PC 4 : 3D VORTICITY

Goals

- Investigate vortex stretching, and its competition with viscosity
- Applications : interaction of vortices - tornadoes, bathtub whirlpools

1 - Interaction of two counter rotating vortices : The Crow instability

In the atmosphere, it is quite common to observe a destabilization of vortices behind planes, with a time evolution similar to the figure below: first the vortices start oscillating, at some point they meet, and finally they split. The goal of this exercise is to explain this phenomenon.

Contrails behind an aircraft, at different tiimes: (a) 15 s , (b) 30s, (c) 45s, (d) 60 s (Crow, Journal of Aircraft, 1975)

Let's consider two thin parallel vortices, with strengths $\Gamma_{2}=-\Gamma_{1}=\Gamma(>0)$, far behind a plane. The two vortices can be modeled in 2D by two point vortices located at a given time at $\underline{x}_{2}(0,-b / 2,0)$ and $\underline{x}_{1}(0, b / 2,0)$.

(a) Determine the velocity $\underline{u}(v, w)$ of the vortices.
(b) We want to investigate the velocity of one vortex under the influence of the other vortex if the former is slightly perturbed from its equilibrium trajectory.
Compute the velocity field induced by each vortex in a neighborhood $\mathrm{Z}=\mathrm{Z}_{\mathrm{j}}+\widetilde{\mathrm{Z}}_{\mathrm{j}}$ of the other vortex, with $\left|\tilde{Z}_{j}\right| / b=\varepsilon \ll 1$. Show that: $\frac{\mathrm{d} \widetilde{\widetilde{Z}}_{\mathrm{j}}}{\mathrm{dt}}=\mathrm{i} \lambda \widetilde{\mathrm{Z}}_{\mathrm{j}}$ where $\lambda=\frac{\Gamma_{\mathrm{k}}}{2 \pi \mathrm{~b}^{2}}$.
(c) Let $\tilde{Z}_{j}=y+i z$. Find the solution $(y, z)(t)$ of this equation. Describe the streamlines of the flow.
(d) What happens if we perturb each vortex with an infinitesimal sinusoidal perturbation in the $O x$ direction?

2 - Vortex stretching : tornado (Burgers vortex)

Consider an incompressible homogeneous fluid, invariant by rotation around the axis 0 z . The only non-zero component of vorticity is the vertical component ω_{z}.
(a) Vorticity : Starting from the definition of vorticity, show that:

$$
\omega_{z}=\omega_{z}(r, t), u_{r}=u_{r}(r, t), u_{\theta}=u_{\theta}(r, t), u_{z}=u_{z}(z, t)
$$

and that the equation for ω_{z} has the form : $\frac{\partial \omega_{z}}{\partial t}+u_{r} \frac{\partial \omega_{z}}{\partial r}=\omega_{r} \frac{\partial u_{z}}{\partial z}+v \Delta \omega_{z}$
(Recall that the vorticity in cylindrical coordinates is $\omega=\left(\begin{array}{l}\frac{1}{r} \partial_{\theta} u_{z}-\partial_{z} u_{\theta} \\ \partial_{z} u_{r}-\partial_{r} u_{z} \\ \frac{1}{r} \partial_{r}\left(r u_{\theta}\right)-\frac{1}{r} \partial_{\theta} u_{r}\end{array}\right)$, and that $\nabla . \omega=\frac{1}{r} \frac{\partial\left(r \omega_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(\omega_{\theta}\right)}{\partial \theta}+\frac{\partial\left(\omega_{z}\right)}{\partial z}=0$.

(b) Velocity field : From the continuity equation, determine u_{r} and u_{z}. Define $S(t)=\frac{d u_{z}}{d z}$, rate of axial stretching, which we assume positive. We also suppose that $u_{z}(z=0)=0$ and that there is no source for the flow.
(c) Draw the streamlines.
(d) Give the physical interpretation of each term of the vorticity equation obtained.
(e) Considering separately the stretching and the diffusion, explain what sets the value of vorticity at the center of the vortex. Determine the characteristic width δ of the vortex (Burgers scale) at steady state.
(f) Solve the steady state equation and give ω_{z} as a function of S and $\omega_{0}=\omega_{z}(r=0)$. Draw the solution.
(g) What is the vorticity at the center of the vortex $\omega_{0}=\omega_{z}(r=0)$ (as a function of the circulation Γ)?

