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Tropical Meteorology — Clouds

Tropical and subtropical clouds are diverse, ...

Stratocumulus

© NASA (GEOS)

Shallow cumulus

and cumulus congestus Cumulonimbus




Tropical Meteorology — Clouds

.. often spatially organized, ...

Stratocumulus decks




Tropical Meteorology — Clouds

.. and coupled to circulations.
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Tropical Meteorology — Clouds

Cloud types, atmospheric thermodynamics
Convective organization

Coupling with circulation



Cloud types

Cumulus: heap, pile
Stratus: flatten out, cover with a layer

Cirrus: lock of hair, tuft of horsehair

Nimbus: precipitating cloud

Altum: height

_ Combined to define
10 cloud types




Cloud types

Clouds are classified according to height of cloud base and appearance
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High Clouds

Almost entirely ice crystals

g
Cirrus ,
Wispy, feathery

Cirrocumulus Layered clouds, cumuliform lumpiness
- . / t g . =y A

Cirrostratus widespread, sun/moon halo




Middle Clouds

Liquid water droplets, ice crystals, or a combination of the two, including supercooled droplets (i.e., liquid
droplets whose temperatures are below freezing).

Altocumulus

Heap-like clouds with convective elements in mid
levels
May align in rows or streets of clouds

Altostratus
Flat and uniform type texture in mid levels



Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)
comprise much of the clouds.
The two main types includwhich develop horizontally, and cumulus, which develop vertically.

_\,,,.M -

e = Stratocumulus
Hybrids of layered stratus and cellular cumulus

Stratus
Uniform and flat, producing a gray layer of

cloud cover

Nimbostratus
Thick, dense stratus or stratocumulus clouds

producing steady rain or snow
SRR R |




Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)

comprise much of the clouds.
The two main types include stratus, which develop horizontally, and which develop vertically.

Cumulonimbus

ClJml_Jlus (humi“) _ Strong updrafts can develop in the cumulus
Scattered, with little vertical growth on an otherwise sunny day  5ud => mature deep cumulonimbus cloud
Also called "fair weather cumulus” i.e., a thunderstorm producing heavy rain.

Cumulus (congestus)
Significant vertical development (but not yet a thunderstorm)




H|gh CIOUdS: cirrus, cirrocumulus, cirrostratus




High Clouds

Cirrostratus

Cirrus Cirrocumulus




M|dd|e CIOUdS: altocumulus, altostratus




Middle Clouds

Altocumulus

Altostratus




LOW CIOUdS: Stratus, Nimbostratus, Stratocumulus, Cumulus, Cumulonimbus




Low Clouds

Cumulonimbus

u:fw e

Stratocumulus

Nimbostratus




Other spectacular Clouds...

Mammatus clouds (typically below anvil clouds)

Shelf clouds (gust front)
E—




Cloud types

Distribution of cloud amount

ANNUAL
100 ~— Brooks, 1927
- = = London, 1957
oo Houghton, 1954
ao —_ VOWIanﬂ. 1962

—=-Berlyand & Strokina, 1980 a .-

(%)

c

3

o

£

"

©

>

(_) .

Q
20 -
0 T v T T L T L] Ll T A Al T L T T A] Ll

90 80 70 60 S0 40 30 20 w O 10 20 30 40 SsO 80 70 80 90

North Latytude South

[Hughes 84]



Cloud types

Cloud amount was underestimated
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"\ Modern Observations
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Cloud types

Water vapor from satellite
T Sat
Larger-scale
extratropical
" convection

Small-scale
tropical

“convection . .
Deep convective system over Brazil




Atmospheric thermodynamics: instability
Dry convection

T decreases with height.
But p as well.

Density = p(T,p).
How determine stability? The parcel method

Raise parcel adiabatically. Comes back to initial position?

>



Atmospheric thermodynamics: instability

Dry convection

Potential temperature 6 = T (p, / p)R° conserved under adiabatic
displacements :

Adiabatic s!yisplacement

1st law thermodynamics: d(internal energy) = Q (Dea/t added) — W (work done by parcel)
7

c,dT = - pd(1/p)

Sincep=pRT, c,dT =-pd(RT/p)=-RdT+RTdp/p

Since ¢, + R =¢,, c,dT/T = Rdp/p
=dInT-R/c,dInp=d In(T/pRe) =0

= T/ pRcr = constant

Hence 86 =T (p,/ p)¥cP potential temperature is conserved under adiabatic displacement



Atmospheric thermodynamics: instability

When is an atmosphere unstable to dry convection?
When potential temperature 6 = T (p,/ p)R°® decreases with height !

The parcel method:

Small vertical displacement of a fluid parcel adiabatic (=> 8 = constant).
During movement, pressure of parcel = pressure of environment.

_ 0(z)
A 0(z)
0=06 6,> 6
__________ ) -
=p,=p =Py <P
"""" ep ep

STABLE NEUTRAL UNSTABLE



Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to

destabilizing factors (surface warming, atmospheric radiative cooling

)

=> The observed state is very close to convective neutrality
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But above a thin boundary layer, not true anymore that 6 = constant. Why?



Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 6 = constant. Why?...

Most atmospheric convection involves phase change of water
Significant latent heat with phase changes of water = Moist Convection



Atmospheric thermodynamics: instability

where:

CIaUSiUS Clapeyron dé‘.s Lv(T)Gs e €, is saturation vapor pressure,

80
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Water Vapor Pressure (mb)

R T2 e [’ is a temperature,
v « [, is the specific latent heat of evaporation,
» R, is water vapor gas constant.

e, depends only on temperature

&s(T)

hid e, increases roughly exponentially with T

Warm air can hold more water vapor than cold air

Cloud in a bottle MOVIE 1 : Clausius Clapeyron
Cloud in a bottle MOVIE 2 : condensation nuclei

Making a Cloud
(°C) =30 20 -10 0 10 20 30 40

°F) 22 -4 14 32 50 68 86 104

in a Bottle

Temperature




Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?
Equivalent potential temperature 6, =T (p, / p)R/cP e Lvav/(cpT) js
(approximately) conserved under adiabatic displacements :

1st law thermodynamics if air saturated (q,=q) :
d(internal energy) = Q (latent heat) — W (work done by parcel)
c,dT =-L,dqs- pd(1/p)
=dInT-R/c,dInp=d In(T/pRer)y= —L, /(c, T)dq,
= T/pRler g lvas/(eeT) ~ constant

Note: Air saturated => q,=q,
Air unsaturated => q, conserved

Hence
0, =T (py/ p)¥Ver e Lvav/(er T) equivalent potential temperature is
(approximately) conserved



Atmospheric thermodynamics: instability
When is an atmosphere unstable to moist convection ?

Skew T diagram (isoT slanted), atmospheric T in red

EL equilibrium Moist adiabat 6= cstt

level

/— Positive areé
. (CAPE) '

pressure

.\ Temperature ), Ll _
o difference s RS S0 Dry adiabat 6 = cstt

LFC level of free convection
(= LCL lifted condensation
level for simplicity)

The COMET Program

CAPE: convective available potential energy



Atmospheric thermodynamics: instability

Moist convection

Parcel = yellow dot

EL equilibrium S
level

<—LFC level of free
convection

The COMET Program

CAPE: convective available potential energy



Atmospheric thermodynamics: instability

If enough atmospheric instability present, cumulus clouds are capable of producing serious
storms!!!

Strong updrafts develop in the cumulus cloud => mature, deep cumulonimbus cloud.
Associated with heavy rain, lightning and thunder.

Developing Stage Mature Stage Dissipating

Evaporative driven cold pools

&The COMET Program




Convective organization

.. often spatially organized, ...

Stratocumulus decks




Convective organization: hurricanes

Hurricanes
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Convective organization: squall lines

Squall lines

© NASA (Space shuttle)
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Convective organization: squall lines

No shear

Top view
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Convective organization: squall lines
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Convective organization: squall lines
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Convective organization: MCS

Czech Republic

Austria

Slovakia

Mesoscale
convective systems
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Convective organization

Transitions between organized structures

| - -, o Emission Merging with a thunderstorm,
Y = - Forcing by the

large-scale environment

from Houze (2010)
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Coupling with circulation

.. and coupled to circulations.

Vi “1.
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Hadley circulation
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Clouds and Circulation: ITCZ




Clouds and Circulation: ITCZ

P (mm/day)
1981-1999 climatology

[Muller & O’Gorman, 2011]



Clouds and Circulation: ITCZ
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Clouds and Circulation: Hadley cell

altitude

Hadley circulation: Zonal and time average
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Clouds and Circulation: Precipitation

Total column water vapor (TCWYV) and precipitation (mm/day)

January (left) July (right)
TCWV(mm) 0102030 TCWV (m) 0102030

1 L 1
6 12 18 24 30 36 42 48 54 6 12 18 24 30 36 42 48 54

Precipitation (mm d™') 0 204060 0 204060
L1 ey 1 1 ]
0s 1 15 2 3 B 5 7 9

Small in Subtropics (descent)

Large in Tropics (ascent)
[Trenberth 2011]



Continent]

Clouds and Circulation: Walker cell

in the equatorial Pacific
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Clouds and Circulation: Walker cell
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Clouds and Circulation: El Nino

Normal conditions El Nifno conditions

in the equatorial Pacific Eastward shift / extension of convection

Weaker easterlies
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Clouds and Circulation: Monsoon

Asian monsoon

West-African monsoon

Boreal summer

GOCCP data,
from satellite
lidar
(Calipso):

308 0 30N
Latitude Courtesy Gilles Bellon



Convective organization: equatorial waves

Linearized shallow-water equations on a B-plane:

> Classical formulation:
O.u—Pyv=—gd,h
O,v+Pyu=—go h
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A

_ » Tropical atmosphere:
Ou—py=-ad.T,
ov+pyu=-ao T,
0T +AT(0,u+0,v)=0

A

Kélvln

2 —— Mixed RG E i
> — Rpssby |
Q : : :
> % H H
- :
£
Dispersion 2 2{-
diagram: 5
2
(1) -
E N S
A

©D. éaymond
2

-1 0 1
dimensionless wavenumber

=2 3

Normalized latitude

Normalized latitude

Kelvin wave

3
2 - - es feee=e-a
—————
1 (— e
il 4 1
/ .
0 =i \
|
-1 e
W
v e . Lo e
_2 - - w m owor s e ow ow e e .
0.230E401
L i %
L | 1 | 1 g Nerdpeces
—1T -n/2 0 w/2 w

e~

o o

(6002) 1210 SIpe|y Wouy

Normalized longitude



Convective organization: equatorial waves

Linearized shallow-water equations on a B-plane:

Kelvin wave

» Classical formulation: s | L AL AL S L B
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Convective organization: MJO

MJO composite life cycle
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Convective organization: equatorial waves
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Convective organization: equatorial waves
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