Syllabus - Clouds and atmospheric convection

First part of the course, 10 sessions, taught by Caroline Muller
(the second part of the course, 5 sessions, will be taught by Nicolas Rochetin).
I Fundamental aspects of clouds

1. Definition, basic questions
2. Spatial distribution (online video "A year of weather")
3. Visualization from space, homework and online module from meted
4. Cloud classification: introduction

II Dry thermodynamics

1. First law of thermodynamics (Bohren \& Albrecht Chp1)
2. Ideal gas law (Bohren \& Albrecht Chp2)
3. Mixture of gas, Dalton's law (Bohren \& Albrecht Chp2)
4. Hydrostatic approximation (e.g. Wallace \& Hobbes Chp3)
5. Joule's law, enthalpy (e.g. Wallace \& Hobbes Chp 3)
\Rightarrow Summary of equations in specific form (per unit mass)
III Dry convection: application to the atmosphere
6. Potential temperature θ, dry static energy, dry adiabatic lapse rate (Bohren \& Albrecht Chp3)
7. Stability to dry convection, Brunt Väisälä frequency (Bohren \& Albrecht Chp3)
8. Centrifugal convection (Emanuel Chp12, Houze Chp2)
9. Symmetric instability and slantwise convection (Emanuel Chp12, Houze Chp2)

IV Entropy, second law of thermodynamics

1. Definition and link with θ (Bohren \& Albrecht Chp4)
2. Second law and stability (entropy maximisation) (Bohren \& Albrecht Chp4)

V Moist thermodynamics

1. Evaporation and condensation: the Clausius Clapeyron equation (Bohren \& Albrecht Chp5\&6)
2. Moist thermodynamic variables (Emanuel Chp4)

VI Moist convection: application to the atmosphere

1. Convection of unsaturated moist air: virtual potential temperature (Emanuel Chp4)
2. Equivalent potential temperature θ_{e}, moist static energy, moist adiabatic lapse rate (Emanuel Chp4; Bohren \& Albrecht Chp6)
3. Skew-T diagrams, online module from meted
4. Conditional instability, CIN, CAPE
5. Life cycle of a convective cloud in an unstable atmosphere (Houze Chp8)

VII Phenomenology of the different cloud types

1. Cloud classification (Houze Chp1)
2. Processes of cloud formation for each cloud type (Houze Chp5,6\&7)
3. Link with the large scales

BOOKS:

"Atmospheric Sciences", Wallace \& Hobbes
"Cloud Dynamics", Houze
"Atmospheric Convection", Emanuel
"Atmospheric Thermodynamics", Bohren \& Albrecht
"Physics of Climate", Peixoto \& Oort

I - Fundamental aspects of clouds

See online slides of introduction :
http://www.lmd.ens.fr/muller/TEACHING_CLOUDS/Cours1-intros.pdf
And slides on cloud types :
http://www.lmd.ens.fr/muller/TEACHING_CLOUDS/Cours3-CloudTypes.pdf

II - Dry thermodynamics

II. 1 - First law of thermodynamics

See online thermodynamics notes :
http://www.lmd.ens.fr/muller/TEACHING_CLOUDS/Cours3_thermo.pdf

$$
\begin{equation*}
\Rightarrow d U=\delta W+\delta Q \tag{1}
\end{equation*}
$$

An example of work (crucial in atmospheric sciences): The work by pressure forces is given by $\delta W=-p d V$ where V is the volume of the fluid. Note that this expression requires the change of volume to be done slowly enough (for instance by moving a piston slowly) that the pressure remains in equilibrium at the piston surface. In other words, the speed of the movement mneed to be much slower than the speed of molecules, whose order of magnitude is the speed of sound $\approx 300 \mathrm{~m} \mathrm{~s}^{-1}$. Such a transformation is called quasi-static (see Bohrn \& Albrecht Chp1 for a more detailed discussion).

II. 2 - Ideal gas law

We consider an ideal gas of volume V with N molecules. Then

$$
P V=N k T
$$

where k is Boltzmann's constant ($\approx 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$).
We rewrite in specific form, introducing the molecular mass m and the specific gas constant $R=k / m$:

$$
p=\frac{N m}{V} \frac{k}{m} T=\rho R T .
$$

This is the ideal gas law in specific form :

$$
\begin{equation*}
p=\rho R T \Leftrightarrow p \alpha=R T \text {, } \tag{2}
\end{equation*}
$$

where $\alpha=1 / \rho$ denotes specific volume. For dry air, $R \approx 286 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$.
Note that due to its dependence on the molecular mass of the gas, the specific gas constant R depends on the gas considered.
\Rightarrow The pressure is related to the change of the momentum of molecules by collision. It is thus related to the molecular kinetik energy expressed in temperature.

Remark There is another formulation of the ideal gas law, in terms of moles:

$$
p V=\frac{N}{N_{A}}\left(N_{A} k\right) T=\mathcal{N} R_{*} T
$$

where \mathcal{N} is the number of moles, R_{*} the universal ideal gas constant $\left(R_{*} \approx 8,3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$.

II. 3 - Mixture of gases : Dalton's law

Dalton's law: The pressure of a mixture of ideal gases is the sum of the partial pressures of each ideal gas which would occupy the same volume $V: p=p_{1}+p_{2}+\ldots$, with $p_{i} V=N_{i} k T$ where N_{i} is the number of molecules of gas i.

The ideal gas law becomes $p=\sum p_{i}=\sum N_{i} k T / V=N k T / V \Rightarrow p V=N k T$ where $N=\sum N_{i}$ is the total number of molecules in the mixture of gases. In other words, the ideal gas law is unchanged for a mixture of ideal gases, with N the total number of molecules.

Remark: One implication of Dalton's law is that for a volume V at a given temperature T and pressure p, any ideal gas or mixture of ideal gases contains the same number of molecules $N=p V /(k T)$. Notably, if we compare a volume V at T, p of dry air the same volume of moist air (the latter containing water vapor molecules in addition to dry air molecules), the moist air is lighter than dry air. This is because the molecular mass of $\mathrm{H}_{2} \mathrm{O}$ is smaller than either O_{2} or N_{2}. The number of molecules being the same by Dalton's law, some of the dry air molecules have been replaced by water vapor molecules, which are lighter. The fact that air containing water vapor is lighter than dry air is called the virtual effect.

Specific form (per unit mass): We introduce the density of gas i with molecular mass m_{i} and N_{i} molecules: $\rho_{i}=N_{i} m_{i} / V$. The total density is $\rho=\sum_{i} \rho_{i}$, the total number of molecules is $N=\sum_{i} N_{i}$. Then Dalton's law can be written

$$
p=\frac{\sum_{i} N_{i}}{V} k T=\left(\frac{\sum_{j} N_{j} m_{j}}{V}\right) \frac{k}{\frac{\sum_{k} N_{k} m_{k}}{\sum_{i} N_{i}}} T
$$

Thus for a mixture of gases:

$$
\begin{equation*}
\Rightarrow p=\sum_{j} \rho_{j} \frac{k}{<m>} T \Rightarrow p=\rho R T, \tag{3}
\end{equation*}
$$

where $p=\sum_{i} p_{i}, \rho=\sum_{i} \rho_{i}, R=k /<m>$, and $<m>=\sum N_{i} m_{i} / N$ is the mean molecular mass.

II. 4 - Hydrostatic

We consider a continuous gas with density $\rho(z)$ and pressure $p(z)$. We suppose a layer of air in equilibrium between heights z and $z+d z$, layer with horizontal area A. The forces on this layer of air are gravity $-\rho g d z A$, and pressure at the top interface $-p(z+d z) A$ and at the bottom interface $p(z) A$. Thus equilibrium of forces implies

$$
-\rho g d z A-p(z+d z) A+p(z) A=0 \Rightarrow \frac{p(z+d z)-p(z)}{d z}=-\rho g
$$

Taking the limit $d z \rightarrow 0$,

$$
\begin{equation*}
\frac{\partial p}{\partial z}=-\rho g \tag{4}
\end{equation*}
$$

II. 5 - Joule's law, enthalpy

Note that internal energy is a state variable, hence a function of two variables $U=U(T, V)=U(T, p)$. Joule's law for an ideal gas states that

$$
\left.\frac{\partial U}{\partial V}\right|_{T=c s t t}=0
$$

Thus $d U=C_{v} d T$ for an ideal gas, where C_{v} is the heat capacity at constant volume.
(1) At constant volume, adding or removing heat to/from an ideal gas yields a change of internal energy: Indeed from the first law,

$$
\frac{d U}{d t}=C_{v} \frac{d T}{d t}=\dot{Q}+\dot{W}=\dot{Q}-p \frac{d V}{d t}
$$

Thus at constant volume

$$
\dot{Q}=\frac{d U}{d t}=C_{v} \frac{d T}{d t}
$$

The larger C_{v}, the smaller the temperature response to heat added or removed.
(2) At constant pressure, adding or removing heat to/from an ideal gas yields a change of enthalphy $H=U+p V=C_{p} T$:

Indeed from the first law,

$$
\frac{d U}{d t}=\dot{Q}+\dot{W}=\dot{Q}-p \frac{d V}{d t} \Rightarrow \frac{d U}{d t}+\frac{d(p V)}{d t}=\frac{d H}{d t}=\dot{Q}+V \frac{d p}{d t}
$$

Note that $H=U+p V=C_{v} T+N k T=C_{p} T$ where $C_{p}=C_{v}+N k$ is that heat capacity at constant pressure.
Thus at constant pressure

$$
\dot{Q}=\frac{d H}{d t}=C_{p} \frac{d T}{d t}
$$

\Rightarrow Summary of equations in specific form:
In atmospheric science, we express thermodynamic quantities in specific form, i.e. per unit mass $M=$ $N \times m$ (as usual, N is the number of molecules and m the molecular mass).

Recall also that α denotes specific volume $1 / \rho$ and we introduce

$$
c_{v}=\frac{C_{v}}{M}, c_{p}=\frac{C_{p}}{M}, u=\frac{U}{M}, h=\frac{H}{M} \text { and } \delta q=\frac{\delta Q}{M}
$$

Then the equations become:

$$
\begin{align*}
p & =\rho R T \Leftrightarrow p \alpha=R T: \text { Ideal gas law, } \tag{5}\\
\frac{\partial p}{\partial z} & =-\rho g \Leftrightarrow g d z=-\alpha d p: \text { Hydrostatic approximation, } \tag{6}\\
\delta q & =d u+p d \alpha=d h-\alpha d p, \text { with } h=u+p \alpha: \text { First law of thermodynamics, } \tag{7}\\
d u & =c_{v} d T \text { and } d h=c_{p} d T, \text { with } c_{p}=c_{v}+R: \text { Joule's law, } \tag{8}
\end{align*}
$$

Note that those specific variables are NOT extensive variables. One needs to multiply by the mass to recover extensive variables. In other words for a mixture of gases with masses M_{1} and M_{2}, and specific internal energies u_{1} and u_{2}, the total internal energy of the mixture is $U=M_{1} u_{1}+M_{2} u_{2}$ and the total specific internal energy is $u=\left(M_{1} u_{1}+M_{2} u_{2}\right) /\left(M_{1}+M_{2}\right)$.

III - Dry convection: application to the atmosphere

Cloud formation is closely related to the convective movement of air. Thus a key question is what makes the air move. Note that although temperature decreases with height, the cold air aloft is not heavier and thus does not "fall" to the ground, as its density is not only a function of temperature, but also of pressure $\rho(T, p)$. The three are related through the ideal gas law

$$
p=\rho R T
$$

where R denotes the specific constant of the gas.
To determine the stability of air, we thus need to account for changes in T and p with height. We use the so-called "parcel method" to assess whether a parcel of air is unstable to upward motion. We consider a hypothetical parcel of air near the surface displaced vertically adiabatically, and ask the following question: if this parcel of air is displaced upwards, will it return to its original position, or will it keep rising? If the displaced parcel has lower density than the environment, it is lighter and will keep rising: the atmosphere is unstable to dry convection. If instead its density is larger, it is heavier and will accelerate back down: the atmosphere is stable to dry convection. The displacement is supposed to be slow enough that the pressure of the parcel is always in equilibrium with the pressure of the environment ("quasi-static" displacement; see § II.1).

III. 1 Potential temperature θ, dry static energy, dry adiabatic lapse rate

- Conservation of potential temperature

We now show that during the quasi-static adiabatic parcel displacement, there is an invariant called potential temperature

$$
\begin{equation*}
\theta \stackrel{\text { def }}{=} T\left(p / p_{0}\right)^{-R / c_{p}}, \tag{9}
\end{equation*}
$$

where T denotes temperature, p pressure, p_{0} a reference pressure (typically 1000 hPa), and c_{p} heat capacity at constant pressure $\left(c_{p} \approx 1006 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right.$ for dry air $)$. Then we will use this invariant to determine the condition under which the atmosphere is unstable to dry convection.

Applying the first law of thermodynamics to an infinitesimal displacement, the change in internal energy $c_{v} d T$ is equal to the heat added, which is zero in this adiabatic displacement, plus the work done on the parcel, in that case due to pressure forces $\delta W=-p d(1 / \rho)$:

$$
\begin{equation*}
c_{v} d T=-p d\left(\frac{1}{\rho}\right) \tag{10}
\end{equation*}
$$

Using the ideal gas law $p=\rho R T$ and recalling that $c_{v}+R=c_{p}$, we obtain

$$
\begin{equation*}
c_{v} d T=-p d\left(\frac{R T}{p}\right)=-R d T+R T \frac{d p}{p} \Leftrightarrow c_{p} d T-R T \frac{d p}{p}=0 \tag{11}
\end{equation*}
$$

implying

$$
\begin{equation*}
\frac{d T}{T}-\frac{R}{c_{p}} \frac{d p}{p}=d \ln \left(T p^{-R / c_{p}}\right)=0 \tag{12}
\end{equation*}
$$

This shows that $T p^{-R / c_{p}}$ is constant, hence $\theta=T\left(p / p_{0}\right)^{-R / c_{p}}$ is conserved during the displacement.

- Conservation of dry static energy and dry adiabatic lapse rate

Before assessing the stability of the parcel, we note that in the special case of a hydrostatic atmosphere, i.e. assuming $d p=-\rho g d z$, the variable

$$
\begin{equation*}
h_{d r y} \stackrel{\text { def }}{=} c_{p} T+g z \tag{13}
\end{equation*}
$$

is conserved. It is called the dry static energy. Indeed if we make this hydrostatic approximation, equation (12) becomes

$$
\begin{equation*}
c_{p} d T+R T \rho g \frac{d z}{p}=d\left(c_{p} T+g z\right)=d h_{d r y}=0 \tag{14}
\end{equation*}
$$

where we have again used the ideal gas law $p=\rho R T$. Thus the dry static energy $c_{p} T+g z$ is conserved in an adiabatic quasi-static displacement under the hydrostatic approximation.

Furthermore in that case, it is readily seen from equation (14) that the dry adiabatic lapse rate Γ_{d}, defined as the decrease of temperature with height, is given by

$$
\begin{equation*}
\Gamma_{d} \stackrel{\text { def }}{=}-\frac{d T}{d z}=\frac{g}{c_{p}} \approx 10^{\circ} \mathrm{K} / \mathrm{km} \tag{15}
\end{equation*}
$$

\Rightarrow A dry adiabat loses 1 degree every 100 m .

III. 2 Stability to dry convection, Brunt-Väisälä frequency

- How can we assess the stability of dry air?

We now return to our original question, namely is the displaced parcel lighter or heavier than its environment. Recall that the pressure of the parcel is equal to that of the environment, so that during the displacement its pressure changes following the environmental pressure, while its temperature changes such that the potential temperature is conserved. To fix ideas, let's raise a parcel upwards (a similar argument can be made for downward displacements). Figure 1 schematically describes the three possible cases, depending on the environmental potential temperature profile $\bar{\theta}$, shown in red as a function of height.

The displaced parcel starts with the near-surface environmental value $\theta_{p}=\bar{\theta}$, and conserves its potential temperature θ_{p} during its adiabatic ascent (blue). Once displaced, comparing θ_{p} with $\bar{\theta}$ at the displaced pressure level determines whether the parcel is heavier or lighter than the environment. If $\bar{\theta}$ increases with height (left panel), the displaced parcel has colder potential temperature than the environment $\theta_{p}<\bar{\theta}$, and thus is heavier and accelerates back down: the atmosphere is stable to dry convection. On the other hand, if $\bar{\theta}$ decreases with height (right panel), the displaced parcel has warmer potential temperature than the environment $\theta_{p}>\bar{\theta}$, and thus is lighter and keeps rising: the atmosphere is unstable to dry convection. If $\bar{\theta}$ is constant with height (middle panel), the displaced parcel is neither accelerated downwards nor upwards: the atmosphere is neutral to dry convection.

In the stable case, the displaced parcel will accelerate back towards and passed its original equilibrium altitude. It will then be lighter than the environment and accelerate back up towards its equilibrium altitude. Thus the displaced parcel oscillates around its equilibrium height. The frequency of oscillation is known as the buoyancy frequency, or Brunt Väisälä frequency, which we will show is given by:

$$
N=\sqrt{\frac{g}{\bar{\theta}} \frac{\partial \bar{\theta}}{\partial z}}
$$

In the unstable case, convection is very efficient at removing the instability. Indeed, in the planetary subcloud layer (first kilometer of the atmosphere or so), the convective adjustment time scale is very fast (minutes for dry convection) compared to destabilizing factors (surface warming, atmospheric radiative cooling...). Thus the observed state is very close to convective neutrality $\bar{\theta}=$ constant, see for instance the review [Stevens "Atmospheric Moist Convection" 2005] and references therein.

Figure 1: Schematic representation of the parcel method.

But above this thin boundary layer, this observation does not hold anymore and $\bar{\theta}$ is observed to increase with height. This is because above the subcloud layer, atmospheric convection involves phase change of water vapor. We need to revisit the above calculations to account for the significant latent heat released during the phase changes of water. This will be done in $\S \mathrm{V}$.

- Hydrostatic case

Exercice.

In this exercise, we want to derive conditions that determine whether an atmosphere is stable to dry convection. We will use the parcel method.

Consider the quasi-static adiabatic displacement of a parcel of dry air in an environment with density ρ and temperature T.
(a) The density and temperature of the parcel are denoted ρ^{\prime} and T^{\prime}. Give the vertical acceleration $d^{2} z^{\prime} / d t^{2}$ of the parcel as a function of T and T^{\prime}.
(b) Now suppose that the hydrostatic approximation holds. We saw in class that, in that case, the parcel follows the dry adiabatic lapse rate $d T^{\prime} / d z=-\Gamma_{d}$ during its displacement, where $\Gamma_{d}=g / c_{p}$. We displace the parcel from its equilibrium position z_{0} with temperature $T=T^{\prime}=T_{0}$ to a new altitude $z_{0}+z^{\prime}$. We suppose the displacement small (see figure below).
Show that the vertical acceleration of the parcel solves a differential equation of the form:

$$
\frac{d^{2} z^{\prime}}{d t^{2}}+N^{2} z^{\prime}=0
$$

where N^{2} will be expressed in terms of Γ_{d}, T_{0}, and of the environmental lapse rate $\Gamma=-d T / d z$ assumed constant (which is a reasonable approximation for a small displacement).
(c) We now solve the particular case where $N^{2}>0$. We denote the initial displacement $z^{\prime}(t=0)=z_{0}^{\prime}$ and suppose zero initial velocity $d z^{\prime} / d t(t=0)=0$. Solve for $z^{\prime}(t)$.
(d) More generally, discuss qualitatively the temporal evolution of the displacement $z^{\prime}(t)$ of the parcel as a function of N^{2}.
(a) The environment has temperature T, density ρ, pressure p.

Figure 2: Schematic of parcel method

The parcel has temperature T^{\prime} and density ρ^{\prime}. By definition, a quasi-static displacement is such that the parcel pressure is in equilibrium with the environment $p=p^{\prime}$.

By Archimedes' principle, the acceleration of the parcel is

$$
\rho^{\prime} \frac{d^{2} z^{\prime}}{d t^{2}}=\left(\rho-\rho^{\prime}\right) g
$$

with $p=\rho R T=\rho^{\prime} R T^{\prime}$ (ideal gas law).
Thus

$$
\frac{d^{2} z^{\prime}}{d t^{2}}=\frac{\rho-\rho^{\prime}}{\rho^{\prime}} g=\frac{p / R T-p / R T^{\prime}}{p / R T^{\prime}} g=\frac{T^{\prime}-T}{T} g
$$

(b) We suppose hydrostatic balance and displace the parcel from $z_{0}\left(\mathrm{~T}=\mathrm{T}^{\prime}=\mathrm{T}_{0}\right)$ to $z_{0}+z^{\prime}$ (small displacement). The displaced parcel has vertical acceleration from (a) given by

$$
\frac{d^{2} z^{\prime}}{d t^{2}}=\frac{T^{\prime}\left(z_{0}+z^{\prime}\right)-T\left(z_{0}+z^{\prime}\right)}{T\left(z_{0}+z^{\prime}\right)} g
$$

Now the parcel follows a dry adiabatic lapse rate $\Gamma_{d}=g / c_{p}$ during its displacement, thus

$$
T^{\prime}\left(z_{0}+z^{\prime}\right)=T^{\prime}\left(z_{0}\right)-\Gamma_{d} z^{\prime}=T_{0}-\Gamma_{d} z^{\prime}
$$

Similarly, if we denote $\Gamma=-d T / d z$ the environmental lapse rate, then the temperature of the environment at $z_{0}+z^{\prime}$ is

$$
T\left(z_{0}+z^{\prime}\right)=T\left(z_{0}\right)-\Gamma z^{\prime}=T_{0}-\Gamma z^{\prime}
$$

Thus

$$
\frac{d^{2} z^{\prime}}{d t^{2}}=\frac{\left(T_{0}-\Gamma_{d} z^{\prime}\right)-\left(T_{0}-\Gamma z^{\prime}\right)}{T_{0}-\Gamma z^{\prime}} g=\frac{\Gamma-\Gamma_{d}}{T_{0}-\Gamma z^{\prime}} g z^{\prime} \approx \frac{\Gamma-\Gamma_{d}}{T_{0}} g z^{\prime}
$$

where in the last approximation, we have used the fact that the displacement is small, thus $\Gamma z^{\prime} \ll T_{0}$ is neglected.

$$
\Rightarrow \frac{d^{2} z^{\prime}}{d t^{2}}+N^{2} z^{\prime}=0, \text { where } N^{2}=g \frac{\Gamma_{d}-\Gamma}{T_{0}}
$$

(c) In the particular case where $N^{2}>0$, the solutions of this eqquation are given by $z^{\prime}(t)=A \cos (N t)+$ $B \sin (N t)$, where A and B are constants. From initial conditions $z^{\prime}(t=0)=z_{0}^{\prime} \Rightarrow A=z_{0}^{\prime}$ and $d z^{\prime} / d t=$ $-A N \sin (N t)+B N \cos (N t) \Rightarrow B=0$. Thus $z^{\prime}(t)=z_{0}^{\prime} \cos (N t)$. The displacement oscillates with frequency N and amplitude z_{0}^{\prime}.
(d) More generally, the temporal evolution of $z^{\prime}(t)$ depends on the sign of N^{2}. In other words, the stability of a temperature profile $T(z)$ to dry convection under the hydrostatic approximation depends on
the sign of $N^{2}=g \frac{\Gamma_{d}-\Gamma}{T_{0}} . \Gamma$ is the environmental lapse rate $(=-d T / d z)$ and Γ_{d} is the dry adiabatic lapse rate $g / c_{p} . N$ is called the Brunt-Väisälä frequency.

If $N^{2}>0$, i.e. if $\Gamma_{d}>\Gamma$, then N is real and $z^{\prime}(t) \propto \cos (N t), \sin (N t)$. The parcel oscillates with frequency N, Brunt-Väisälä frequency (sometimes also called buoyancy frequency). The atmosphere is stable to dry convection.

If $N^{2}<0$, i.e. if $\Gamma_{d}<\Gamma$, then N is imaginary and $z^{\prime}(t) \propto \exp (|N| t)$. There is an exponentially growing solution $z^{\prime}(t) \propto \exp (|N| t)$ and the atmosphere is unstable to dry convection.

- General case

We now consider the general case, i.e. we do not assume hydrostasy anymore. We will show that we can still derive a stability criterion. We know from the first law of thermodynamics that the parcel conserves its potential temperature $\theta_{\text {parcel }}=T_{\text {parcel }}\left(p_{\text {parcel }} / p_{0}\right)^{-R / c_{p}}$ during the displacement. Thus $\theta_{\text {parcel }}\left(z_{0}\right)=$ $\theta_{\text {parcel }}\left(z^{\prime}+z_{0}\right)$. We denote the environmental potential temperature θ and density ρ.

From Archimedes principle, the vertical acceleration of the parcel displaced from its equilibrium position z_{0} to the new position $z^{\prime}+z_{0}$ is

$$
\frac{d^{2} z^{\prime}}{d t^{2}}=g \frac{\rho-\rho_{\text {parcel }}}{\rho_{\text {parcel }}}=g \frac{p / T-p / T_{\text {parcel }}}{p / T_{\text {parcel }}}=g \frac{T_{\text {parcel }}-T}{T}=g \frac{\theta_{\text {parcel }}-\theta}{\theta}
$$

where we have used the ideal gas law and the fact that the parcel pressure is equal to that of the environment, and where all the quantities are evaluated at $\left(z_{0}+z^{\prime}\right)$.

Now $\theta_{\text {parcel }}\left(z_{0}+z^{\prime}\right)=\theta_{\text {parcel }}\left(z_{0}\right)=\theta\left(z_{0}\right)$, and $\theta\left(z_{0}+z^{\prime}\right) \approx \theta\left(z_{0}\right)+(\partial \theta / \partial z) z^{\prime}$. Thus

$$
\frac{d^{2} z^{\prime}}{d t^{2}}=g \frac{\theta\left(z_{0}\right)-\left(\theta\left(z_{0}\right)+(\partial \theta / \partial z) z^{\prime}\right)}{\theta\left(z_{0}\right)+(\partial \theta / \partial z) z^{\prime}} \approx g \frac{-(\partial \theta / \partial z) z^{\prime}}{\theta\left(z_{0}\right)}
$$

where in the denominator we have neglected the z^{\prime} contribution since we are assuming a small displacement, thus this term is small.

Therefore

$$
\frac{d^{2} z^{\prime}}{d t^{2}}+\frac{g}{\theta} \frac{\partial \theta}{\partial z} z^{\prime}=\frac{d^{2} z^{\prime}}{d t^{2}}+N^{2} z^{\prime}=0
$$

with

$$
N^{2}=\frac{g}{\theta} \frac{\partial \theta}{\partial z}
$$

Similar to the previous, hydrostatic case, the atmosphere is stable if $N^{2}>0$ i.e. θ increases with z. Conversely, the atmosphere is unstable to dry convection if $N^{2}<0$ i.e. θ decreases with z.

- Link between the 2

Note that we can recover the hydrostatic case from

$$
N^{2}=\frac{g}{\theta} \frac{\partial \theta}{\partial z}:
$$

Indeed, assuming hydrostasy,

$$
\frac{1}{\theta} \frac{\partial \theta}{\partial z}=\frac{1}{T} \frac{\partial T}{\partial z}-\frac{R}{c_{p} p} \frac{\partial p}{\partial z}=\frac{1}{T}\left(\frac{\partial T}{\partial z}-\frac{R T}{c_{p} p}(-\rho g)\right)=\frac{1}{T}\left(\frac{\partial T}{\partial z}+\frac{g}{c_{p}}\right)=\frac{1}{T}\left(\Gamma_{d}-\Gamma\right)
$$

where we have used the ideal gas law $p=\rho R T$. Multiplyig by g, we indeed recover the hydrostatic BruntVäisälä frequency.

- Remark

As we saw last time, the typical time scale for dry convection in the atmosphere $\tau_{N}=2 \pi / N$ is of the order of 10 minutes.

To give some orders of magnitude, if for example we consider wind blowing on mountains with typical horizontal spacing of 10 km , a temperature around $20^{\circ} \mathrm{C}$, and a lapse rate of $5^{\circ} \mathrm{km}^{-1}$, what value of wind speed yields a frequency that matches the frequency of gravity waves ?
\Rightarrow With wind speed U over topography with length scale L, the time scale between two mountains is $\tau_{\text {topog }}=L / U$. The stratification time scale is $\tau_{N}=2 \pi / N$, with $N=\sqrt{g\left(\Gamma_{d}-\Gamma\right) / T} \approx \sqrt{10 *(10-5) * 10^{-3} / 293}$ $\mathrm{s}^{-1} \approx 1.3 * 10^{-2} \mathrm{~s}^{-1}$. Thus $\tau_{N}=2 \pi / N \approx 480 \mathrm{~s} \approx 8 \mathrm{~min}$.

Both times scales will resonate when

$$
\frac{L}{U}=\frac{2 \pi}{N} \Rightarrow U=\frac{L}{2 \pi} N=\frac{L}{\tau_{N}} \approx \frac{10^{4}}{480} \mathrm{~m} \mathrm{~s}^{-1} \approx 20 \mathrm{~m} \mathrm{~s}^{-1}
$$

III. 3 Centrifugal convection

We now investigate the stability of a rotating fluid to horizontal displacements. As we will discuss in more details later, the instability to vertical displacements discussed in the previous section is relevant to the tropics where the Coriolis parameter is small. But in midlatitudes where the planetary rotation is important, slantwise convection (with a displacement having both vertical and horizontal components) is relevant as well.

- Centrifugal convection: case of a rotating fluid in cylinder

We first focus on the simple case of a fluid in rotation around the vertical axis z and investigate the stability to horizontal displacements. We will apply the parcel method to a ring of fluid (in dark blue figure 3).

The Navier-Stokes equations in cylindrical coordinates, neglecting viscous effects, assuming no variation along the angle $\theta: \partial / \partial \theta=0$, and assuming constant density $\alpha=1 / \rho=$ constant, yield:

$$
\begin{align*}
\frac{d u}{d t} & =-\alpha \frac{\partial p}{\partial r}+\frac{v^{2}}{r}=-\alpha \frac{\partial p}{\partial r}+\frac{M^{2}}{r^{3}} \tag{16}\\
\frac{d M}{d t} & =-\alpha \frac{\partial p}{\partial \theta}=0, \text { where } M=r v \tag{17}
\end{align*}
$$

From the second equation, we see that for an inviscid, symmetric motion $(\partial / \partial \theta=0$ i.e. symmetry around axis of rotation), M is conserved.

We assume that the fluid is in equilibrium :

$$
\alpha \frac{\partial p}{\partial r}=\frac{M^{2}}{r^{3}}
$$

In other words, there is an equilibrium between pressure forces and centrifugal forces. We then consider the fluid ring of figure 3 in equilibrium with the environment at r_{0}, and displace it horizontally from r_{0} to $r_{0}+r^{\prime}$. As before, we use the parcel method and thus suppose that the displacement does not impact the environmental pressure field, and that the parcel pressure is equal to that of the environment $p_{\text {parcel }}=p$.

Then the equations of motion for the parcel at $r=r_{0}+r^{\prime}$ are:

$$
\frac{d u_{\text {parcel }}}{d t}=\frac{d^{2} r^{\prime}}{d t^{2}}=-\alpha \frac{\partial p_{\text {parcel }}}{\partial r}(r)+\frac{M_{\text {parcel }}^{2}(r)}{r^{3}}
$$

But $\alpha \partial p_{\text {parcel }} / \partial r=\alpha \partial p / \partial r=M^{2}(r) / r^{3}$ and M is conserved thus $M_{\text {parcel }}(r)=M_{\text {parcel }}\left(r_{0}\right)=M\left(r_{0}\right)$. Thus the equations of motion for the parcel at $r=r_{0}+r^{\prime}$ become:

$$
\frac{d^{2} r^{\prime}}{d t^{2}}=-\frac{M^{2}(r)}{r^{3}}+\frac{M^{2}\left(r_{0}\right)}{r^{3}}=\frac{M^{2}\left(r_{0}\right)-M^{2}(r)}{r^{3}}=\frac{\left(M\left(r_{0}\right)-M(r)\right)\left(M\left(r_{0}\right)+M(r)\right)}{r^{3}} \approx\left(M\left(r_{0}\right)-M(r)\right) \frac{2 M\left(r_{0}\right)}{r_{0}^{3}}
$$

Figure 3: The ring of fluid in dark blue is displaced horizontally from r_{0} to $r_{0}+r^{\prime}$.
where we have used the fact that the displacement is small $r^{\prime} \ll r_{0}$. We further develop the first term on the right hand side:

$$
M\left(r_{0}\right)-M(r)=M\left(r_{0}\right)-M\left(r_{0}+r^{\prime}\right) \approx-\frac{d M}{d r} r^{\prime}
$$

Thus

$$
\frac{d^{2} r^{\prime}}{d t^{2}}+\frac{2 M\left(r_{0}\right)}{r_{0}^{3}} \frac{d M}{d r} r^{\prime}=0
$$

As in the previous section for vertical displacemet z^{\prime}, we see that if $d M / d r>0$, the fluid is stable to horizontal displacements. If $d M / d r<0$ on the other hand, the fluid is unstable to horizontal displacements.

Note that physically, this comes from the fact that the displaced fluid conserves its angular momentum $M_{\text {parcel }}$. If $d M / d r<0$, the new conditions that the displaced parcel encounters correspond to a lower environmental M and thus by equilibrium to a lower pressure force. Thus its centrifugal force wins and the displaced parcel keeps advancing.

- Centrifugal convection: atmospheric case

This is the case relevant to oscillations in a fluid in geostrophic equilibrium (equilibrium between pressure force and Coriolis force). We consider the displacement of a tube of fluid parallel to the x-axis (figure 4) in a fluid in geostrophic equilibrium. We suppose invariance along the y-axis $\partial / \partial y=0$, and Coriolis parameter $f=$ constant. We also suppose constant density thus $\alpha=$ constant.

The equations of motion for the displaced fluid are

$$
\begin{align*}
& \frac{d u}{d t}-f v=-\alpha \frac{\partial p}{\partial x}=-f v_{g} \tag{18}\\
& \frac{d v}{d t}+f u=-\alpha \frac{\partial p}{\partial y}=0 \Rightarrow v+f x=\text { constant }=M \tag{19}
\end{align*}
$$

where we have used the geostrophic velocity v_{g} in equilibrium with the pressure field, and we have denotes M the conserved quantity $M=v+f x$ absolute momentum.

We apply the parcel method to the tube of fluid that we displace. As usual, we suppose that the movement does not perturb the pressure field. The equations of motion of the parcel thus yield at $x=x_{0}+x^{\prime}$:

Figure 4: The tube of fluid in blue is displaced horizontally from x_{0} to $x_{0}+x^{\prime} . v_{g}$ denotes the geostrophic wind.

$$
\frac{d u}{d t}-f v=-f v_{g} \Rightarrow \frac{d u}{d t}=\frac{d^{2} x^{\prime}}{d t^{2}}=f\left(v-v_{g}\right)=f\left[(v+f x)-\left(v_{g}+f x\right)\right]=f\left(M_{\text {parcel }}\left(x_{0}+x^{\prime}\right)-M_{g}\left(x_{0}+x^{\prime}\right)\right)
$$

Thus

$$
\frac{d^{2} x^{\prime}}{d t^{2}}=f\left(M_{g}\left(x_{0}\right)-M_{g}\left(x_{0}+x^{\prime}\right)\right) \approx-f \frac{d M_{g}}{d x} x^{\prime} \Rightarrow \frac{d^{2} x^{\prime}}{d t^{2}}+f \frac{d M_{g}}{d x} x^{\prime}=0
$$

By analogy with earlier sections, we see that if $d M_{g} / d x<0$, the fluid is unstable to horizontal displacements. Conversely if $d M_{g} / d x>0$, the fluid is stable. This instability is sometimes called inertial instability (in the stable case, the oscillations are called inertial oscillations).

III. 4 Symmetric instability and slantwise convection

READING ASSIGNMENT: See Emanuel Chapter 12.
Overview: We suppose the reference state in hydrostatic and geostrophic balance. Then

$$
\begin{align*}
\frac{D w}{D t} & =B \approx g \frac{T-\bar{T}}{\bar{T}} \tag{20}\\
\frac{D u}{D t} & =f(M-\bar{M}) \tag{21}
\end{align*}
$$

where overbars denote the reference state temperature and absolute momentum. The atmosphere can be stable to horizontal and vertical displacements separately, but unstable to slantwise convection. This instability is known as symmetric instability. It occurs when

$$
\left.\frac{\partial \bar{\theta}}{\partial z}\right|_{\bar{M}}<0 \text { or }\left.\frac{\partial \bar{M}}{\partial x}\right|_{\bar{\theta}}<0
$$

IV - Entropy, Second law of thermodynamics and implications for the atmosphere

IV. 1 - Definition and link with θ

- Definition

Recall that during a reversible displacement of a parcel of air, the first law of thermodynamics yields (using same notations as before):

$$
\begin{align*}
d u & =\delta Q-p d \alpha=\delta Q-\frac{R T}{\alpha} d \alpha, \quad \text { and from Joule's law } d u=c_{v} d T \tag{22}\\
\Rightarrow \frac{\delta Q}{T} & =c_{v}\left(\frac{d T}{T}+\frac{R}{c_{v}} \frac{d \alpha}{\alpha}\right)=c_{v} d\left(\ln T \alpha^{R / c_{v}}\right) \tag{23}\\
\Rightarrow \frac{\delta Q}{T} & =c_{v} d\left(\ln T \alpha^{R / c_{v}}\right) \tag{24}
\end{align*}
$$

Remark (notations): This is also sometimes written $c_{v} d\left(\ln T \alpha^{\gamma-1}\right)$, where $\gamma=c_{p} / c_{v}$ (recall that $R=$ $\left.c_{p}-c_{v}\right)$.

In terms of T and p :

$$
\begin{align*}
d h & =\delta Q+\alpha d p=\delta Q+\frac{R T}{p} d p, \quad \text { and } \quad d h=c_{p} d T \tag{25}\\
\Rightarrow \frac{\delta Q}{T} & =c_{p}\left(\frac{d T}{T}-\frac{R}{c_{p}} \frac{d p}{p}\right)=c_{p} d\left(\ln T p^{-R / c_{p}}\right) \tag{26}\\
\Rightarrow \frac{\delta Q}{T} & =c_{p} d\left(\ln T p^{-R / c_{p}}\right) \tag{27}
\end{align*}
$$

$\underline{\text { Remark (notations): }} \mathbf{U s i n g} \kappa=R / c_{p}$, this can also be written $c_{p} d\left(\ln T p^{-\kappa}\right)$.
Definition of entropy: We see that an invariant appears for reversible adiabatic displacements, which we denote s :

$$
\begin{align*}
& \qquad d s=c_{p} d \ln \left(T p^{-R / c_{p}}\right)=c_{v} d \ln \left(T \alpha^{R / c_{v}}\right) \tag{28}\\
& \text { or equivalently } s=s_{0}+c_{p} \ln \left(\frac{T p^{-R / c_{p}}}{T_{0} p_{0}^{-R / c_{p}}}\right)=s_{0}+c_{v} \ln \left(\frac{T \alpha^{R / c_{v}}}{T_{0} \alpha_{0}^{R / c_{v}}}\right) \tag{29}
\end{align*}
$$

where T_{0}, p_{0} and α_{0} are constant reference temperature, pressure and density respectively.
This variable s is called entropy. It is a state variable, i.e. it only depends on T, p or T, α. Thus during a transformation, the change of entropy Δs only depends on the initial and final states (not on the path between the 2 states).

We just showed that during a reversible transformation (for instance one for which $\delta W=-p d \alpha$), the change of entropy is

$$
d s=\frac{\delta Q_{r e v}}{T}
$$

In particular, during a reversible, adiabatic displacement (thus $Q_{r e v}=0$), s is conserved.

- Atmospheric case: link with θ

We see that

$$
d s=c_{p} \frac{d \theta}{\theta}
$$

thus entropy and potential temperature are closely related. This can also be written

$$
s=c_{p} \ln \theta \text { (up to constants). }
$$

Adiabats (trajectories with constant θ) are also sometimes called isentropes (s constant).

IV. 2 - Consequences, entropy maximisation

The second law of thermodynamis states that for an isolated system, the change of entropy during a transformation is either 0 if this transformation is reversible, or is strictly positive if this transformation is irreversible.

This law gives us a stability criterion for an isolated system. Indeed, such a system with entropy s maximum will thus be stable, as it will not spontaneously change state (else its entropy would have to decrease which would contradict the second law).

For more on this, and the atmospheric implications of entropy maximisation, please read chapter 4 of Bohren and Albrecht (reference on the course syllabus), notably section 4.4:
READING ASSIGNEMENT: Bohren Albrecht section 4.4.
Remark: For reference, we note the total entropy (not per unit mass)

$$
d S=C_{v} d\left(\ln T V^{\left(C_{p}-C_{v}\right) / C_{v}}\right)=C_{p} d\left(\ln T p^{-\left(C_{p}-C_{v}\right) / C_{p}}\right) .
$$

U and S are extensive, i.e. for a system composed of 2 subsystems of internal energies U_{1}, U_{2} and entropies S_{1}, S_{2}, the total internal energy and entropy are $U=U_{1}+U_{2}, S=S_{1}+S_{2}$. This is not true of the specific energy and entropy.

Example 1: Instantaneous adiabatic expansion:
If a gaz in a volume V_{1} is instantaneously expanded to a volume V_{2}, then the work done by pressure forces is $W=0$. If the transformation is adiabatic, we thus have $\Delta U=W+Q=0 \Rightarrow \Delta T=0$.
Then the entropy change is $\Delta S=C_{v} \ln \left(V_{2} / V_{1}\right)^{\left(C_{p}-C_{v}\right) / C_{v}}=N k \ln \left(V_{2} / V_{1}\right)$. The second law implies $\Delta S \geq 0 \Rightarrow V_{2}>V_{1}$. The gaz spontaneously occupies a larger volume.

Example 2: Reversible adiabatic expansion:
In that case, the gaz is brought from a container of volume V_{1} to volume V_{2} by slowly moving a wall of the container. The work of pressure forces is $\delta W=-p d V \Rightarrow d s=\delta Q / T=0$. The entropy is constant in this reversible adiabatic transformation.

Example 3: Entropic derivation of the dry adiabatic lapse rate:
Let's compute the dry adiabatic lapse rate Γ_{d} with the parcel method. The parcel displacement is supposed adiabatic and reversible, thus isentropic. We have

$$
d s=c_{p} d \ln T-R d \ln p \Rightarrow \frac{d s}{d z}=0 \Rightarrow \frac{c_{p}}{T} \frac{d T}{d z}-\frac{R}{p} \frac{d p}{d z}=0 .
$$

If we further make the hydrostatic approximation, $d p / d z=-\rho g$, and use the ideal gaz law $p=\rho R T$, we obtain

$$
-\frac{d T}{d z}=\Gamma_{d}=\frac{g}{c_{p}} .
$$

We thus recover the dry adiabatic lapse rate computed earlier.
Example 4: Application of entropy maximisation : $\theta=$ constant.
The second law of thermodynamics provides a criterion for stability of an isolated system. Indeed, an isolated system with maximum entropy is stable, i.e. will not change state spontaneously nor under a small perturbation.
One implication is that the potential temperature θ is constant with height in the atmospheric boundary layer (from the surface to cloud base, i.e. below the level of condensation of water vapor and concomitant latent heat release).
For more on this, the interested reader is referred to the book by Bohren and Albrecht page 164. We will not cover this in detail, but the main steps are :

- Consider an atmospheric layer between two isobars, of pressure p_{1} at height z_{1} and pressure p_{2} at height z_{2}. The atmosphere is supposed in hydrostatic equilibrium.
- First note that its mass M is constant. Indeed $M=\int_{z_{1}}^{z_{2}} \rho d z=\int_{p_{2}}^{p_{1}} \frac{d p}{g}=\frac{1}{g}\left(p_{1}-p_{2}\right)$.
- Second note that the conservation of energy (dry static energy $=$ enthalpy + potential energy) yields $\int\left(c_{p} T+g z\right) \rho d z=$ constant.
- Finally note that the entropy of the layer is $S=\int \rho c_{p} \ln \theta d z=\frac{c_{p}}{g} \int_{p_{2}}^{p_{1}} \ln \theta d p$, and investigate the profiles of T and p which maximize S (the optimum is $\theta(z)=$ constant).

V - Moist thermodynamics

V. 1 - When does water vapor condense into liquid water? The Clausius-Clapeyron equation

What is the effect of moisture on convection? Beyond the virtual effect briefly introduced earlier, i.e. water vapor making air lighter, an important impact of moisture on convection is the condensation and concomitant latent heat released (we will focus on vapor - liquid phase transition, though all the results below can be extended to the ice phase).

When does water vapor condense into liquid water? The water vapor contained in air will condense when its partial pressure e_{v} exceeds a certain value, called the saturation partial pressure $e_{v, s}$. The latter is governed by the Clausius-Clapeyron equation, which can be derived using the thermodynamic equilibrium between liquid water and water vapor:

$$
\begin{equation*}
\frac{d e_{v, s}}{d T}=\frac{L_{v} e_{v, s}}{R_{v} T^{2}} \tag{30}
\end{equation*}
$$

where $e_{v, s}$ is the saturation vapor pressure, T the absolute temperature, L_{v} the latent heat of vaporization of water vapor and R_{v} the water vapor gas constant. There is net condensation when $e_{v}>e_{v, s}(T)$.

This law predicts that the saturation water vapor pressure strongly increases with temperature. A physical interpretation of this increase can be obtained by considering liquid water with a flat interface, above which water vapor is found with partial pressure e_{v}. Saturation corresponds to an equilibrium between evaporation from the liquid water below and condensation of the water vapor above.

- $e_{v}<e_{v, s}$ means that there is more evaporation than condensation,
- $e_{v}>e_{v, s}$ means that there is more condensation than evaporation,
- $e_{v}=e_{v, s}$ means there is as much condensation as there is evaporation.

Molecularly, $e_{v, s}$ increases with temperature because the evaporation from the liquid phase increases with temperature, i.e. with the mean square velocity of the molecules. Thus the amount of water vapor required to equilibrate the evaporation is larger at larger temperatures.

We note here in passing that this is often phrased "warm air can hold more water vapor than cold air". This is a useful shortcut to remember that the maximum amount of water vapor $e_{v, s}$ attainable by a volume of air before it starts to condense, is an increasing function of temperature. But it gives the wrong impression that air is a "sponge" with holes in it, with the number of holes increasing with temperature. The saturation and condensation have nothing to do with "holes" in air, it simply has to do with equilibrium between evaporation and condensation. For a more in-depth discussion of the "sponge theory", see the book by Bohren and Albrecht (reference on the course website).

The relative humidity measures the distance to saturation, and is defined as

$$
\begin{equation*}
R H=\frac{e_{v}}{e_{v, s}} \tag{31}
\end{equation*}
$$

It is typically expressed in percent (100% relative humidity corresponds to saturated air).
Remark 1: We just saw that $e_{v, s}(T)$ only depends on temperature, following the Clausius-Clapeyron equation (30). As noted above, L_{v} is the latent heat of vaporization. It is the heat that the outside must provide to transform a unit mass of liquid into vapor. Or equivalently, it is the latent heat released per unit mass of condensation of vapor into liquid. It is given by $L_{v}=h_{v}-h_{l}$, difference of the specific enthalpy of water vapor and that of liquid water.

What happens during a phase change then? Let's consider the liquid to vapor change, with liquid mass M_{l} and vapor mass M_{v}. The phase change occurs at constant pressure p, thus the heat $Q=\Delta H$, where $H=M_{v} h_{v}+M_{l} h_{l}$ is the total enthalpy. Here h_{v} and h_{l} denote the specific enthalpies of vapor and liquid respectively. The enthalpy change during the phase change is only due to molecular rearrangements. For a mass M transformed, $\Delta H=Q_{\text {water }}=M\left(h_{v}-h_{l}\right)=M L_{v}$, where L_{v} is the heat to be added per unit mass of liquid water to make it evaporate. Note that the surrounding air provides heat to the water, and thus cools $Q_{a i r}=-M L_{v}$.

Similary, during condensation, the latent heat released is the enthalpy difference $M L_{v}=Q_{\text {air }}$.

Remark 2: Consequence of Clausius-Clapeyron

We will see that $L_{v}(T)$ depends on T, but if we assume that it is constant (a reasonable approximation for reasonable ranges of temperatures), then the Clausius-Clapeyron equation (30) can be solved, yielding

$$
e_{v, s}(T)=e_{v, s}\left(T_{0}\right) \exp ^{\frac{L_{v}}{R_{v}}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)}
$$

In the case of a warming $T=T_{0}+\delta T$, with $\delta T \ll T_{0}$ (as is the case for instance of a warming of a few degrees from a reference temperature $T_{0} \sim 300 K$), then

$$
\frac{1}{T}=\frac{1}{T_{0}\left(1+\delta T / T_{0}\right)} \approx \frac{1}{T_{0}}\left(1-\frac{\delta T}{T_{0}}\right)
$$

and

$$
e_{v, s}(T)=e_{v, s}\left(T_{0}\right) \exp ^{\frac{L_{v} \delta T}{R_{v} T_{0}^{2}}}
$$

In other words, the water vapor amount (as measured by the partial pressure) increases quasi-exponentially with warming!

This has implications for the response of the hydrological cycle to climate change. Notably, we expect an intensification of precipitation extremes following Clausius-Clapeyron, at a rate of about $7-8 \% \mathrm{~K}^{-1}$. The mean precipitation on the other hand is expected to increase at a slower rate, due to energy constraints (see for instance the seminal paper Held \& Soden 2006).

Remark 3: Similarly, the latent heat of sublimation is given by $L_{s}=h_{v}-h_{i}$ (ice evaporates), and the latent heat of fusion is given by $L_{f}=h_{l}-h_{i}$ (ice melts). Note that $L_{f}+L_{v}=L_{s}$, i.e. the enthalpic cost (total heat needed) to transform ice into vapor is the same as the cost of this transformation going through the liquid phase.

Remark 4: Actually, $L_{v}(T)$ depends on temperature. Indeed,

$$
\frac{\partial L_{v}}{\partial T}=\frac{\partial h_{v}}{\partial T}-\frac{\partial h_{l}}{\partial T}=c_{p, v}-c_{p, l} .
$$

(Note that L_{v} is the enthalpy difference between the vapor and liquid phase of water at same saturation pressure $e_{v, s}$ which depends only on T, so L_{v} is only function of T : $\left.\partial L_{v} / \partial T=d L_{v} / d T\right)$.
Both $c_{p, v}=1870 \pm 25 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and $c_{p, l}=4200 \pm 20 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ depend on temperature but weakly : $\Delta c_{p, v} / c_{p, v}, \Delta c_{p, l} / c_{p, l} \sim 1-2 \%$. So we can to a good approximate use constants.

Then

$$
L_{v}=L_{v, 0}+\left(c_{p, v}-c_{p, l}\right)\left(T-T_{0}\right)
$$

$L_{v, 0} \sim 2,5 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$ at $0^{\circ} \mathrm{C},\left(c_{p, v}-c_{p, l}\right)\left(T-T_{0}\right) \sim\left(2 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(50 \mathrm{~K}) \sim \mathcal{O}\left(10^{5}\right) \mathrm{J} \mathrm{kg}^{-1}$. Thus $\Delta L_{v} / L_{v} \sim 5 \%$ which is small but not always quantitatively negligible.

V. 2 - Atmospheric thermodynamics: moist variables

READING ASSIGNMENT: Book by Kerry Emanuel, Chp 4 (reference on the course website).
Commonly used moist variables are:

- Water vapor density (where M_{v} denotes the mass in kg of water vapor in the volume V in m^{3}):

$$
\rho_{v} \stackrel{\text { def }}{=} \frac{M_{v}}{V}
$$

- Dry air density (where M_{d} denotes the mass in kg of dry air in the volume V in m^{3}):

$$
\rho_{d} \stackrel{\text { def }}{=} \frac{M_{d}}{V}
$$

- Total air density:

$$
\rho=\rho_{v}+\rho_{d}
$$

- Specific humidity q_{v} (sometimes denoted q):

$$
q_{v} \stackrel{\text { def }}{=} \frac{\rho_{v}}{\rho}
$$

- Mixing ratio r_{v} (sometimes denoted r):

$$
r_{v} \stackrel{\text { def }}{=} \frac{\rho_{v}}{\rho_{d}},
$$

- Partial pressure of water vapor e_{v}, satisfying the ideal gas law (where R_{v} denotes specific constant of water vapor, recall that its value depends on the gas considered; here $R_{v}=k_{B} / m_{v}$ with m_{v} molecular mass of water):

$$
e_{v}=\rho_{v} R_{v} T
$$

- Partial pressure of dry air p_{d}, satisfying the ideal gas law (where $R_{d}=k_{B} / m_{d}$ denotes specific constant of dry air):

$$
p_{d}=\rho_{d} R_{d} T
$$

- The total pressure is then given by Dalton's law:

$$
p=p_{d}+e_{v}
$$

- Dew point temperature T_{d} : Temperature at which a parcel must be cooled at constant pressure to reach saturation ,
- Virtual temperature T_{v} : Temperature that dry air would have in order to have the same density as moist air at same pressure.
- Wet bulb temperature T_{w} : Temperature that an air parcel would have if liquid water was evaporated at constant pressure until saturation.
T_{w} can be measured with a thermometer covered in water-soaked cloth (wet-bulb thermometer) over which air is passed to make the liquid water evaporate.

Remark Note that $T_{d}<T_{w}<T$. Indeed, the dew point is obtained by cooling temperature until saturation (i.e. $e_{v, s}(T)$ is decreased by cooling until the water vapor pressure e_{v} is reached $e_{v}=e_{v, s}\left(T_{d}\right)$). But the wet bulb temperature is obtained not only by cooling (through latent cooling of evaporation) but also by increasing the water vapor amount (through evaporation). Thus the cooling needed to obtain saturation is reduced by the concomitant increased humidity.

EXERCISE:

- Express r_{v} as a function of q_{v}
- Express q_{v} as a function of r_{v}
$\rightarrow r_{v}=q_{v} /\left(1-q_{v}\right) ; q_{v}=r_{v} /\left(1+r_{v}\right)$.
Recall that relative humidity is defined as $R H=e_{v} / e_{v, s}$.
Also, the specific humidity at saturation is denoted $q_{v, s}$ and mixing ratio at saturation $r_{v, s}$.

EXERCISE:

- Show that

$$
\frac{r_{v}}{r_{v, s}}=\frac{e_{v}}{e_{v, s}} \frac{p-e_{v, s}}{p-e_{v}}
$$

where $r_{v, s}$ denotes mixing ratio at saturation.

- Deduce by taking typical atmospheric values of the various variables that

$$
R H \approx \frac{r_{v}}{r_{v, s}}
$$

\rightarrow Note that $\rho_{d, s} \neq \rho_{d}$, and likewise $p_{d, s} \neq p_{d}$ (indeed $\left.p=p_{d}+e_{v}=p_{d, s}+e_{v, s}\right)$.

$$
\frac{r_{v}}{r_{v, s}}=\frac{\rho_{v} / \rho_{d}}{\rho_{v, s} / \rho_{d, s}}=\frac{\left[e_{v} /\left(R_{v} T\right)\right] /\left[p_{d}\left(R_{d} T\right)\right]}{\left[e_{v, s} /\left(R_{v} T\right)\right] /\left[p_{d, s} /\left(R_{d} T\right)\right]}=\frac{e_{v} / p_{d}}{e_{v, s} / p_{d, s}}=\frac{e_{v} /\left(p-e_{v}\right)}{e_{v, s} /\left(p-e_{v, s}\right)}=R H \frac{p-e_{v, s}}{p-e_{v}}
$$

In the atmosphere, $p \sim 1000 \mathrm{hPa}, e_{v} \sim 80 \% e_{v, s}$, and $e_{v, s} \sim 10 \mathrm{hPa}$, thus $\frac{r_{v}}{r_{v, s}} \approx R H$ to a good approximation.
Note that this is climate dependent, and if the atmosphere was more humid (as for instance would be the case in much warmer conditions where the atmospheric water vapor amount would be important), then e may no longer be negligeable compared to p.

EXERCISE:

Show that the mixing ratio $r_{v, s}$ is not just a function of temperature, but also depends on p :

$$
\begin{equation*}
r_{v, s}=r_{v, s}(T, p)=\epsilon \frac{e_{v, s}}{p-e_{v, s}} \tag{32}
\end{equation*}
$$

$$
\rightarrow r_{v, s}=\frac{\rho_{v, s}}{\rho_{d, s}}=\frac{e_{v, s} /\left(R_{v} T\right)}{\left(p-e_{v, s}\right) /\left(R_{d} T\right)}=\frac{e_{v, s}}{p-e_{v, s}} \epsilon \approx \epsilon \frac{e_{v, s}(T)}{p}
$$

where $\epsilon=R_{d} / R_{v}$ (see V.3 below). Thus $r_{v, s}$ is inversely proportional to pressure, and increases quasi exponentially with T .

VI - Moist convection

VI. 1 - Convection of unsaturated moist air - virtual temperature

The virtual temperature is the temperature that dry air would have, to have the same density ρ as moist air at same pressure p. Recall that moist air is lighter than dry air (this is due to the lighter molecular mass of water $\mathrm{H}_{2} 0$ compared to other air molecules $\mathrm{N}_{2}, \mathrm{O}_{2}$). Thus in the following derivation of virtual temperature, we thus expect the virtual temperature to be warmer than the actual temperature (dry air needs to be warmer to have the same light density as moist air).

Let's derive the formula for the virtual temperature T_{v}, as a function of T, r and the ratio of molecular mass of water vapor to dry air ϵ :

$$
\epsilon \stackrel{\text { def }}{=} \frac{m_{v}}{m_{d}}=\frac{R_{d}}{R_{v}} \approx 0.622 .
$$

By definition, T_{v} satisfies

$$
p=\rho R_{d} T_{v}
$$

On the other hand, Dalton's law for partial pressures yields

$$
p=\rho_{v} R_{v} T+\rho_{d} R_{d} T
$$

Therefore

$$
T_{v}=T\left(\frac{\rho_{v}}{\rho_{v}+\rho_{d}} \frac{R_{v}}{R_{d}}+\frac{\rho_{d}}{\rho_{v}+\rho_{d}}\right)=T\left(\frac{1+r_{v} / \epsilon}{1+r_{v}}\right) .
$$

Note that since $\epsilon<1, T_{v}>T$, i.e. the virtual temperature is warmer than the actual temperature. This is expected since moist air is lighter than dry air, as the molecular mass of water vapor is smaller than the molecular mass of dry air. Therefore in order to have the same lighter density as moist air, dry air needs to be warmer.

Note that when considering the stability or instability to convection of moist, but unsaturated, air (i.e. without phase change of water), everything that we saw for dry convection in section III still holds if we replace the potential temperature θ by the virtual potential $\theta_{v}=T_{v}\left(p / p_{0}\right)^{-R / c_{p}}$. In particular, the stability criterion becomes $d \theta_{v} / d z>0$. Similarly, the Brunt Väisälä frequency becomes:

$$
N=\sqrt{\frac{g}{\bar{\theta}_{v}} \frac{\partial \bar{\theta}_{v}}{\partial z}}
$$

Remark 1: One can similarly define the specific gas constant and heat capacity that accounts for water vapor:

$$
R=R_{d} \frac{1+r_{v} / \epsilon}{1+r_{v}}, c_{p}=c_{p, d} \frac{1+r\left(c_{p, v} / c_{p, d}\right)}{1+r_{v}}
$$

Remark 2: One can also define the so-called "density temperature", which accounts both for the virtual effect and the condensate loading (weight of liquid and ice condensates, with mixing ratios respectively r_{l} and r_{i}):

$$
T_{\rho}=T \frac{1+r_{v} / \epsilon}{1+r_{T}}, \quad \text { where } r_{T}=r_{v}+r_{l}+r_{i}
$$

Beyond the virtual effect just discussed, i.e. water vapor making air lighter, an important impact of moisture on convection is the condensation and concomitant latent heat released (we will focus on vapor liquid phase transition, though all the results below can be extended to the ice phase). In the next section, we will include water phase changes when investigating moist convection.

VI. 2 - Equivalent potential temperature θ_{e}, moist static energy, moist adiabatic lapse rate

- Conservation of equivalent potential temperature

We saw that to determine the stability of dry air, it was important to derive a conserved quantity under adiabatic displacements, namely the potential temperature θ for dry convection. Can we derive a similar conserved quantity for moist air? The answer is yes, as we will now show, though this quantity, called equivalent potential temperature, is approximately conserved under adiabatic displacements.

For simplicity, we neglect the temperature dependence of the latent heat of vaporization L_{v}, as well as the temperature and water vapor dependence of the specific constant of air R and of the heat capacity at constant pressure c_{p}, which in the following denote constants for dry air. We also neglect the virtual effect discussed above. These approximations are reasonable in our climate, where the amount of water vapor is small $\left(r_{v} \ll 1 \mathrm{~kg} \mathrm{~kg}^{-1}\right)$. This would not be true in the presence of significant water vapor in air, as for instance would be the case in much warmer climates; for more details on how to include those dependencies, the interested reader is referred to Kerry Emanuel's book (reference on the course website).

As before, we apply the first law of thermodynamics to an infinitesimal displacement of a parcel of air. We first suppose that the parcel is saturated, i.e. $r_{v}=r_{v, s}$ where r_{v} is the water vapor mixing ratio and $r_{v, s}$ the mixing ratio at saturation. The only difference with our earlier dry case equation is that we need to take into account the latent heat released during the condensation of water vapor $-L_{v} d r_{v}$, where $d r_{v}$ denotes the change in water vapor mixing ratio:

$$
\begin{array}{ll}
& c_{v} d T=\delta W+\delta Q_{\mathrm{cond}}=-p d\left(\frac{1}{\rho}\right)-L_{v} d r_{v} \\
\Leftrightarrow & c_{p} d T-R T \frac{d p}{p}=-L_{v} d r_{v, s} \\
\Leftrightarrow & d \ln \left(T p^{-R / c_{p}}\right)=-L_{v} \frac{d r_{v, s}}{c_{p} T} \approx d\left(\frac{L_{v} r_{v, s}}{c_{p} T}\right) . \tag{35}
\end{array}
$$

The latter approximation holds as long as

$$
\frac{d r_{v, s}}{r_{v, s}} \gg \frac{d T}{T}
$$

which is typically the case in the troposphere. We thus obtain

$$
T p^{-R / c_{p}} \exp \left(\frac{L_{v} r_{v, s}}{c_{p} T}\right)=\text { constant }
$$

leading to the introduction of a new variable approximately conserved for saturated adiabatic motion ($r_{v}=$ $\left.r_{v, s}\right)$, the equivalent potential temperature:

$$
\theta_{e} \stackrel{\text { def }}{=} \theta \exp \left(\frac{L_{v} r_{v}}{c_{p} T}\right)
$$

where θ is the dry potential temperature. Now note that in the case where the parcel is not saturated, there is no condensation of water vapor and r_{v} is conserved, so that θ_{e} is also conserved. Thus θ_{e} is (approximately) conserved under adiabatic motion, saturated or not.

- Conservation of moist static energy and moist adiabatic lapse rate

Before investigating implications for the stability of air to moist convection, we first note that under the hydrostatic approximation, we can define the moist equivalent of the dry static energy in equation (13). It is called the moist static energy:

$$
h \stackrel{\text { def }}{=} c_{p} T+g z+L_{v} r_{v} .
$$

With the hydrostatic approximation, h is conserved under adiabatic displacements. Indeed from equation (34) and the ideal gaz law,

$$
d h=c_{p} d T+g d z+L_{v} d r_{v} \stackrel{\text { hydrostasy }}{=} c_{p} d T-\frac{d p}{\rho}+L_{v} d r_{v} \stackrel{(34)}{=} 0
$$

From this equation, we can derive the moist adiabatic lapse rate Γ_{s}, defined as the decrease of temperature with height under a saturated reversible displacement. Recall that $r_{v, s}$ is a function of temperature and pressure (32), and we further make the hydrostatic approximation. Thus:

$$
\begin{align*}
\frac{d T}{d z} & =-\frac{g}{c_{p}}-\frac{L_{v}}{c_{p}} \frac{d r_{v, s}}{d z}=-\frac{g}{c_{p}}-\frac{L_{v}}{c_{p}}\left(\frac{\partial r_{v, s}}{\partial p} \frac{\partial p}{\partial z}+\frac{\mathrm{r}_{v, s}}{\mathrm{~T}} \frac{d T}{d z}\right) \tag{36}\\
\Leftrightarrow \frac{d T}{d z} & =-\frac{g}{c_{p}}\left(\frac{1-L_{v} \rho \partial r_{v, s} / \partial p}{1+L_{v} / c_{p} \partial r_{v, s} / \partial T}\right) \tag{37}\\
\Leftrightarrow \Gamma_{s} & =\Gamma_{d}\left(\frac{1-L_{v} \rho \partial r_{v, s} / \partial p}{1+L_{v} / c_{p} \partial r_{v, s} / \partial T}\right) \tag{38}
\end{align*}
$$

From (32),

$$
\begin{align*}
\rho \frac{\partial r_{v, s}}{\partial p} & =-\rho \frac{r_{v, s}}{p-e_{v, s}}=-r_{v, s} \frac{1+r_{v, s}}{R_{d} T} \text { and } \tag{39}\\
\frac{\partial r_{v, s}}{\partial T} & =\frac{r_{v, s}}{T^{2}} \frac{L_{v}}{R_{v}} \frac{p}{p-e_{v, s}}=\frac{r_{v, s}}{T^{2}} \frac{L_{v}}{R_{v}}\left(1+\frac{r_{v, s}}{\epsilon}\right) . \tag{40}
\end{align*}
$$

Thus

$$
\begin{equation*}
\Gamma_{s}=\Gamma_{d}\left(\frac{1+L_{v} r_{v, s} \frac{1+r_{v, s}}{R_{d} T}}{1+\frac{L_{v}^{2} r_{v, s}}{R_{v} c_{p} T^{2}}\left(1+\frac{r_{v, s}}{\epsilon}\right) .}\right) \tag{41}
\end{equation*}
$$

In Earth's atmosphere, the numerator is smaller than the denominator, so that the temperature decrease with altitude on a moist adiabat is smaller $\left(\sim \mathcal{O}\left(5^{\circ} \mathrm{km}^{-1}\right)\right)$ than the temperature decrease following a dry adiabat. This is expected since latent heat released reduces the decrease of temperature with height with pressure decrease.

VI. 3 - How can we assess the stability of moist air? Skew-T diagrams

The question addressed here, is how can we assess the stability of moist air ? Traditionally, skew-T diagrams are used in meteorology (figure 5), which allow to easily compare a measured temperature profile (red curve) to theoretical dry and moist adiabatic profiles (constant θ and θ_{e} respectively). Such diagrams have isotemperature lines slanted at 45° to the right (slanted thin brown lines on the figure, hence the name "skew-T"; for more details on those diagrams, see the online MetEd module on Skew-T Mastery (link on the course website, online courses from the COMET program MetEd by UCAR). Since temperature typically decreases with height, observed temperature profiles are largely vertical when reported on those diagrams. The green curve shows the observed dewpoint temperature, which is the temperature at which a parcel must be cooled at constant pressure to reach saturation. This dewpoint temperature curve depends on the environmental humidity (the more humid the air, the closer the dewpoint temperature is to the environmental temperature).

Figure 5: Skew-T diagram, showing observed temperature profile in red, observed dewpoint temperature in green. The parcel method consists of assessing the stability of a near-surface parcel to an upward displacement (parcel temperature shown in black). Adapted from the weathertogether.net blog.

We use the parcel method to evaluate the stability of this environmental temperature profile, by lifting a hypothetical parcel of air from the ground. Comparing, at a given pressure, the temperature of the parcel (shown in black) with the environmental temperature gives us information on its upward (warmer) or downward (colder) acceleration, and thus of its stability to vertical displacement.

- At first, the near-surface parcel is unsaturated. It thus follows a dry adiabatic curve (line of constant θ, thin green lines on the figure), until the lifted condensation level (LCL) is reached, where the parcel reaches saturation.
- Above the lifted condensation level, θ_{e} will be conserved for the parcel which is undergoing moist adiabatic ascent (line of constant θ_{e}, thin dashed green lines). Note that its temperature decreases with height slower than the dry adiabatic curve, due to the latent heat released as water vapor condenses.
- At a certain height, called level of free convection (LFC), the parcel becomes warmer than the environment. As long as this moist adiabatic curve is warmer than the environmental temperature profile, as "warm air rises", the parcel is convectively unstable and keeps ascending.
- This ends when the parcel reaches its equilibrium level (EL), where the parcel's temperature is equal to the environmental temperature.

In order to find the lifted condensation level, the dew point temperature is used, as well as lines of constant saturation mixing ratio iso- $r_{v, s}$ (thin dashed purple lines on the skew- T diagram). By definition of the dewpoint temperature, at the surface, $r_{v, s}\left(T_{d, \mathrm{sfc}}, p_{\mathrm{sfc}}\right)=r_{v, \mathrm{sfc}}$ where $r_{v, \mathrm{sfc}}$ is the water vapor mixing ratio of the parcel at the surface. The lifted condensation level is thus located where the iso- $r_{v, s}$ line passing through the surface dewpoint temperature intersects the parcel temperature.

VI. 4 - Convective Available Potential Energy (CAPE), convective inhibition (CIN)

During the ascent, we just saw that the upward acceleration is related to the difference between the parcel temperature and the environmental temperature. This can be quantified further, in fact the area between the parcel and the environmental temperature is directly related to the potential energy of convection.

This can be clarified by considering the vertical momentum equation

$$
\begin{equation*}
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-g \frac{\rho^{\prime}}{\rho}-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \Delta w \tag{42}
\end{equation*}
$$

where ρ denotes the density of the environment, ρ^{\prime} the density of the parcel minus that of the environment, and the last term is the viscous force. In strong vertical ascent, we can expect the leading order balance to be between the vertical advection and the buoyancy force

$$
\begin{equation*}
w \frac{\partial w}{\partial z}=-g \frac{\rho^{\prime}}{\rho} \Leftrightarrow \frac{w^{2}(z)}{2}=\int-\frac{\rho^{\prime}}{\rho} g d z \tag{43}
\end{equation*}
$$

The right-hand side has units of a specific energy.
If $-\rho^{\prime}<0$, i.e. if the parcel is lighter than the environment as is the case between LFC and EL (figure 5), the integral represents an upper bound for the kinetic energy of the rising parcel. It is called the Convective Available Potential Energy, or CAPE. It is an upper bound as it neglects forces opposing the motion including viscosity and pressure gradients, as well as turbulent entrainment of dry environmental air at the edge of the rising plume, leading to partial evaporation of condensates and latent cooling, thus opposing the rising motion. Conversely, if $-\rho^{\prime}>0$, i.e. if the parcel is heavier than the environment as is the case below the LFC (figure 5), it represents the potential energy barrier to upward convection, as the parcel acceleration is downward. It is called the convective inhibition, or CIN.

CAPE can be rewritten as a function of temperature using the ideal gas law $p=\rho R T$ and assuming that pressure perturbations between the parcel and the environment are small:

$$
\frac{\rho^{\prime}}{\rho}=-\frac{T^{\prime}}{T}
$$

If we further make the hydrostatic approximation,

$$
\mathrm{CAPE}=\int_{p_{E L}}^{p_{L F C}} \frac{T^{\prime}}{T} \frac{d p}{\rho}=R \int_{p_{E L}}^{p_{L F C}} T^{\prime} d \ln p
$$

This expression shows that this convective potential energy is proportional to the area between the parcel and the environmental temperature on the skew- $\mathrm{T} \ln p$ diagram shown in figure 5 .

CAPE can be used to derive an upper bound for vertical velocities of buoyant parcels

$$
w_{\max }=2 \sqrt{\mathrm{CAPE}}
$$

As mentioned earlier, for simplicity, we neglected virtual effects. We note though, that it is straightforward to include them in the above computation, yielding the more general formula

$$
\mathrm{CAPE}=R \int_{p_{E L}}^{p_{L F C}} T_{v}^{\prime} d \ln p
$$

Similarly,

$$
\mathrm{CIN}=R \int_{p_{L F C}}^{p_{S F C}} T_{v}^{\prime} d \ln p, \quad \text { where } P_{S F C} \text { denotes surface pressure (note that } C I N<0 \text {). }
$$

Thus during the ascent, the area between the parcel temperature and the environment temperature on the skew-T diagram is a measure of atmospheric instability. The larger the CAPE, the stronger the
upward motion during the ascent. If enough atmospheric instability is present, cumulus clouds are capable of producing severe convection and storms. In later lectures, we will give a brief overview of the life cycle of such severe convective clouds. We will also use the fundamental knowledge gained in previous lectures to clarify the physical processes leading to cloud formation, for the different cloud types seen in the cloud classification.

