PC 3 - Vorticity in two dimensions - Solution 1. Biot-Savart law: complex formulation

(a) Note that:
$$\underline{e}_{z} \times \left(\underline{x} - \underline{x}'\right) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} x - x' \\ y - y' \\ 0 \end{pmatrix} = \begin{pmatrix} -(y - y') \\ x - x' \\ 0 \end{pmatrix}$$
. Therefore the Biot-Savart law becomes:

$$u = -\frac{1}{2\pi} \iint_{A} \omega(\underline{x}') \frac{y - y'}{\left|\underline{x} - \underline{x}'\right|^{2}} d\underline{x}', \quad v = \frac{1}{2\pi} \iint_{A} \omega(\underline{x}') \frac{x - x'}{\left|\underline{x} - \underline{x}'\right|^{2}} d\underline{x}' \implies W = u - iv = -\frac{1}{2\pi} \iint_{A} \omega(\underline{x}') \frac{(y - y') + i(x - x')}{\left|\underline{x} - \underline{x}'\right|^{2}} d\underline{x}' = -\frac{1}{2\pi} \iint_{A} \omega(z') \frac{i\overline{Z - Z'}}{\left|Z - Z\right|^{2}} d\underline{x}'.$$

Hence: $W(Z) = \frac{1}{2\pi i} \int_{Z} \int_{Z} \frac{\omega(Z')}{Z - Z'} dx' dy'$. For the impulsion, we have:

$$\underline{I} = \int \int x \times \underline{\omega} dx dy = \int \int x \underline{e}_x + y \underline{e}_y \quad \omega \underline{e}_z dx dy = \int \int x \omega \underline{e}_y + y \omega \underline{e}_x dx dy. \text{ Therefore: } I = -I_y + iI_x = \int \int \omega Z dx dy$$

(b) With $\omega(z) = \sum_{j} \gamma_j \delta(z - Z_j)$, the formula $W(Z) = \frac{1}{2\pi i} \int_A \int_Z \frac{\omega(z')}{Z - Z'} dx' dy'$ becomes $W(Z) = \frac{d\overline{Z}}{dt} = \sum_j \frac{\Gamma_j}{2\pi i (\overline{Z} - Z_j)}$. We also have: $I = -I_y + iI_x = \sum_i \Gamma_i Z_i$.

2. Case of two point vortices

(a) Zeroing the contribution of the vortex on itself, $\frac{d\overline{Z}_j}{dt} = \sum_{k \neq j} \frac{\Gamma_k}{2\pi i (Z_j - Z_k)}$.

(b) For 2 vortices, we have $\frac{d\overline{Z}_1}{dt} = \frac{\Gamma_2}{2\pi i (Z_1 - Z_2)} \quad \frac{d\overline{Z}_2}{dt} = \frac{\Gamma_1}{2\pi i (Z_2 - Z_1)}$. We want to show that $I = Z_1 \Gamma_1 + Z_2 \Gamma_2 = Cstt$, $Z_G = \frac{Z_1 \Gamma_1 + Z_2 \Gamma_2}{\Gamma_1 + \Gamma_2} = Cstt$ and $|Z_1 - Z_2| = Cstt$. But $\frac{dI}{dt} = \left(\Gamma_1 \frac{dZ_1}{dt} + \Gamma_2 \frac{dZ_2}{dt}\right) = \left(-\frac{\Gamma_1 \Gamma_2}{2\pi i}\right) \times \left(\frac{1}{\overline{Z}_1 - \overline{Z}_2} + \frac{1}{\overline{Z}_2 - \overline{Z}_1}\right) = 0$. Hence $Z_G = Cstt$ since the total circulation $\Gamma_1 + \Gamma_2$ is constant. Also: $\frac{d\overline{Z}_1 - \overline{Z}_2}{dt} = \frac{1}{2\pi i} \left[\frac{\Gamma_2}{Z_1 - Z_2} - \frac{\Gamma_1}{Z_2 - Z_1}\right]$, hence $\frac{d\overline{Z}_1 - \overline{Z}_2}{dt} = \frac{1}{2\pi i} \frac{\Gamma_1 + \Gamma_2}{Z_1 - Z_2}$ and $\frac{d\overline{Z}_1 - Z_2}{dt} = -\frac{1}{2\pi i} \frac{\Gamma_1 + \Gamma_2}{\overline{Z}_1 - \overline{Z}_2}$. Multiplying the first equation by $(\overline{Z}_1 - Z_2)$ and the second one by $(\overline{Z}_1 - \overline{Z}_2) = \frac{1}{2\pi i} \frac{\Gamma_1 + \Gamma_2}{Z_1 - Z_2}$ and $\frac{d\overline{Z}_1 - Z_2}{dt} = -\frac{1}{2\pi i} \frac{\Gamma_1 + \Gamma_2}{\overline{Z}_1 - \overline{Z}_2}$.

 $\left(\overline{z}_1 - \overline{z}_2\right)$, we obtain: $\frac{d|z_1 - z_2|^2}{dt} = 0$. The vortices therefore rotate around their center of gravity z_G , with a constant distance between them.

(c) Examples

Same sign:
$$\Gamma_1\Gamma_2 > 0$$

- $\Gamma_2 = \Gamma_1 > 0 \implies Z_G = \frac{Z_1 + Z_2}{2}$
- $\Gamma_2 = 2\Gamma_1 > 0 \implies Z_G = \frac{\Gamma_1 Z_1 + 2\Gamma_1 Z_2}{3\Gamma_1} = \frac{Z_1}{3} + \frac{2Z_2}{3}$

The strongest vortex "embarks" the other.

Opposite signs: $\Gamma_1\Gamma_2 < 0$

• $\Gamma_2 = -2\Gamma_1 > 0 \implies Z_G = \frac{\Gamma_1 Z_1 - 2\Gamma_1 Z_2}{-\Gamma_1} = -Z_1 + 2Z_2$

The strongest vortex again "embarks" the other

•
$$\Gamma_2 = -\Gamma_1 > 0 \implies Z_G \rightarrow \infty$$
. The vortices move downward, with spe
 $W(Z_1) = \frac{d\overline{Z}_1}{dt} = \frac{\Gamma_2}{2\pi i (Z_1 - Z_2)} = \frac{-\Gamma_1}{2\pi i (Z_1 - Z_2)} = \frac{d\overline{Z}_2}{dt} = W(Z_2) = u - iv$
with, initially : $Z_2 - Z_1 = x_2 - x_1$. Hence : $u = 0, v = -\frac{\Gamma_2}{2\pi (x_2 - x_1)}$

