water
static energy:

hw = (cpd + TeCpy)T — Lyry + (1 4+ 1¢) g2, (4.5.25)

The static energies h, hg, and h,, are very closely related to the entropy
variables 6., 6, and 6;, respectively. Their distributions in the atmosphere
look very similar.

Finally, it will prove useful to deduce certain differential relations
among several of the thermodynamic variables we have defined. We be-
gin with the definitions of enthalpy and entropy, (4.5.4) and (4.5.8), and

6 The symbol s is often used to denote dry static energy; here we adhere to the
notation hy to avoid confusion with entropy.
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consider the relationship between small increments of each quantity, with
entropy increments assumed to occur in phase equilibrium:

dk = (cpd + rcpy + 1) dT + T dry + Ly dr (4.5.26)
and
Tds = (cpg +Tcpy +11c1)dT + T InT dry + L, dr — agdp,  (4.5.27)
from which we may write
dk =Tds+ T (1 —InT)dr; + a4 dp. (4.5.28)

Here we have allowed for the possibility of an open system from which
water mass may be added or subtracted. We can then deduce the following:

@),
S Py

('a—p)s , o (4.5.29)

By cross-differentiating the expressions in (4.5.29), one may obtain certain
Mazwell’s relations for moist thermodynamic processes:

oT 8ad
().~ (5, (4:5:30)

(g) =—¢InT (%) , (4.5.31)
t p,s b7t

Bad oT

(8—”)1)’8 = —C InT <6—p>s’n . ' (4532)

Several of these will prove useful later in deriving stability properties of
moist atmospheres.
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4.6 Processes leading to saturation in the atmosphere

There are several physical processes that can lead to saturation of previ-
ously unsaturated air. While by far the most important of these is cooling
by adiabatic expansion, other processes occasionally come into play and
are briefly reviewed here.

4.6.1 Diabatic cooling at constant pressure

Close to the surface and near the tops of clouds, the radiative flux diver-
gence can be large and the atmosphere may cool appreciably. Near the sur-
face, this process may be approximated as occurring at constant pressure.
If enough cooling occurs, the saturation vapor pressure may drop as low as
the actual vapor pressure and saturation will occur, leading to dew, frost,
or ground fog. The temperature at which saturation is achieved by isobaric
cooling is called the dew-point temperature (T;), while the equivalent tem-
perature at which ice saturation occurs is the frost point temperature (T}).
They are defined by the relations

e*(Tq) =e
and (4.6.1)
e (Ty) = e.

Note that e itself is conserved in an isobaric, unsaturated process since
the conserved variable is 7, and r = ee/p — e. We can find Ty and Ty by
inverting (4.6.1), though this cannot be done in closed form using (4.4.13)
or (4.4.15). But an excellent approximation can be obtained by inverting
Bolton’s formula (4.4.14), giving

243.5
17.67 ’
(ln e/6.ll2) -1

where e is given in millibars and Ty is in degrees Celsius.

Tdﬁ

(4.6.2)

4.6.2 Cooling and moistening by evaporation of water

If rain falls into unsaturated air and evaporates, the vapor pressure will in-
crease at the same time that the saturation vapor pressure decreases, since
the heat of vaporization in this case must be supplied by the air. If the
process continues long enough, the air asymptotically approaches satura-
tion. The idealized process is considered to occur at constant pressure. The
temperature ultimately achieved at saturation is called the wet-bulb tem-
perature (T, ), and can be measured by ventilating a thermometer whose
sensing bulb is kept wet by a piece of damp cloth (thus the term “wet
bulb”). Since the process is isobaric, the total enthalpy of the air-water
system is kept constant, so that from (4.5.4) we have

(cpd + 7¢¢1)(Tw — T) + Lo(Tow)r*(Tw) — Ly(T)r = 0, (4.6.3)
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where T' and r are the ambient temperature and mixing ratio and L, (T)
and r*(T,) are the latent heat and saturation mixing ratio evaluated at
T = T,. Here r; is the total water content, which is the initial amount
of vapor together with the amount of liquid necessary to saturate the air.
This sum must equal the final mixing ratio, r*(T,,), so that (4.6.3) can be
written

[cpa + 7 (Tw)a) (T — Tw) = Ly(Tw)r* (Tw) — Ly(T)r- (4.6.4)

This is a highly implicit relation for T, given 7 and T'. Alternatively, if T,
and T are known from wet-bulb and dry-bulb thermometers, then r can
be recovered directly from (4.6.4). This is a convenient way of measuring
water vapor content.

4.6.8 Saturation by isobaric miring

Consider two samples of moist unsaturated air of masses M, and M. It
is possible that mixing of these masses will lead to saturation. To see this,
it is first necessary to point out that the vapor pressure and temperature
mix very nearly linearly. From the first law we have

C;,lMldTl + C;,2M2 dT2 = 0, (467)

where ¢, is defined by (4.2.5), and dT; and dT are the changes in temper-
ature of each sample upon mixing. From this we have

/ /
. Cle]Tl + Cp2M2T2
m — / / )

(4.6.8)

where T,, is the final temperature of the mixture. If we neglect the water
vapor dependence of c;,, the above becomes

_M\T\ + MT

T ~ 4.6.9
m M, + M, ( )

Similarly, the specific humidity, ¢, mixes linearly:
g = My + My, @My + g2 M, (4.6.10)

M, + M, N M+ M, ’

where M,; is the mass of water vapor in sample ¢. Thus, as shown in Figure
4.2, the mixture will lie very nearly on a straight line on a diagram with
specific humidity on one axis and temperature on the other. Since g* is
a nonlinear function of T (at constant pressure), it is possible that the
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q*

T —

Fig. 4.2 Schematic phase diagram at constant pressure, where the curve rep-
resents the saturation specific humidity, ¢*, and two samples of unsaturated air
are indicated by points 1 and 2. Since ¢ and T mix nearly linearly, the mix-
ture will lie on a straight line connecting samples 1 and 2. The mixture may be
supersaturated.

mixture of two unsaturated samples will produce condensation of water
vapor.

An example of saturation by this process occurs when very cold air
flows out over relatively warm water. Right next to the water surface, a
thin layer of nearly saturated air forms, having about the same temperature
as the water. Due to unstable stratification and mechanical mixing, some
of this air is stirred upward into the cold, dry air above. If the difference
between the water and air temperature is sufficiently large, the mixture
will saturate, resulting in steam fog or, if the water droplets are super-
cooled, arctic sea smoke. Another form of cloud resulting from mixing is
the condensation trail behind high-flying jet aircraft. Since water vapor is
one by-product of the combustion process, the exhaust gases contain wa-
ter vapor at high temperature. When these mix with the surrounding cold
air, condensation may result, depending on the ambient temperature and
humidity.

4.6.4 Saturation by adiabatic expansion (ascent)

By far the most important means by which saturation is achieved in the
atmosphere is by adiabatic cooling, which is produced by a variety of mech-
anisms, including free convective ascent, large-scale dynamic instabilities,
and forced ascent over topography. As air rises adiabatically, it cools ac-
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cording to the first law of thermodynamics, so that the saturation vapor
pressure falls. Since the mixing ratio is conserved, however, the actual va-
por pressure falls as well. Saturation can only occur if e* falls faster than
e. The change in relative humidity can be written

[dIn(H)], , = [dlne], , — [dIne*] (4.6.11)

r,s )

where the subscripts denote a process at constant entropy and mixing ratio.
From the definition of mixing ratio we can express e as

PdT
e=—o,
€
and we have r
[dlne], , = E;dpd = dlnpy. (4.6.12)
From the Clausius-Clapeyron equation (4.4.11), we have
[dlne*] . = L, [d1nT) (4.6.13)
s RUT r,s) <

while the first law of thermodynamics can be expressed, for adiabatic pro-
cesses

0 = (cpqd + Tcpy) dT — aq dp
= (cpd + rCpy) AT — g dpg — g de

= (cpa +pu) dT — ag (1 + =) dpa, (4.6.14)
€

since e = pyr/e and r is conserved. Using (4.6.14) and the ideal gas law in
(4.6.13) gives
eL, 1+r/e

Spv
deT 1+r7r =y

[dlne*],., = dlnpy. (4.6.15)

We can therefore write (4.6.11) as

(4.6.16)

[dIn(H)],, = dlnpq [1— o 147/ ]

Spv
deT 1 + T Cpal

whereupon we note that relative humidity will increase with decreasing py

if

eL, 1+r/e
—.

Cpd 1+ rzﬁ

T <

(4.6.17)

For saturation to occur, (4.6.17) must continue to be true right up through
the saturation point, that is, T' must be less than

€L,(Tey) 14+ 1*(Te) /e

Tcr =
C 0 *
cpd 1+ r*(Tcr)E’;

(4.6.18)
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The critical temperature given by (4.6.18) will be a function of pressure
since r* is a function of T and p. Since T, turns out to be very large,
however, r* will be very much larger than unity and we can neglect unity
in the numerator and denominator of (4.6.18); that is,

Ter ~ LT“) (4.6.19)
Cpy

This is not a function of pressure and turns out to be the critical point of
water, that is, T, = 647 K. We may thus conclude that adiabatic expan-
sion of moist air will always ultimately lead to saturation in the earth’s
atmosphere.

Given the temperature, pressure, and mixing ratio of an air parcel,
it is possible to find the temperature, pressure, and altitude at which sat-
uration will occur through adiabatic expansion. These will be denoted,
respectively, the saturation temperature, T*; saturation pressure, p*; and
lifted condensation level, z*. The saturation temperature may be found by
first substituting the first law (4.6.14) into (4.6.16):

[dln H)] , = 24 L dinT — =22 47 (4.6.20)
- = n — . .0.
™ Rg 1+7/e R,T?

Using Kirchhoff’s relation (4.4.3) for L,, this can be directly integrated
between the actual state and the saturation state at which H = 1, giving

Cpd 1 +TCpu/Cpd €L — Cpy T*
-1 — [ ZPa pv/*-p 14 ln —
n(#) (Rd I+r/e Ry ) y

Lyo + (c1 — ¢cpu)To 1 1
+ [ T -7 ), (4621)

where H, r, and T are the actual relative humidity, mixing ratio, and
temperature, and T is 273.15 K. This can be solved numerically for T*.
Once T™* is obtained, the saturation pressure can be obtained by integrating
the first law:

p* Cpd + TCpy T*
In— = ——"—1In—,
p Ra(l+r/e) T
while the lifted condensation level can be determined by integrating the
hydrostatic equation:

(4.6.22)

g 1l1+r
= —— d
dlnp R4yT 1+ /e “
or from the first law,
Cpd + TCpy dT = —gdz,

1+7r
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giving
1 + rclni
* de Cpd *
—2z2=——"1(T-T7). 4.6.23
2t - p= (T ) (4.6.23)

Bolton (1980) has derived somewhat simpler forms than (4.6.21) for
the saturation temperature, T*. These are

B 2840
"~ 35InT —lne — 4.805

1

T" = —— g + 55 (4.6.25)

T-55 2840

T*

+ 55 (4.6.24)

or

These are accurate to within 0.1°C in the typical range of atmospheric
temperatures.

It should be noted that the definition of T, p*, and z* can be general-
ized to air samples that contain condensed water, in which case they are the
temperature, pressure, and altitude at which all the condensed water has
just evaporated following reversible adiabatic descent of the sample. The
coordinates (T, p*) are known as the saturation point of an air sample.

4.7 Reversible and pseudoadiabatic processes

When saturated air is displaced reversibly and adiabatically, the moist
entropy defined by (4.5.9) is conserved. This implies that the moist entropy
of a given state is a function of temperature, pressure, and liquid water
mixing ratio, ;. Since a saturated adiabatic expansion involves the release
of latent heat, the temperature will not fall as rapidly as in an unsaturated
expansion. The moist adiabatic lapse rate therefore has a smaller magnitude
than the dry adiabatic lapse rate. A comparison between the two lapse
rates can be found by differentiating (4.5.9). We can write this in terms of
pressure and temperature changes alone by noting that, from the definition
of r,

dr = pie (]—; de—dp). (4.7.1)

Using the Clausius-Clapeyron equation (4.4.11), this may be expressed

. T L,
dr* = p— (pRvT2 dT dp) : (4.7.2)

Substituting (4.7.2) into the differential of (4.5.9) and using the hydrostatic
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equation gives, for a saturated reversible adiabatic displacement,
dT g 1+m
&) T
zZ /) Cpd 1 + rc,,,[
1 + L )T
R.T
N | @73
rl Cptl+rcpn R1IT2(cpcl+GCn)

where I',,, is called the moist adiabatic lapse rate. From the first law for
moist but unsaturated adiabatic displacement we have

(4T
dz 5

where 'y is the dry adiabatic lapse rate. Comparing (4.7.3) with (4.7.4)
gives

1
Fd=i +r

pn?
de 1 + Tcp(l

(4.7.4)

L,r
T _ 1+ fer wrs)
Fd 1+7r c L2r(14r/e) ol
! Cpd+TCpy R,T?(cpa+rcpu)

In the absence of liquid water, r;, this ratio will be smaller than unity
if T < T, with T,, defined by (4.6.18). It can also be seen that this
ratio approaches unity as r; and 7 become small. When the atmosphere is
very moist, this ratio is appreciably smaller than unity. For example, for
air saturated at T' = 25°C, p = 950 millibars, and with no liquid water
content, I';,, /Ty = 0.381.

Since entropy is a function of pressure, temperature, and liquid water
content, it cannot be represented on a single two-dimensional thermody-
namic diagram. For this reason it is convenient to define a pseudoadiabatic
process as one in which the heat capacity of liquid water (or ice) is neglected.
The moist adiabatic lapse rate in this case is found simply by dropping the
small 7; term in the denominator of (4.7.3) and (4.7.5). The resulting lapse
rates differ from the reversibly defined lapse rates by less than 1%.

A pseudoadiabatically defined entropy, sp, may be derived from (4.5.9)
with the liquid water term omitted:

T dsp = (cpg + rCpy) dT + L, dr — agdp

= (¢pd +rc1) dT + d(Lyr) — aq dp, (4.7.6)

where Kirchhoff’s relation (4.4.3) has been used. By using the Clausius-
Clapeyron relation and the ideal gas law, (4.7.6) may be shown to be
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equivalent to

L,r
T

dsp = (cpa + 1) dInT + d < ) — RydInpg — R, d[rIn(H)]. (4.7.7)

Were it not for the mixing ratio dependence of the first term on the right
side of (4.7.7), the latter could be integrated exactly. As it is, we must
integrate numerically, with the result that

T
Sp=8+¢ / rd(InT)-r,InT|, (4.7.8)
1

with s the reversibly defined entropy given by (4.5.9). It is readily seen
that s, < s since r < 1, reflecting the neglect of heat carried by condensed
water.

Bolton (1980) has evaluated (4.7.8) rather accurately in order to arrive
at a pseudoequivalent potential temperature, 6.,. With some curve-fitting,
Bolton obtains

0.2854(1—0.287)
1000
D

3376
X exp [r(l + 0.81r) (_’IT - 2.54)] : (4.7.9)

with T* given by (4.6.24) or (4.6.25). In the range of atmospheric conditions
this is accurate to within 0.3°C.

Sometimes isopleths of 6., are labeled in terms of their temperature
at the reference pressure of 1000 millibars. The quantity is then referred

to as the wet-bulb potential temperature, 6,,. The relationship between 6.,
and 6, is, from (4.7.9),

3376

Bep = 6., exp [r'(l +0.81r") (—9— - 2.54)] , (4.7.10)

where
r' = r*(p = 1000 millibars, T = 6,,).

The pseudoequivalent potential temperature may be interpreted as the
actual temperature achieved by an air parcel under the following thermo-
dynamic process:
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Table 4.2 Temperatures achieved by a parcel lifted reversibly (T)
and pseudoadiabatically (7p) starting from saturation at p = 950
millibars and T" = 25°C. Also shown is the difference between the
density temperatures resulting from each process

p (mb) T (K) Tp (K) T - Tp (K) Tp — Tpp (K)

950 298.15 298.15 0.0 0.0

800 292.36 292.35 0.01 —-1.04
700 287.77 287.73 0.04 -1.75
600 282.32 282.22 0.10 —-2.44
500 275.59 275.36 0.23 -3.07
400 266.78 266.27 0.51 -3.51
300 254.10 252.90 1.21 -3.39
200 233.30 230.32 2.98 -1.76
100 195.77 189.96 5.81 1.70

1) Pseudoadiabatic ascent to zero pressure
2) Dry adiabatic descent to 1000 millibars

Note that no similar meaning can be attached to the reversibly defined
6. in Eq. (4.5.11). Thus the two quantities cannot be directly compared.
In Table 4.2 we list the temperatures of a parcel starting at 950 millibars
and 25°C saturated, but with no liquid water, subject to pseudoadiabatic
ascent and to reversible ascent. This is a very moist parcel by atmospheric
standards. The reversibly lifted parcel is progressively warmer than the
pseudoadiabatic parcel due to the heat-carrying capacity of the liquid wa-
ter. No allowance has been made for freezing effects. By the time the parcel
reaches the upper troposphere the difference is quite substantial.

Also shown in Table 4.2 is the difference between the density temper-
atures [defined by (4.3.6)] resulting from reversible and pseudoadiabatic
ascent. In the former case all the condensate is carried by the airstream,
while in the latter it is all removed as it is formed. Thus the reversibly
lifted parcel has the greater density through most of the troposphere due
to the weight of the condensate. But above about 150 millibars the heat
capacity effect overwhelms the condensate loading and the reversibly lifted
parcel becomes the less dense of the two.

4.8 Microphysical considerations
4.8.1 Nucleation

Up to this point we have tacitly assumed that condensation of water vapor
will occur at nominal water saturation and we have ignored the ice phase
altogether. Here we briefly consider microphysics as it bears on the problem
of condensation, sublimation, freezing, and formation of precipitation. We
emphasize that the following is a superficial treatment; discussion in later
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chapters reveals that complex microphysical processes can have important
effects on convective dynamics.

The saturation vapor pressure expressed by Egs. (4.4.13) and (4.4.15)
together with (4.4.16) pertains to equilibrium between vapor and a planar
water or ice surface. In the atmosphere, the condensate appears as very
small droplets or crystals whose surface energy per unit mass depends in-
versely on the radius of the particle. The creation of this surface energy
must be accounted for in formulating the Clausius-Clapeyron equation.
Specifically, in (4.4.5), it is no longer true that the pressure within the
droplet equals the pressure just outside it; for mechanical equilibrium, the
pressure must be larger within the droplet to compensate for surface ten-
sion. When this is accounted for, the actual saturation vapor pressure is
given by Kelvin’s law:

2
e, = e*exp (RU;;> : (4.8.1)
v

where e is the actual saturation vapor pressure over a droplet of radius
a, e* is the nominal saturation vapor pressure over a flat surface, and o
is the surface tension. The actual saturation vapor pressure increases with
decreasing droplet radius.

The phase equilibrium of a droplet of radius a given by (4.8.1) is an
unstable one. If the droplet were to evaporate by a small fraction, its radius
would decrease and the saturation vapor pressure would increase, allowing
for more evaporation. Conversely, if its radius were to increase slightly, the
saturation vapor pressure would decrease and the environment would be
supersaturated with respect to the droplet. Thus to create a water droplet
or ice crystal in a given environment it is necessary to form a droplet of at
least the critical radius a. given by setting the actual vapor pressure equal
to the saturation value e in (4.8.1).

Were there no aerosols (small solid or liquid particles) in the atmo-
sphere, the only means of creating a small particle of the critical radius
would be by the random clumping of water molecules that occurs in a gas.
This is called homogeneous nucleation and in practice would require super-
saturations of up to several hundred percent. In nature, however, there is
a large number of aerosols consisting of combustion products, dust, prod-
ucts of photochemical reactions involving sulfides, ash, and sea salt. Those
particles that are wettable, and particularly those that are water soluble,
serve as nuclei on which water may condense. These are called cloud con-
densation nuclei (CCN) and their presence allows heterogeneous nucleation
to occur. The distribution of CCN varies greatly in space and time, with
largest concentrations in urban areas and near the earth’s surface, and
smallest concentrations over the oceans and away from the surface.

The presence of a water-soluble CCN reduces the supersaturation
needed for nucleation since some of the surface energy of a droplet is pro-
vided by molecules of the solute. The reduction of saturation vapor pressure
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Fig. 4.3 Variations of the relative humidity and supersaturation of the air adja-
cent to droplets of (1) pure water and solution droplets containing the following

fixed masses of salt, (2) 10719 kg of NaCl, (3) 107! kg of NaCl, (4) 10717 kg
of NaCl, (5) 10712 kg of (NH4)2SO4, and (6) 10~ kg of (NH4)2SO4. [Adapted
from S. I. Rasool (ed.), Chemistry of the Lower Atmosphere, Plenum Press, New
York, 1978, p. 16.)

is given by

== (4.8.2)

where f is the kilomole fraction; that is, the number of kilomoles of Hy,O
per kilomole of water plus solute. In terms of droplet radius this is given

by
(3ma®p — M) /m,
(%na"pl - Ms) /my + 1 Ms/ms’

f= (4.8.3)

where M, is the mass of solute, m, its molecular weight, and 7 is the number
of solute ions. Combining (4.8.3) with (4.8.1) and (4.8.2) gives

i Msﬂu -1 20’&1
- |1 m . 4.8.4
I A P Ms] exp (R,,Ta) (4.8.4)

A plét of e* given by (4.8.4) is shown in Figure 4.3. The curves on
this plot are known as Kohler curves. Wherever the slope of these curves
is positive, the droplets are in a state of stable equilibrium; otherwise, the
equilibrium is unstable and the droplets will grow. A droplet that reaches
the peak of its Kohler curve is said to be nucleated.

In nature, CCN are plentiful enough that supersaturations required
for nucleation seldom exceed 1%. Thus, in practice, we may consider that
condensation occurs whenever the actual vapor pressure exceeds its nominal
saturation value.
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Fig. 4.4 Percentage chance of ice being detected in clouds as a function of the
cloud top temperature. Results are based on field observations of 30 orographic
cloud systems. The number above each point is the total number of cloud samples
for that temperature. [ From Proc. Amer. Met. Soc. 1st National Conf. on Weather
Modification, Albany, N. Y., 1968, p. 306; Quart. J. Roy. Met. Soc., 96, 487
(1970); Proc. Intern. Conf. on Weather Modification, Canberra, Australia, 1971,

p. 5.

On the other hand, it is not possible to state that freezing will occur
whenever the temperature falls below 0°C. The same considerations apply
as to the nucleation of water vapor; namely, that a surface energy must
be accounted for to get ice nucleation within a water drop. Homogeneous
nucleation is efficient at temperatures below about —40°C; otherwise freez-
ing can be initiated at higher temperatures if freezing nuclei are present.
These consist of atmospheric aerosols with molecular structures similar to
that of ice and they are considerably rarer than CCN. Depending on their
relative abundance and other factors, freezing may commence at tempera-
tures anywhere from —4°C to —40°C. Figure 4.4 shows the frequency with
which ice occurs in clouds whose tops are at a given temperature.

4.8.2 Growth of cloud droplets and ice crystals

Condensation or’ deposition (transfer of water from the vapor to the ice
phase) is responsible for the initial growth of cloud droplets and ice crystals.
The rate of change of radius of condensate by condensation or deposition
varies inversely with radius, however, so that after some time the process
becomes inefficient. The amount of time required for cloud droplets to grow
to a size at which their terminal velocities are appreciable compared to air
motion is many orders of magnitude greater than the observed time for
precipitation formation.

There are several more efficient mechanisms by which cloud droplets
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may grow to precipitation-size particles (raindrops). In clouds that contain
no ice, droplets grow principally by collision, due mostly to differing termi-
nal velocities. Depending on the sizes of both droplets, one may be swept
around the other in the airflow, it may collide with the other but bounce
off, or it may coalesce with the other to form a larger drop. The net fraction
of droplets within a cross-sectional area intercepted by a larger drop that
coalesces with the latter is called the collection efficiency and is a sensitive
function of the radii of both drops.

For a given initial size distribution of CCN, the chance coalescence of
droplets may be considered as a statistical process by which precipitation
forms in warm clouds (clouds that contain no ice) and also operates to
some extent in cold clouds. Since continental CCN are roughly 5 times
more prevalent than maritime CCN, more but smaller droplets will form
in continental clouds, all other conditions being equal. For this reason,
stochastic coalescence is less efficient in continental clouds. It is observed
that marine clouds precipitate more easily than do continental clouds. The
end product of stochastic coalescence is a nearly log-normal distribution of
raindrops known as a Marshall-Palmer distribution, which has the form

N(a) = Nge™ e, (4.8.5)

where Ny and A are constants that may depend on the nature of the envi-
ronment in which the microphysical processes occur.

The amount of time required to form raindrops by stochastic coales-
cence in an updraft is quite sensitive to the updraft speed, temperature, and
CCN distribution. For convective clouds, the time scale is on the order of
tens of minutes, which is not negligible compared to the time scales charac-
teristic of the convection itself. This lack of separation between dynamical
and microphysical time scales has important but not fully understood con-
sequences for the dynamics of convective clouds. .

When the top of a cloud is cold enough to contain ice crystals, another
important mechanism for condensate growth comes into play. If some of the
ice crystals fall into a supercooled water cloud, they find themselves in an
environment that is saturated with respect to liquid, which is up to 21%
supersaturated with respect to ice. The result is rapid growth of the ice
crystals at the expense of the water droplets. This mechanism for rapid
ice-crystal growth is known as the Bergeron-Findeisen process. Once the
ice crystal is large enough, it may grow faster by riming, that is, by collision
with supercooled water droplets that freeze on impact. When taken to an
extreme in large thunderstorms, riming produces hailstones. Ice crystals
that collide with each other may stick together, or aggregate, leading to a
larger particle.

At the time of the writing of this book, investigations of cloud mi-
crophysical processes and of cloud dynamics remain somewhat separate.
The author cannot emphasize enough the importance of understanding the
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interplay between precipitation formation and cloud dynamics. This lack
of understanding will return to haunt us in subsequent chapters. For ex-
ample, we show in Chapter 14 that the tropical troposphere is often in
a state of near neutrality to a reversibly lifted parcel from the top of the
subcloud layer. But what relevance does an adiabatic parcel have in a pre-
cipitating convective cloud? Is it an accident that the tropical troposphere
is neutral to a parcel with its adiabatic condensed water intact? It should
become clear that microphysical processes have an important bearing on
the thermodynamic structure of convecting atmospheres.

4.9 Thermodynamics of the ice phase

As saturated air ascends within convective clouds, it may eventually cool
to the point that ice-crystal formation begins and it is then necessary to
account for the heat released during fusion. At just what temperature this
occurs depends critically on the nature of the convection. In an updraft
whose velocity is small compared to the fall velocity of snowflakes (~ 2
m s~!), the latter will fall through the updraft (assuming the latter is
upright) and the ascending air will encounter ice very near the freezing
point (0°C). In this case very little supercooled water may be found. At
the other extreme, a very intense updraft may carry liquid water upward
so rapidly that freezing does not occur until the temperature falls below
about —35°C.

We must account for the latent heat of fusion in two ways. First, we
will assume that at some temperature T the existing condensate freezes,
thereby raising the temperature to 75. Subsequent ascent will then take
place along a reversible or pseudoadiabatic ascent path relevant to deposi-
tion rather than to condensation.

The relation between 77 and 75 may be found by assuming that the
(irreversible) freezing occurs at constant pressure. In that case, enthalpy is
conserved. The total enthalpy may be written

k=kq+rky + 11k + 13k;i, (4.9.1)

where k; is the specific enthalpy of ice. This is equivalent to

k=kq+ ’I'(kv — k[) + (7‘ +7 + Ti)k[ + Ti(ki — kl)
=kq+rLy, +r7ki —7;Lg
= (cpa + arr)T + 7Ly, —1;Ly, (4.9.2)
where Ly is the latent heat of fusion. Equating the enthalpies of the first
state of vapor-liquid equilibrium at 7" = T; and the second state of vapor—

ice equilibrium at T' = T gives

(cpd + arT)(Tz — Th) + Ly(Ta)r# (Ta) — Lo(T1)r* (T1) — Lyrs = 0, (4.9.3)
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where r; is the ice content of state 2. We make the approximation that
T, — Ty is small so that L,(12) ~ L,(T1) = L,. In addition we relate
r#(T3) to r#(T1) by linearizing the Clausius-Clapeyron relation:

e# 2
(1) = S (1)
_ 6#(T2) * Lvr*(Tl)
- 6*(T2) r (Tl) + TTIQ(TQ —Tl) . (4.9.4)

Substituting (4.9.4) into (4.9.3) and solving for (7% — T}) gives

L¢r; + Lyr*(1 — e* /e*)

T2 - Tl ~ L2 #
Cpd +CQTT + _hi"T

(4.9.5)

Subsequent to freezing, we may regard the further ascent of the ice—
vapor mixture as being reversible or pseudoadiabatic. In the former case,
the two conserved quantities are rr(= 7, + 7;) and sy, the total entropy of
the dry-air, vapor, and ice mixture. In analogy to the derivation of (4.5.9),
S, is given by

Lgr
T

ss = (cpa +r7C;) InT + — Rglnpy, (4.9.6)

where c¢; is the heat capacity of ice and L, is the latent heat of sublimation.
Conservation of sy can yield temperatures several degrees Celsius higher
than conservation of s in typical atmospheric situations.

EXERCISES

4.1 Which of the following quantities are conserved in reversible, adiabatic
unsaturated transformations?

Ty q,Tt, TT, qt, 4T, €, Pu, 7'*, q*a 6*, T#, q#a 6#, H, p*a T*a Z*, P,
T‘w, 0, 011, gea oep, gwa Hla 0[1” ka kda k‘w, h'a h'da h’w-

4.2 Which of the quantities listed in Exercise 4.1 are conserved in re-
versible, adiabatic, saturated transformations?

4.3 Which of the quantities listed in Exercise 4.1 are conserved in adia-
batic, unsaturated, isobaric transformations?

4.4 Which of the quantities listed in Exercise 4.1 are conserved in adia-
batic, saturated, isobaric transformations?
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Calculate and compare the virtual temperature and density tempera-
tures of air with an actual temperature of 25°C, pressure of 950 mil-
libars, and the following characteristics:

(a) No water vapor or condensed water

(b) Saturated with water vapor and with no condensed water

(c) Saturated with water vapor and with 2 g kg™! of condensed water
(d) At 50% relative humidity and with 2 g kg™! of condensed water

Repeat Exercise 4.5, but at an air temperature of —40°C and pressure
of 300 millibars.

By differentiating (4.5.4), show that enthalpy is conserved during adi-
abatic, isobaric transformations whether or not the air is saturated.
The inviscid equations of motion may be written in vector form

dV . .
— =—-aVp—-gk - fkxV,
dt
where k is the unit vector along the direction of net gravity.
By taking the dot product of V with the above and making use
of the identity
dp Op
V.Vp=— - =
P=4 ~ B
as well as (4.5.19) and (4.5.20), show that the quantity

1
§|V|2(1 + Tt) + h

is conserved along streamlines in adiabatic, inviscid steady flow. Esti-
mate the error made in calculating temperature changes by assuming
that just h is conserved. (This shows you why h is called the static
energy.)

Under what atmospheric conditions can we “see our breath”? Assume
that the air we exhale is at T = 36°C and ‘H = 80% at a pressure
of 1000 millibars, and find the maximum atmospheric temperature at
which condensation will occur when the atmospheric relative humidity
is (a) 99.9%, and (b) 0%. An electronic calculator will be most helpful.
Show that the entropy per unit total mass,

L,
s' = [cpa(l — q¢) + qea] InT + a

—Ry(1—¢q)Inpg — qR,InH

is conserved following reversible adiabatic displacements of moist air
in which freezing does not occur.

Neglect of the effect of water substance on heat capacities, the gas
constant, and density on the entropy defined in Exercise 4.10 gives

L,
s’ ~ cpgInT + 1?" — Rylnp—qR, InM.
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Show that the use of L, is necessary for consistency.
If the air is never very far from saturation, we may neglect the last
term in the equation in Exercise 4.11 and write

Lvoq
T

s ~cpgInT + — R4Inp,

while to the same level of approximation, for unsaturated air,
Sy~ cpalnT — Rylnp.

(Note: These approximations are rather crude and should not be used
when quantitatively accurate results are desired!) The first law of ther-
modynamics may be written in either of the two forms

dQ,, ~ Tds'
or

dQ ~ Tds),

where d@,, denotes heating other than by latent heat release, while
dQ denotes total heating, including that owing to latent heat release.
Show that to the level of approximation applied here,

dQ = de - LvO dq

Now consider a closed thermodynamic cycle that returns a sample of
moist air to its original thermodynamic state (7', p, q). Show that to
the level of approximation employed here, the amount of mechanical
energy available from such a cycle is

E = j{Tds’ = desfi,

where § denotes integration over the closed thermodynamic cycle.
Consider the thermodynamic cycle of a mature hurricane, illustrated
in Figure E4.1. The cycle consists of four legs:

(a) Leg a—c: Isothermal expansion at temperature T and addition of
water vapor from the ocean, with heat of vaporization supplied
by the latter.

(b) Leg c—o: Moist adiabatic expansion to temperature T,. Water is
lost by precipitation.

(c) Leg o—o’: Isothermal compression at temperature Tp.

(d) Leg o'-a: Compression under the influence of radiative cooling,
with water vapor added due to the mixing effects of shallow cu-
mulus clouds. But since the air’s temperature closely follows a
moist adiabat along this leg, the amount of heat lost and water
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gained is nearly the same as if this leg represented moist adiabatic
compression.

Describe the contribution of each leg to the total mechanical energy
given at the end of Exercise 4.12, first using

E = des’
E = deSd.

Then comment on and compare the following two statements:

and then using

1) “Hurricanes are driven by the latent heat released in cumulus
clouds near the center of the storm.”

2) “Hurricanes are driven by the thermodynamic disequilibrium be-
tween the tropical oceans and atmosphere.”

Derive the following expression for the ice specific pseudoentropy:

T
Spi = Ss + ¢4 [/ rd(InT) —rpInT
1

Show that the ice water specific entropy,

€

rr —Ti\ Lt
€ T’

sf = (cpd + T7Cpy) InT — (Rq + TTRy) llnp_ In (1 + TT — T'i)]

—rTRuln(

is conserved under reversible adiabatic transformations at tempera-
tures below 0°C.
Show that the ice phase specific enthalpy,

ks = (cpa + 77Ci)T + Ly,

is conserved in adiabatic isobaric transformations, provided all the
condensed water is in the ice phase, and that mass is conserved.
Show that the condensed water specific enthalpy,

kr = (cpd + r7Cpy)T — Ly — L3,

is conserved under all adiabatic isobaric transformations in which mass
is conserved.
Show that the frozen water static energy,

hf = (cpd + T7Cpy)T — Lsr; + (1 + 1¢) 92,
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is conserved in adiabatic, hydrostatic transformations, provided all
condensed water is in the ice phase, and that mass is conserved.
4.19 Show that the condensed water static energy,

ht = (¢pd + T7pu)T — Lot — LeTi + (1 + 77)92,

is conserved in adiabatic, hydrostatic transformations for which mass
is conserved.

4.20 By dividing the definitions of h,, hy, and hr [Eq. (4.5.25) and Exer-
cises 4.18 and 4.19] through by 1+ 77 and making use of the definition
of T, (4.3.6), show that the quantities

(cpd + TtCpy)T) L,

hwp = - + gz,
we 1+7/e 147, 9%
by, = (cpa +rrep)Tp _ Loti o
1+7/€ 14+7r
and
hry = (cpa +T7Cpu)Tp  Lyri + Lory 1 gz

1+7/e 1+7rr

are conserved under the same conditions that h,, hf, and ht are,
respectively, conserved. Also show that, to the same degree of approx-
imation used in deriving the virtual potential temperature (4.3.2), the
above reduce, respectively, to

hwp = hfp = th ~ deTp + gz,

when no condensed water is present.
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