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Lecture 3: 
Organization of deep
convection at mesoscales



Lectures Outline :

Cloud fundamentals - global distribution, types, visualization
and link with large scale circulation

Cloud Formation and Physics - thermodynamics, cloud 
formation, instability, life cycle of an individual cloud

Organization of deep convection at mesoscales - MCSs, 
MCCs, Squall lines, Tropical cyclones, Processes, Self-
aggregation

Response of the hydrological cycle to climate change -
mean precip, precip extremes

Clouds in a changing climate – climate sensitivity, cloud 
effect, cloud feedback, FAT



Convective organization



Convective organization: recall
Recall OLR in the tropics :



Convective organization: recall

Slovakia

Austria

Czech Republic

Allemagne

Mesoscale
convective systems

More lecture 3 …



Evaporative driven cold pools

RECALL : LIFE CYCLE OF AN ORDINARY THUNDERSTORM

Strong updrafts develop in the cumulus cloud => mature, deep cumulonimbus cloud.
Associated with heavy rain, lightning and thunder.

Convective organization: recall



Convective organization: definition
What is organized convection? 
(adapted from AMS glossary and Todd Lane’s lecture 2016 ARCCSS Winter School
on Tropical Meteorology)

• Convection that is long-lived
Lasts longer than an individual convective cell

• Convection that grows upscale
Covers an area larger than an individual convective cell

Organization can arise from

• large-scale forcing
e.g. SST gradient, presence of an island

• interaction with the large-scale flow 
e.g. interaction with vertical shear

• internal feedbacks that lead to upscale growth
e.g. self-organization by moisture feedbacks ; by propagating gravity waves
destabilizing the cloud environment and promoting new convection; by 
internal « self-aggregating » feedbacks… Still very much an area of research



Convective organization: definition
What is organized convection? 

Adapted from the AMS Glossary: 

Mesoscale Convective System (MCS) – A cloud system that occurs in 
connection with an ensemble of thunderstorms and produces a contiguous
precipitation area on the order of 100 km or more in horizontal scale in at 
least one direction. 

Sometimes also called Cloud Cluster

Mesoscale Convective Complex (MCC) – A subset of mesoscale convective 
systems that exhibit a large, circular (eccentricity > 0.7), long-lived (>6 hours), 
cold cloud shield. The cloud shield must: 

• Have an area >105 km2 with IR temperature < -32oC 

• Interior cold cloud region with area > 5x104 km2 with IR temp < -52oC (This 
was originally defined by Maddox 1980, BAMS)



Convective organization: definition
What is organized convection? 

Mesoscale Convective System (MCS)
Include : 

Mesoscale Convective Complex MCC Hurricane approaching Florida

Squall line



Convective organization: definition

Fraction of rainfall from Mesoscale Convective Systems MCSs



Convective organization: processes 

Processes which can lead to convective organization :

Vertical shear

Waves

Surface Fluxes WISHE (Wind-induced surface-heat
exchange) effects

Self-aggregation feedbacks



Convective organization: processes - shear
Interaction with vertical shear : A theory of long-lived convective systems
and squall lines

Role of vertical shear & cold pools

[Rotunno et al. 1988; Fovell and Ogura 1988; Garner and Thorpe 1992; Weisman and Rotunno 2004; Houze
2004; Moncrieff 2010]

[Thorpe et al 1982]

[Rotunno et al 1988]
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Convective organization: processes - shear
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Convective organization: processes - shear
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Convective organization: processes - shear

[Robe & Emanuel 1996; 
Muller 2013]



Convective organization: processes - waves
Shear alone cannot explain organization of all convective systems in tropics : 
• wind shear is often too weak
• upscale growth is ubiquitous and sometimes rapid, occurring beyond the extent of cold pools 
• convective inhibition is small => small perturbations can easily initiate new convection 
=> Mapes (1993, JAS) described tropical convection as ‘gregarious’, prone to form in clusters, 
as a result of horizontally propagating gravity waves destabilizing the cloud environment and 
promoting new convection. 

Horizontally propagating gravity waves communicate diabatic heating/cooling to environment: 
- Deep heating generates deep waves that propagate fastest and warm (stabilize) the troposphere;
- Shallow (evaporative) cooling generates shorter waves that cool (destabilize) the low levels, 
destabilizing the environment and promoting new convection nearby



Convective organization: processes - WISHE
Hurricanes



Convective organization: processes - WISHE

Emanuel 86

« Wind-induced surface-heat exchange » (WISHE): 
Surface fluxes are enhanced in the moist eyewall region
Þ energy (MSE) increases in the high-energy region
Þ positive feedback on convective organization



Convective organization
Transitions between organized structures



Convective organization

Convective systems in an african
easterly waves

Hurricane Isabel off the coast of Africa



Convective organization: Self-aggregation? 
In recent years, high resolution (~km resolution) simulations on large 
mesoscale domains (~100s km domain) 
Þ allowed the use of convection-resolving simulations to study the mesoscale

organization of convection
Þ Led to the discovery of « self-aggregation », spectacular ability of deep

convection to spontaneously organize in space under certain conditions
Clouds over near-surface temperature

Larger
domain



A recently discovered phenomenon : 
Self-aggregation of tropical convection 

First discovered in idealized cloud-resolving models (CRM)

Idealized state of tropical convection : 
- Radiative Convective Equilibrium (neglects export of 
energy=MSE to higher latitudes)
- Non-rotating (i.e. Coriolis parameter f = 0 s-1)

Since then found to be robust in other models and settings …



Radiative Convective Equilibrium

Equilibrium state of atmosphere and surface in the absence of non-
radiative fluxes 

Radiative heating&cooling drives atmosphere toward state of radiative 
equilibrium

Radiative Equilibrium:



Radiative Convective Equilibrium
Radiative Equilibrium:

TOA: σ Te
4 = S0 (1-a) / 4

Outgoing longwave
4 π R2 σ Te

4 
Incoming shortwave

π R2 S0 (1-a)



Radiative Convective Equilibrium

Earth => Te = Ts = 255K = −18°C !!

Observed average surface temperature = 288K = 15°C… 

Radiative Equilibrium:

TOA: σ Te
4 = S0 (1-a) / 4

Outgoing longwave
4 π R2 σ Te

4 
Incoming shortwave

π R2 S0 (1-a)



Radiative Convective Equilibrium
Radiative Equilibrium:

TOA: σ Te
4 = S0 (1-a) / 4

One-Layer Model 
Transparent to solar radiation
Opaque to infrared radiation
Blackbody emission from surface and each layer 

Courtesy Kerry Emanuel



Radiative Convective Equilibrium

TOA: σ Te
4 = S0 (1-a) / 4

Level 1: 2 σ TA
4 = σ Ts

4

Surface: σ Ts
4 = σ Te

4 + σ TA
4 

=> TA
4 = Te

4 and Ts
4 = 2 Te

4 => Ts = 21/4 Te = 303 K 

Radiative Equilibrium:
One-Layer Model 

Transparent to solar radiation
Opaque to infrared radiation
Blackbody emission from surface and each layer 

Courtesy Kerry Emanuel



Radiative Convective Equilibrium

Two-Layer Model 

TOA: σ Te
4 = S0 (1-a) / 4

Level 2: 2 σ T2
4 = σ T1

4

Level 1: 2 σ T1
4 = σ Ts

4 + σ T2
4

Surface: σ Ts
4 = σ Te

4 + σ T1
4 

=> Ts = 31/4 Te

Radiative Equilibrium:

Courtesy Kerry Emanuel



Radiative Convective Equilibrium

Full calculation of Radiative Equilibrium

Radiative Equilibrium:



Radiative Convective Equilibrium

Problems with radiative equilibrium solution: 

• Too hot at and near surface 

• Too cold at a near tropopause 

• Lapse rate of temperature too large in the troposphere

• (But stratosphere temperature close to observed) 

=> Troposphere is unstable to moist convection 

Radiative Equilibrium:



Radiative Convective Equilibrium
Radiative Convective Equilibrium:

Radiative relaxation time scales ~ 40 days

Convective adjustment time scales: minutes (dry) to hours (moist)

In competition between radiation and convection, convection “wins” and 
the observed state is much closer to convective neutrality than to 
radiative equilibrium

Vertical T profile neutral to dry convection below
condensation level (Dry adiabat)
& 
Vertical T profile neutral to moist convection above LFC 
(Moist adiabat)



Radiative Convective Equilibrium
Dry convective boundary layer over daytime desert [Renno and Williams, 1995] 

800m

But above a thin boundary layer, most atmospheric convection involves phase 
change of water: Moist Convection 



Radiative Convective Equilibrium

Tropical sounding => moist adiabatic

Constant θe

T(z)



Clouds over near-surface temperature

Radiative Convective Equilibrium

Radiative cooling in the interior of the atmosphere => destabilizes

Convective updrafts bring moist, high energy air from surface to interior of 
the atmosphere => stabilizes

Convective downdrafts bring cold&dry, low energy air from interior to 
surface => stabilizes



Larger
domain

What is self-aggregation ?

Clouds over near-surface temperature
Self-aggregation = instability of disorganized RCE “pop corn” state

[Held Hemler Ramaswamy 92; Raymond, Zeng 2000; Bretherton, Blossey, Khairoutdinov, 2005; Sobel, Bellon, 
Bacmeister 2007; Muller, Held 2012; Emanuel, Wing, Vincent 2013; Wing Emanuel 2013; Jeevanjee Romps 2013; 
Khairoutdinov Emanuel, 2013; Shi Bretherton 2014; Tobin, Bony, Roca, 2012; Tobin et al, 2013; Muller Bony 2015; 
Mapes 2016; Holloway&Woolnough 2016; Wing Holloway Emanuel Muller 2017 (review)]

Convection is
disorganized => “pop 
corn” state

Convection self-
aggregates



Self Aggregation: why do we care?



WV:

230km 256km

OLR:

Þ Thermodynamic and radiative properties dramatically affected 

Self Aggregation: why do we care?
Top view



Self Aggregation: why do we care?

[Khairoutdinov and Emanuel, JAMES 2013] 

Relative vorticity (10-4 s-1) at 850 hPa

Self-aggregation of convection - Role in MJO ? 

[Shi and Bretherton, JAMES 2014] 

Feedback responsible for self-aggregation - Role in cyclogenesis ?  

[Tobin et al, JAMES 2013] 

[Bretherton, Blossey, Khairoutdinov, JAS 2005]

Add rotation => tropical cyclones « TC World »Precipitable water
Precipitable water

Averaged trajectory of vortices. (blue circle=15N) 



Self Aggregation: why do we care?

Radiative impact unclear.

Observations suggest that SW 
warming may partly compensate LW 
cooling ?

Still true at warmer T?

[Emanuel, Wing, Vincent, JAMES 2013
Abbot J. Clim. 2014] 

Strong OLR

Brightness temperature

Warm temperatures favor aggregation.
Cold temperatures as well.  

Self-aggregation regulates tropical climate?
Warmer temperatures => More aggregation => More LW cooling => <0 feedback

[Tobin, Bony, Roca, J.Clim 2012
Tobin et al, JAMES 2013] 



Slovakia

Austria

Czech Republic

Allemagne

Physical mechanism responsible?

Self-Aggregation of Convection



Sensitivity study

Þ LW interactive radiation crucial



Feedbacks 
leading to 

aggregation

=> interactive LW radiative 
cooling crucial

Results from sensitivity 
experiments in which 
various feedbacks are 

turned off 

Self-aggregation 
Disorganized RCEx

Muller&Held2012

Sensitivity study



Sensitivity study

Þ low cloud LW radiation crucial



Why is the LW cooling from low clouds crucial?

Near-surface MSE transport from dry to moist region
=> up gradient MSE transport

Circulation with aggregation during the onset of aggregation : 
Streamfunction (dark lines)
Moist Static Energy (colors)

Dry columns moist columns

Very strong low-level
cooling in the dry region
at the top of low clouds
=> subsidence

Why flow so low?

[Bretherton, Blossey, Khairoutdinov, 2005; 
Muller&Held 2012]



Where are the low clouds? 



No low cloud LW

With low cloud LW
Remove low cloud
LW after 10 days



Þ Mechanism responsible for ONSET (low clouds LW)
Different from mechanism responsible for MAINTENANCE clear sky + high clouds

No low cloud LW

With low cloud LW
Remove low cloud
LW after 10 days



No low cloud LW

[Muller & Held JAS 2012] 

With low cloud LW
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Remove low cloud
LW after 10 days

Remove all LW after 10 
days

Þ high cloud LW + clear-sky LW radiation also contribute positively to 
aggregation



Our question: What aspect of each physical process
matters for aggregation?

• Cloud radiative processes, in particular in the longwave, have been shown to play a crucial role
in the self-aggregation of convection. 

• Clear sky radiation has also been identified as a key ingredient in theoretical models of self-
aggregation.

• Moisture feedbacks lead to aggregation in theory

• Cold pools have been shown to impact the aggregation as well. 

[Muller&Held, JAS 2012]

[Emanuel, Wing, Vincent JAMES 2013;
Beucler&Cronin JAMES 2016]

[Jeevanjee, Romps, GRL 2013]

Literature confusing… 

We address this question with idealized experiments

Self-Aggregation of atmospheric
convection in idealized simulations

[Craig&Mack JGR 2013]



Self-Aggregation: physical processes

PW SA homog at day 41
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Self-Aggregation: physical processes

PW SA homog at day 41
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Qr
Qrs
Qrc

Radiative cooling profiles (K/day)
in and out moist region

z

Qr

Atmospheric water vapor

Impose Qr-dry(z) in the dry region and Qr-moist(z) in the moist region

Qr-dry(z) 

Qr-moist(z)

More precisely: Variability in low-level cooling causes aggregation
Due to low clouds

Þ Low-level cooling in dry region causes aggregationA
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Control run that aggregates :



Self-Aggregation: physical processes

(a) Interactive radiation
Qr (colors, K/day), qc (white) and ^ (black)
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(b) Same as panel a but the colors show MSE (K)
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(c) Interactive radiation without low clouds
Qr (colors, K/day), qc (white) and ^ (black)

rank of column by 0MSE (lowest to highest)
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(d) Same as panel c but the colors show MSE (K)

rank of column by 0MSE (lowest to highest)
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Why does differential radiative cooling lead to aggregation? 

=> upgradient
MSE transport

Is that the whole story?... 

Dry columns moist columns Dry columns moist columns

black: streamfunction
colors: radiative cooling (left) and MSE (right)

As before, low-level cooling => near-surface energy transport



Remove low cloud radiative cooling :

Radiative cooling profiles (K/day)
in and out high cloudsAtmospheric water vapor

Self-Aggregation: physical processes

Why LW cooling from high 
clouds crucial for maintenance?
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Impose Qr-clear(z) in the dry region and Qr-cloudy(z) in the moist region

Radiative cooling profiles (K/day)
in and out high cloudsAtmospheric water vapor

Remove low cloud radiative cooling :

Self-Aggregation: physical processes

Why LW cooling from high 
clouds crucial for maintenance?



Self-Aggregation: physical processes

(a) Interactive radiation
Qr (colors, K/day), qc (white) and ^ (black)
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(b) Same as panel a but the colors show MSE (K)
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(c) Interactive radiation without low clouds
Qr (colors, K/day), qc (white) and ^ (black)

rank of column by 0MSE (lowest to highest)
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Why does differential radiative cooling lead to aggregation? 

=> upgradient
MSE transport

Dry columns moist columns Dry columns moist columns

black: streamfunction
colors: radiative cooling (left) and MSE (right)

And now, is that the whole story?... 

Low-level cooling in dry region and mid-level warming in moist region
=> near-surface energy transport



Role of cold pools? [Jeevanjee&Romps 2013 GRL]

Self-Aggregation: physical processes

Evaporative driven downdrafts
and cold pools



Þ not same feedback

« moisture memory » feedback is responsible for aggregation [Tompkins JAS 2001, Craig&Mack
JGR 2013], no downdraft to kill the cloud

Clouds over near-surface humidity

Self-Aggregation: physical processes

Simulation without cold pools with fixed radiation aggregates !

BUT Recall: 
no self-aggregation with fixed radiation
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[Muller & Bony GRL 2015] 



Equatorial Intraseasonal Variability

Symmetric OLR Anti-symmetric OLR

MJO
Courtesy Marat Khairoutdinov & Kerry Emanuel

Self-aggregation and the MJO ?



Courtesy Marat Khairoutdinov & Kerry Emanuel

Cloud-permitting model run on aqua-planet with 
constant SST (bounded at +/-46o latitude)

(Marat Khairoutdinov)
Symmetric OLR Anti-symmetric OLR

Self-aggregation and the MJO ?



Self-aggregation and cyclogenesis ?
Self-aggregation accelerates tropical cyclogenesis

CONTROL RUN : A cyclone forms after 20 days : 

What happens if we remove interactive radiation ? 
Þ Cyclogenesis is slowed down by a factor 3 :
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st dev MSE (t)
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newIC-i04 f01
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newIC-i04 f01
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st dev ⎰MSE(t)

st dev ⎰MSE(t)

st dev ⎰MSE(t)
This result is robust to intial conditions : 

Þ Self-aggregation accelerates cyclogenesis by a factor 2 or 3 Muller&Romps, in prep



SUMMARY

Þ Organization still not fully understood and typically not accounted for in 
parameterizations

Þ Observations, theory and high-resolution cloud-resolving models useful

Various feedbacks can lead to aggregation:

LW rad cooling from low clouds

LW rad cooling from high clouds and clear sky

« moisture-memory » feedback in humid conditions (i.e. weak cold pools)

ÞObserved in various groups/models

Impact on precipitation extremes, MJO, cyclogenesis and response to warming still
unclear



Lectures Outline :

Cloud fundamentals - global distribution, types, visualization
and link with large scale circulation

Cloud Formation and Physics - thermodynamics, cloud 
formation, instability, life cycle of an individual cloud

Organization of deep convection at mesoscales - MCSs, 
MCCs, Squall lines, Tropical cyclones, Processes, Self-
aggregation

Response of the hydrological cycle to climate change -
mean precip, precip extremes

Clouds in a changing climate – climate sensitivity, cloud 
effect, cloud feedback, FAT


