PC 3 -Vorticity in two dimensions - Solution

1. Biot-Savart law: complex formulation
(a) Note that: $\underline{e}_{z} \times\left(\underline{x}-\underline{x}^{\prime}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{c}x-x^{\prime} \\ y-y^{\prime} \\ 0\end{array}\right)=\left(\begin{array}{c}-\left(y-y^{\prime}\right) \\ x-x^{\prime} \\ 0\end{array}\right)$. Therefore the Biot-Savart law becomes:
$u=-\frac{1}{2 \pi} \iint_{A} \omega\left(\underline{x}^{\prime}\right) \frac{y-y^{\prime}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} d \underline{x}^{\prime}, v=\frac{1}{2 \pi} \iint_{A} \omega\left(\underline{x}^{\prime}\right) \frac{x-x^{\prime}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} d \underline{x}^{\prime} \Rightarrow W=u-i v=-\frac{1}{2 \pi} \iint_{A} \omega\left(\underline{x}^{\prime}\right) \frac{\left(y-y^{\prime}\right)+i\left(x-x^{\prime}\right)}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} d \underline{x^{\prime}} \quad=-\frac{1}{2 \pi} \iint_{A} \omega\left(Z^{\prime}\right) \frac{\overline{i Z-Z^{\prime}}}{\left|Z-Z^{2}\right|^{2}} d \underline{x}^{\prime}$.
Hence: $W(Z)=\frac{1}{2 \pi i} \iint_{A}^{\omega\left(Z^{\prime}\right)} Z^{\prime} d x^{\prime} d y^{\prime}$. For the impulsion, we have:
$\left.\underline{I}=\iint \underline{x} \times \underline{\omega}\right) d x d y=\int\left(\underline{\left.x \underline{e}_{x}+y \underline{e}_{y}\right) * \underline{e}_{z} d x d y=\iint\left(x \omega \underline{e}_{y}+y \omega \underline{e}_{x}\right) d x d y \text {. Therefore: } I=-I_{y}+i I_{x}=\iint 0 Z d x d y ~}\right.$
(b) With $\omega(z)=\Sigma_{j} \gamma_{j} \delta\left(Z-Z_{j}\right)$, the formula $W(Z)=\frac{1}{2 \pi i} \iint_{A}^{\omega\left(Z^{\prime}\right)} d x^{\prime} d y^{\prime}$ becomes $W(Z)=\frac{d \bar{Z}}{d t}=\sum_{j} \frac{\Gamma_{j}}{2 \pi i\left(Z-Z_{j}\right)}$.

We also have: $I=-I_{y}+i I_{x}=\sum_{i} \Gamma_{i} Z_{i}$.

2. Case of two point vortices

(a) Zeroing the contribution of the vortex on itself, $\frac{d \bar{Z}_{j}}{d t}=\sum_{k \neq j} \frac{\Gamma_{k}}{2 \pi i\left(Z_{j}-Z_{k}\right)}$.
(b) For 2 vortices, we have $\frac{d \bar{Z}_{1}}{d t}=\frac{\Gamma_{2}}{2 \pi i\left(Z_{1}-Z_{2}\right)} \frac{d \bar{Z}_{2}}{d t}=\frac{\Gamma_{1}}{2 \pi i\left(Z_{2}-Z_{1}\right)}$. We want to show that $I=Z_{1} \Gamma_{1}+Z_{2} \Gamma_{2}=C$ stt, $Z_{G}=\frac{Z_{1} \Gamma_{1}+Z_{2} \Gamma_{2}}{\Gamma_{1}+\Gamma_{2}}=C s t t$ and $\left|Z_{1}-Z_{2}\right|=C s t t . \quad$ But $\frac{d I}{d t}=\left(\Gamma_{1} \frac{d Z_{1}}{d t}+\Gamma_{2} \frac{d Z_{2}}{d t}\right)=\left(-\frac{\Gamma_{1} \Gamma_{2}}{2 \pi i}\right) \quad \times\left(\frac{1}{\bar{Z}_{1}-\bar{Z}_{2}}+\frac{1}{\bar{Z}_{2}-\bar{Z}_{1}}\right)=0$. Hence $Z_{G}=C s t t$ since the total circulation $\Gamma_{1}+\Gamma_{2}$ is constant. Also: $\frac{d\left(\bar{Z}_{1}-\bar{Z}_{2}\right)}{d t}=\frac{1}{2 \pi i}\left[\frac{\Gamma_{2}}{Z_{1}-Z_{2}}-\frac{\Gamma_{1}}{Z_{2}-Z_{1}}\right]$, hence $\frac{d\left(\bar{Z}_{1}-\bar{Z}_{2}\right)}{d t}=\frac{1}{2 \pi i} \frac{\Gamma_{1}+\Gamma_{2}}{Z_{1}-Z_{2}}$ and $\frac{d\left(Z_{1}-Z_{2}\right)}{d t}=-\frac{1}{2 \pi i} \frac{\Gamma_{1}+\Gamma_{2}}{\bar{Z}_{1}-\bar{Z}_{2}}$. Multiplying the first equation by $\left(Z_{1}-Z_{2}\right)$ and the second one by $\left(\bar{Z}_{1}-\bar{Z}_{2}\right)$, we obtain: $\frac{d\left|Z_{1}-Z_{2}\right|^{2}}{d t}=0$. The vortices therefore rotate around their center of gravity Z_{G}, with a constant distance between them.

(c) Examples

Same sign: $\Gamma_{1} \Gamma_{2}>0$

- $\Gamma_{2}=\Gamma_{1}>0 \Rightarrow Z_{G}=\frac{Z_{1}+Z_{2}}{2}$
- $\Gamma_{2}=2 \Gamma_{1}>0 \Rightarrow Z_{G}=\frac{\Gamma_{1} Z_{1}+2 \Gamma_{1} Z_{2}}{3 \Gamma_{1}}=\frac{Z_{1}}{3}+\frac{2 Z_{2}}{3}$

The strongest vortex "embarks" the other.
Opposite signs: $\Gamma_{1} \Gamma_{2}<0$

- $\Gamma_{2}=-2 \Gamma_{1}>0 \Rightarrow Z_{G}=\frac{\Gamma_{1} Z_{1}-2 \Gamma_{1} Z_{2}}{-\Gamma_{1}}=-Z_{1}+2 Z_{2}$

The strongest vortex again "embarks" the other

- $\Gamma_{2}=-\Gamma_{1}>0 \Rightarrow Z_{G} \rightarrow \infty$. The vortices move downward, with speed $W\left(Z_{1}\right)=\frac{d \bar{Z}_{1}}{d t}=\frac{\Gamma_{2}}{2 \pi i\left(Z_{1}-Z_{2}\right)}=\frac{-\Gamma_{1}}{2 \pi i\left(Z_{1}-Z_{2}\right)}=\frac{d \bar{Z}_{2}}{d t}=W\left(Z_{2}\right)=u-i v$
with, initially : $Z_{2}-Z_{1}=x_{2}-x_{1}$. Hence : $u=0, v=-\frac{\Gamma_{2}}{2 \pi\left(x_{2}-x_{1}\right)}$

