PC 3: Vorticity in two dimensions

<u>Goals</u>

- Biot-Savart law: formulation in complex coordinates

- Illustration with two point vortices

1. Biot-Savart law: complex formulation

Let's consider an incompressible, homogeneous fluid, in a finite size domain A of the 2D plane. Its vorticity is denoted $\underline{\omega} = \omega(\underline{x}, t)\underline{e}_z$ and its velocity $\underline{u}(x, y) = (u, v, 0)$.

(a) The location of a point in space is determined in complex coordinates Z = x + iy. We define the complex velocity

$$W(Z) = u - iv = \frac{dZ}{dt}$$
(3.1)

• Show that the Biot-Savart law

$$\underline{u}(\underline{x}) = \frac{1}{2\pi} \iint_{A} \frac{\underline{\omega}(\underline{x}') \times (\underline{x} - \underline{x}')}{|\underline{x} - \underline{x}'|^{2}} d\underline{x}'$$

can be written in the following form:

$$W(Z) = \frac{1}{2\pi i} \int_{A} \int_{Z-Z'}^{\omega(Z')} dx' dy'$$
(3;2)

• Show that the following quantity, called the impulsion $\underline{I} = \iint (\underline{x} \times \underline{\omega}) dx dy = (I_x, I_y)$ (this is a conserved quantity, which characterizes the momentum induced by the vorticity distribution) can be written

$$I(Z) = -I_y + iI_x = \iint_A \omega Z' dx' dy'$$
(3.3)

(b) What do those expressions become in the case of N point vortices at $Z = Z_j$ with circulations Γ_j ? In that case the vorticity is simply $\omega(Z) = \sum_j \Gamma_j \delta(Z - Z_j)$, j = 1, N

2. Case of 2 point vortices

(a) From (3.1) and the Biot-Savart law for *N* point vortices derived in 1b, compute the velocity of a vortex at Z_j with circulation Γ_j admitting (without proof) that the velocity induced by the vortex on itself is zero.

(b) Consider the case of 2 point vortices (Γ_1, Z_1) and (Γ_2, Z_2) . Show that the center of gravity $Z_G = I/\Gamma$ is fixed and that the distance $|Z_1 - Z_2|$ is constant. ($\Gamma = \Gamma_1 + \Gamma_2$ denotes the total circulation).

(c) For each of the following 4 cases, determine the center of gravity of the system and describe qualitatively the movement of the vortices:

case 1 :
$$\Gamma_2 = \Gamma_1 > 0$$
 ; **case 2** : $\Gamma_2 = 2\Gamma_1 > 0$; **case 3** : $\Gamma_2 = -2\Gamma_1 > 0$; **case 4** : $\Gamma_2 = -\Gamma_1 > 0$.