

chapter 8

kinematics of vorticity

8.1 définitions

@ Master MEC654 - Turbulence - Laurent Jacquin - 2014 - Polytechnique

8.2 Helmholtz's laws

annex – viscous term : demonstration

 • general

$$rot(\frac{1}{\rho}div \underline{\tau})$$

 • identity :
 $rot(a\underline{A}) = a \operatorname{rot} \underline{A} + \operatorname{grad} a \wedge \underline{A}$
 \Box
 $rot(\frac{1}{\rho}div \underline{\tau}) = \frac{1}{\rho} \operatorname{rot} div \underline{\tau} + \operatorname{grad}(\frac{1}{\rho}) \wedge div \underline{\tau}$

 • newtonian fluid
 $\underline{\tau} = \kappa \operatorname{div} \underline{u} \ \underline{1} + 2 \eta \ \underline{d} \ \underline{u} \ \underline{1} + 2 \eta \ \underline{d} \ with$
 $\lambda = \kappa - \frac{2}{3}\eta$

 • other form
 $\underline{\tau} = \lambda \operatorname{div} \underline{u} \ \underline{1} + 2 \eta \ \underline{d} \ with$
 $\lambda = \kappa - \frac{2}{3}\eta$

 • identity :
 $\operatorname{div}(a \ \underline{T}) = a \operatorname{div} \ \underline{T} + \underline{T} \cdot \operatorname{grad} a$
 \Box
 $\left\{ \frac{\operatorname{div}(\lambda \operatorname{div} \underline{u} \ \underline{1}) = \lambda \operatorname{div} \ \underline{div} \ \underline{1} + \underline{1} \cdot \operatorname{grad}(\lambda \operatorname{div} \underline{u}) = \operatorname{grad}(\lambda \operatorname{div} \underline{u}) \right\}$

 • identity :
 $\operatorname{div}(\lambda \operatorname{div} \underline{u} \ \underline{1}) = \lambda \operatorname{div} \ \underline{div} \ \underline{1} + 2 \ \underline{grad} \eta$
 \Box
 $\left\{ \frac{\operatorname{div}(\lambda \operatorname{div} \underline{u} \ \underline{1}) = \lambda \operatorname{div} \ \underline{div} \ \underline{1} + 2 \ \underline{grad} \eta$
 \Box
 $\left\{ \frac{\operatorname{div}(\lambda \operatorname{div} \underline{u} \ \underline{1}) = 2 \ \eta \operatorname{div} \ \underline{div} + 2 \ \underline{d} \cdot \operatorname{grad} \eta$
 \Box
 $div \ \underline{\tau} = 2 \ \eta \operatorname{div} \ \underline{d} + 2 \ \underline{d} \cdot \operatorname{grad} \eta + \operatorname{grad}(\lambda \operatorname{div} u)$

 • identity :
 $\operatorname{rot}(a \ \underline{A}) = a \operatorname{rot} A + \operatorname{grad} a \wedge A$
 \Box
 $\operatorname{rot}[\ \frac{1}{\rho} \operatorname{div} \ \underline{\tau}] = \frac{1}{\rho} \operatorname{rot} \operatorname{div} \ \underline{\tau} + \operatorname{grad}(\frac{1}{\rho}) \wedge \operatorname{div} \ \underline{\tau}$

 $\begin{array}{|c|c|c|c|c|} \hline \textbf{annex} - \textbf{viscous term} : \textbf{demonstration (...)} \\ \hline \textbf{annex} - \textbf{viscous term} : \textbf{demonstration (...)} \\ \hline \textbf{vist} & \left\{ \frac{rot}{\rho} \left[\frac{1}{\rho} div \underline{\tau} \right] = \frac{1}{\rho} \frac{rot}{\rho} div \underline{\tau} + \frac{grad}{\rho} \left(\frac{1}{\rho} \right) \land div \underline{\tau} \\ div \underline{\tau} = 2 \eta div \underline{d} + 2 \underline{d} \cdot \underline{grad} \eta + \underline{grad} \left(\lambda div \underline{u} \right) \\ \hline \textbf{c} & \underline{rot} \left[\frac{1}{\rho} div \underline{\tau} \right] = \frac{1}{\rho} \frac{rot}{rot} \left[2 \eta div \underline{d} + 2 \underline{d} \cdot \underline{grad} \eta + \underline{grad} \left(\lambda div \underline{u} \right) \right] \\ & + \underline{grad} \left(\frac{1}{\rho} \right) \land \left[2 \eta div \underline{d} + 2 \underline{d} \cdot \underline{grad} \eta + \underline{grad} \left(\lambda div \underline{u} \right) \right] \\ & \bullet \text{ identities : } \left\{ \frac{rot}{rot} \underline{grad} a = 0 \\ \underline{rot} \left(a \underline{A} \right) = a \, \underline{rot} \underline{A} + \underline{grad} a \land \underline{A} \\ \hline \ \textbf{c} & \underline{rot} \left[\frac{1}{\rho} div \underline{\tau} \right] = \frac{2\eta}{\rho} \frac{rot}{rot} div \underline{d} + \frac{2}{\rho} \frac{grad}{grad} \eta \land div \underline{d} + \\ & + \underline{grad} \left(\frac{1}{\rho} \right) \land \left[2 \eta div \underline{d} + 2 \underline{d} \cdot \underline{grad} \eta + \underline{grad} \left(\lambda div \underline{u} \right) \right] \\ \bullet \text{ identities : } \left\{ \frac{div \nabla \underline{u}}{p} = \underline{a} \frac{u}{\rho rot} div \underline{d} + \frac{2}{\rho} \frac{grad}{grad} \eta \land div \underline{d} + \\ & + \underline{grad} \left(\frac{1}{\rho} \right) \land \left[2 \eta div \underline{d} + 2 \underline{d} \cdot \underline{grad} \eta + \underline{grad} \left(\lambda div \underline{u} \right) \right] \\ \bullet \text{ identities : } \left\{ \frac{div \nabla \underline{u}}{div \tau} = \underline{\Delta u} \\ div \ \nabla \underline{u} = \underline{grad} \ div \underline{u} \\ div \ \nabla \underline{u} = \underline{grad} \ div \underline{u} \\ \hline \ D \right\} = \Delta \underline{u} + \underline{grad} \ div \underline{u} \\ \hline \end{array} \right\}$

$$\frac{\operatorname{annex} - \operatorname{viscous term} : \operatorname{demonstration} (...)}{\left\{ \begin{array}{l} \frac{\operatorname{rot}}{\rho} \left[\frac{1}{\rho} \operatorname{div} \underline{\tau}\right] = \frac{2\eta}{\rho} \frac{\operatorname{rot}}{\rho} \frac{\operatorname{div} \underline{d}}{\rho} + \frac{2}{\rho} \frac{\operatorname{grad}}{\rho} \eta \wedge \operatorname{div} \underline{d}}{\rho} + \frac{2}{\rho} \frac{\operatorname{grad}}{\rho} \eta \wedge \operatorname{div} \underline{d}}{\rho} + \frac{2}{\rho} \frac{\operatorname{grad}}{\rho} \eta + \frac{2}{\rho} \eta + \frac{2}{\rho} \frac{\operatorname{grad}}{\rho} \eta + \frac{2}{\rho} \eta + \frac{2}$$

 \Box from now we will only consider this type of flows

26

 $\frac{\text{annex - 2D invariants : demonstrations (...)}}{\text{I} = \iint_{S} \underline{x} \land \underline{\omega} \, dS}$ $\begin{cases} \underline{\omega} = \omega \underline{e}_{z} \\ \underline{x} = x \underline{e}_{x} + y \underline{e}_{y} \\ \hline{x} = \int_{S} \underline{\omega} (\underline{x} \land \underline{e}_{z}) dS = \iint_{S} \underline{\omega} x (\underline{x} \land \underline{\omega}) dS$ $\{ \underline{\omega} = \omega \underline{e}_{z} \\ \underline{x} = x \underline{e}_{x} + y \underline{e}_{y} \\ \hline{x} = \int_{S} \underline{\omega} (\underline{x} \land \underline{x} \land \underline{\omega}) dS = \iint_{S} \underline{\omega} (\underline{x} \land \underline{e}_{z}) dS = \iint_{S} [-\omega(\underline{x} \land \underline{e}_{y}) + \omega(\underline{x} \land \underline{e}_{x})] dS \\ \hline{x} = -\iint_{S} \underline{\omega} (x^{2} + y^{2}) dS = -M \underline{e}_{z} \\ \hline{x} = M = \iint_{S} \underline{\omega} (x^{2} + y^{2}) dS \\ \hline{x} = \int_{S} \underline{\omega} (x^{2} + y^{2}) dS$

	annex – 2D invariants : demonstrations ()						
_	• linear moment $\underline{I} = \iint_S \underline{x} \wedge \underline{\omega} dS$						
technique	$\checkmark \text{ vorticity} \qquad (1) \qquad \Longrightarrow \qquad \frac{d}{dt} \underline{I} = \iint_{S} \underline{x} \wedge \frac{\partial \underline{\omega}}{\partial t} dS = \iint_{S} \underline{x} \wedge \underline{rot} (\underline{u} \wedge \underline{\omega} - v \underline{rot} \underline{\omega}) dS$						
2014 - Polyt	$\checkmark \text{ identity} \underline{B} = \iint_{S} \underline{x} \wedge \underline{rot} \underline{A} dS = \iint_{S} \underline{A} dS - \oint_{C} \underline{x} \wedge (\underline{n} \wedge \underline{A}) dl \qquad \text{see demo below}$						
t Jacquin - 2	$\checkmark \text{ on } \mathcal{C}: \underline{\omega} = 0 \Box \rangle \underline{A} = \underline{u} \land \underline{\omega} - \nu \underline{rot} \underline{\omega} = 0 \qquad \Box \rangle \frac{d}{dt} \underline{I} = \iint_{S} \left(\underline{u} \land \underline{\omega} - \nu \underline{rot} \underline{\omega} \right) dS$						
ulence - Lauren	✓ identity $\begin{cases} \underline{u} \land \underline{\omega} = \underline{grad} \left(\underline{u}^2 / 2 \right) - \nabla \underline{u} . \underline{u} \\ \nabla \underline{u} . \underline{u} = div \left(\underline{u} \otimes \underline{u} \right) - \underline{u} \ div \underline{u} \end{cases}$ (see Lamb decomposition)						
EC654 - Turb	$\implies \frac{d\underline{I}}{dt} = \iint_{S} \left[div\left(\frac{1}{2}\underline{u}^{2}\underline{1} - \underline{u} \otimes \underline{u}\right) - v \underline{rot} \underline{\omega} \right] dS = \oint_{C} \left[\frac{1}{2}\underline{u}^{2} \underline{n} - \underline{u}(\underline{u}.\underline{n}) - v \underline{\omega} \wedge \underline{n} \right] dl$						
@ Master ME	✓ $\underline{u} \sim 1/r$ (Biot-Savart) and $\underline{\omega} = 0$ on \mathcal{C} $\Box > \lim_{\mathcal{C} \to \infty} \frac{d\underline{I}}{dt} = 0$						

annex - invariants : demonstrations (...) • identity (2D) $\underline{B} = \iint_{S} \underline{x} \wedge \underline{rot} \underline{A} dS = \iint_{S} \underline{A} dS - \oint_{C} \underline{x} \wedge (\underline{n} \wedge \underline{A}) dl}{A}$ $\checkmark \underline{x} \wedge \underline{rot} \underline{A} = \varepsilon_{ijk} x_{j} \varepsilon_{kpq} \frac{\partial A_{q}}{\partial x_{p}} = (\delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}) x_{j} \frac{\partial A_{q}}{\partial x_{p}} = x_{j} \frac{\partial A_{j}}{\partial x_{i}} - x_{j} \frac{\partial A_{i}}{\partial x_{j}}$ where $\varepsilon_{ijk} \varepsilon_{kpq} = \delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}$ $\Longrightarrow \begin{cases} B_{x} = \iint_{S} y(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y}) dx dy = \iint_{S} (\frac{\partial yA_{y}}{\partial x} - \frac{\partial yA_{x}}{\partial y}) dx dy + \iint_{S} A_{x} dx dy$ $B_{y} = \iint_{S} x(\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial x}) dx dy = -\iint_{S} (\frac{\partial xA_{y}}{\partial x} - \frac{\partial xA_{x}}{\partial y}) dx dy + \iint_{S} A_{y} dx dy$ $\checkmark \text{ Green's theorem } \iint_{S} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{C} (Pdx + Qdy)$ $\Longrightarrow \begin{cases} B_{x} = \oint_{C} (yA_{x}dx + yA_{y}dy) + \iint_{A_{y}} dx dy$ $B_{y} = -\oint_{C} (xA_{x}dx + xA_{y}dy) + \iint_{A_{y}} dx dy$ $\checkmark \text{ check that the line integrals correspond to } -\underline{x} \wedge (\underline{n} \wedge \underline{A}) dl \text{ with } \underline{n} dl = (-dy, dx, 0)$

	annex - invariants : demonstrations ()									
_	$\frac{dM_i}{dt} = -\frac{1}{3}\varepsilon_{jpq} \iiint_V A_q \left(\delta_{ip} x_j + \delta_{jp} x_i - 2x_p \delta_{ij} \right) dV$									
4 - Polytechnique	$\checkmark \text{ identities } \begin{cases} \varepsilon_{jpq} \delta_{jp} = 0\\ \varepsilon_{jpq} \delta_{ip} x_j = \varepsilon_{pjq} \delta_{ij} x_p = -\varepsilon_{jpq} \delta_{ij} x_p \end{cases}$									
	$\implies \frac{dM_i}{dt} = \frac{1}{3} \varepsilon_{jpq} \iiint_V 3A_q x_p \delta_{ij} dV = \varepsilon_{ipq} \iiint_V A_q x_p dV = \iiint_V (\underline{x} \wedge \underline{A})_i dV$									
n - 201	$\checkmark \underline{A} = \left(\underline{u} \land \underline{\omega} - \nu \underline{rot} \underline{\omega}\right)$									
nt Jacqui	$\implies \frac{dM_i}{dt} = \left[\iiint_V \underline{x} \land (\underline{u} \land \underline{\omega}) dV - \nu \iiint_V \underline{x} \land \underline{rot} \underline{\omega} dV \right]_i$									
urbulence - Laurei	$\checkmark \underline{u} \wedge \underline{\omega} = \underline{grad} \left(\underline{u}^2 / 2 \right) - \nabla \underline{u} . \underline{u} \text{(see Lamb decomposition)} \Box \Rightarrow \left(\underline{u} \wedge \underline{\omega} \right)_i = \frac{\partial}{\partial x_j} \left(\frac{1}{2} \underline{u}^2 \delta_{ij} - u_i u_j \right)$									
	$\implies \frac{dM_i}{dt} = \varepsilon_{ipq} \iiint_V x_p \frac{\partial}{\partial x_i} \left(\frac{1}{2} \underline{u}^2 \delta_{qj} - u_q u_j \right) dV - \nu \left[\iiint_V \underline{x} \wedge \underline{rot} \underline{\omega} dV \right]_i$									
:654 - T	$=\varepsilon_{ipq}\iiint_V \frac{\partial}{\partial x_i} \left[\left(\frac{1}{2}\underline{u}^2 \delta_{qj} - u_q u_j \right) x_p \right] dV - \varepsilon_{ipq} \iiint_V \left(\frac{1}{2}\underline{u}^2 \delta_{qj} - u_q u_j \right) \delta_{jp} dV$									
er MEC	$-\mathbf{v}\left[\iint_{V} \underline{x} \wedge \underline{rot} \underline{\omega} dV\right]_{i}$									
@ Mast	$=\varepsilon_{ipq} \oint_{S} \left(\frac{1}{2}\underline{u}^{2}\delta_{qj} - u_{q}u_{j} \right) x_{p}n_{j} dS - \varepsilon_{ipq} \iiint_{V} \left(\frac{1}{2}\underline{u}^{2}\delta_{qp} - u_{q}u_{p} \right) dV - \nu \left[\iiint_{V} \underline{x} \wedge \underline{rot} \underline{\omega} dV \right]_{i}$									

annex – equation of enstrophy : demonstration
• equation of
$$\omega^{2}$$
: $\omega \times \left[\frac{d\omega}{dt} = v\Delta\omega\right]$
 $\checkmark \quad \omega \frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{1}{2}\omega^{2}\right)$
 $\checkmark \quad v \omega \Delta\omega = v \omega \frac{\partial^{2}\omega}{\partial x_{i}^{2}} = v \frac{\partial}{\partial x_{i}} \left(\omega \frac{\partial\omega}{\partial x_{i}}\right) - v \left(\frac{\partial\omega}{\partial x_{i}}\right)^{2} = v \frac{\partial}{\partial x_{i}} \left[\frac{\partial}{\partial x_{i}} \left(\frac{1}{2}\omega^{2}\right)\right] - v \left(\frac{\partial\omega}{\partial x_{i}}\right)^{2}$
 $= v div \underline{grad} \left(\frac{1}{2}\omega^{2}\right) - v \left(\frac{\partial\omega}{\partial x_{i}}\right)^{2} = v \Delta \left(\frac{1}{2}\omega^{2}\right) - v |\nabla\omega|^{2}$
 $\Rightarrow \frac{d\omega^{2}}{dt} = \frac{\partial\omega^{2}}{\partial t} + \underline{u} \cdot \underline{grad} \, \omega^{2} \cdot = \underline{v div} \left[\underline{grad} \left(\frac{1}{2}\omega^{2}\right)\right] - \frac{2v \|\underline{grad} \, \omega\|^{2}}{\underline{destruction < 0}}$
• equation of $\iint_{S} \omega^{2} dxdy = \iint_{S} \frac{\partial}{\partial t} \omega^{2} dxdy = -\iint_{S} \left[\underline{u} \cdot \underline{grad} \, \omega^{2} - v div \left[\underline{grad} \left(\frac{1}{2}\omega^{2}\right)\right] + 2v \|\underline{grad} \, \omega\|^{2}\right] dxdy$
 $= -\oint_{C} \left[\omega^{2}\underline{u} + v \underline{grad} \left(\frac{1}{2}\omega^{2}\right)\right] \cdot \underline{n} \, dl + \iint_{S} \omega^{2} div \underline{u} \, dxdy - 2v \iint_{S} \|\underline{grad} \, \omega\|^{2} \, dxdy$
 $\Rightarrow \frac{d}{dt} \iint_{S} \omega^{2} dxdy = -2v \iint_{S} \|\underline{grad} \, \omega\|^{2} \, dxdy$

11.7 cł	naos ()						
✓ let be	\checkmark let be a collection of point vortices of circulation				ر <i>ا</i>	****	
$\Gamma = \iint$	$\Gamma = \iint_{S} \omega dS = \sum_{i} \Gamma_{i} = const.$					<u>x</u>	
• momer	• momentum equations : $\Gamma_i \frac{dx_i}{dt} = \frac{\partial E}{\partial y_i}, \ \Gamma_i \frac{dy_i}{dt} = -\frac{\partial E}{\partial x_i}, \ i = 1, n$ Hamiltonian f						
a • movem	• movement invariants :						
- 2014 - 2014 Minear	momentum $\begin{cases} I_x = \\ I_y = \end{cases}$	$= \iint_{S} y \omega dS$ $= -\iint_{S} x \omega dS$	$\Rightarrow \begin{bmatrix} I\\I \end{bmatrix}$	$f_x = \sum_i y_i$ $f_y = -\sum_i$	$_{i}\Gamma_{i} = const$ $x_{i}\Gamma_{i} = const$	st.	
r tu ungula	r momentum $\begin{cases} \underline{M} = \\ M = \end{cases}$	$= -M \underline{e}_z$ $= \iint_S \left(x^2 + y^2 \right) \omega dS$		$I = \sum_{i} (x_{i})$	$(i + y_i)^2 \Gamma_i$	= const.	
se se se se se se se se se se se se se s	on energy		ightarrow E	$=-\frac{1}{4\pi}$	$\sum_{ij} \Gamma_i \Gamma_j \log$	$\left\ \underline{x}_{j}-\underline{x}_{i}\right\ =const.$	
• invento	ry ✓ 2 <i>n</i> équation	S					
MEC654	✓ 4 invariants	(I_x, I_y, M, E)					
। के in the	• in the 2D space :		regular sol	utions			
@ Ma		si 2 <i>n</i> - 4 > 2	chaotic so	lutions	$(n \ge 4)$		

