PC 3: Vorticity in two dimensions

Goals

- Biot-Savart law: formulation in complex coordinates
- Illustration with two point vortices

1. Biot-Savart law: complex formulation

Let's consider an incompressible, homogeneous fluid, in a finite size domain A of the 2 D plane. Its vorticity is denoted $\underline{\omega}=\omega(\underline{x}, t) \underline{e}_{z}$ and its velocity $\underline{u}(x, y)=(u, v, 0)$.
(a) The location of a point in space is determined in complex coordinates $Z=x+i y$. We define the complex velocity

$$
\begin{equation*}
W(Z)=u-i v=\frac{d \bar{Z}}{d t} \tag{3.1}
\end{equation*}
$$

- Show that the Biot-Savart law

$$
\underline{u}(\underline{x})=\frac{1}{2 \pi} \iint_{A} \frac{\underline{\omega}\left(\underline{x}^{\prime}\right) \times\left(\underline{x}-\underline{x}^{\prime}\right)}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} d \underline{x}^{\prime}
$$

can be written in the following form:

$$
\begin{equation*}
\left.W(Z)=\frac{1}{2 \pi i} \iint_{A}^{\omega-Z^{\prime}} Z^{\prime}\right) \tag{3;2}
\end{equation*}
$$

- Show that the following quantity, called the impulsion $\underline{I}=\iint(\underline{\mathrm{x}} \times \underline{\omega}) \mathrm{dx} \mathrm{dy}=\left(I_{x}, I_{y}\right)$ (this is a conserved quantity, which characterizes the momentum induced by the vorticity distribution) can be written

$$
\begin{equation*}
I(Z)=-I_{y}+i I_{x}=\iint_{A} \omega Z^{\prime} d x^{\prime} d y^{\prime} \tag{3.3}
\end{equation*}
$$

(b) What do those expressions become in the case of N point vortices at $Z=Z_{j}$ with circulations Γ_{j} ? In that case the vorticity is simply $\omega(Z)=\Sigma_{j} \Gamma_{j} \delta\left(Z-Z_{j}\right), j=1, N$

2. Case of 2 point vortices

(a) From (3.1) and the Biot-Savart law for N point vortices derived in 1b, compute the velocity of a vortex at Z_{j} with circulation Γ_{j} admitting (without proof) that the velocity induced by the vortex on itself is zero.
(b) Consider the case of 2 point vortices $\left(\Gamma_{1}, Z_{1}\right)$ and $\left(\Gamma_{2}, Z_{2}\right)$. Show that the center of gravity $Z_{G}=\mathrm{I} / \Gamma$ is fixed and that the distance $\left|Z_{1}-Z_{2}\right|$ is constant. ($\Gamma=\Gamma_{1}+\Gamma_{2}$ denotes the total circulation).
(c) For each of the following 4 cases, determine the center of gravity of the system and describe qualitatively the movement of the vortices:
case 1: $\Gamma_{2}=\Gamma_{1}>0 ;$ case 2: $\Gamma_{2}=2 \Gamma_{1}>0 ;$ case 3: $\Gamma_{2}=-2 \Gamma_{1}>0 ;$ case 4: $\Gamma_{2}=-\Gamma_{1}>0$.

