1- Interaction of two counter rotating vortices: The Crow instability (solution)

(a) Position-velocity

$\{\begin{array}{l}\frac{\mathrm{d} \overline{\mathrm{Z}}_{1}}{\mathrm{dt}}=\frac{\Gamma_{2}}{2 \pi \mathrm{i}\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)}=\frac{\Gamma}{2 \pi \mathrm{i}\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)} \\ \frac{\mathrm{d} \overline{\mathrm{Z}}_{2}}{\mathrm{dt}}=\frac{\Gamma_{1}}{2 \pi \mathrm{i}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)}=\frac{-\Gamma}{2 \pi \mathrm{i}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)}\end{array} \Rightarrow \bar{Z}_{2}-\bar{Z}_{1}=\underbrace{\left(y_{2}-y_{1}\right)}_{=b}-i \underbrace{i\left(z_{2}-z_{1}\right)}_{=0}=C t e$,
$\frac{d \bar{Z}_{j}}{d t}=v_{j}-i w_{j}=\frac{-\Gamma}{2 \pi i b} \Rightarrow v_{1}=v_{2}=0, w_{1}=w_{2}=-\frac{\Gamma}{2 \pi b}$.

The vortices are advected downward, and the distance between them remains constant.
(b) At $\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{j}}+\widetilde{\mathrm{Z}}_{\mathrm{j}}$, the velocity induced by the other vortex $\left(\Gamma_{\mathrm{k}}, \mathrm{Z}_{\mathrm{k}}\right)$ is :
$\frac{\mathrm{d} \overline{\mathrm{Z}}_{0}}{\mathrm{dt}}=\frac{\mathrm{d} \overline{\mathrm{Z}}_{\mathrm{j}}}{\mathrm{dt}}+\frac{\mathrm{d} \overline{\mathrm{Z}}_{\mathrm{j}}}{\mathrm{dt}}=\frac{\Gamma_{\mathrm{k}}}{2 \pi \mathrm{i}\left(\mathrm{Z}_{0}-\mathrm{Z}_{\mathrm{k}}\right)}$, with $\frac{\mathrm{d} \overline{\mathrm{Z}}_{\mathrm{j}}}{\mathrm{dt}}=\frac{\Gamma_{\mathrm{k}}}{2 \pi \mathrm{ib}}$ and $Z_{0}-Z_{k}= \pm b+\tilde{Z}_{j}$

Hence : $\frac{d \tilde{Z}_{j}}{d t}=\frac{\Gamma_{k}}{2 \pi i}\left(\frac{1}{\tilde{Z}_{j} \pm b}-\frac{1}{ \pm b}\right)=\frac{\Gamma_{k}}{2 \pi i(\pm b)}\left(\frac{1}{1+\tilde{Z}_{j} /(\pm b)}-1\right)=\frac{\Gamma_{k}}{2 \pi i(\pm b)}\left(-\tilde{Z}_{j} /(\pm b)+O\left(\left(\left|\tilde{Z}_{j}\right| / b\right)^{2}\right)\right)$.
$\frac{d \overline{\tilde{Z}_{j}}}{d t}=i \frac{\Gamma_{k}}{2 \pi b^{2}} \tilde{Z}_{j} \cdot$ So $\frac{d \overline{\tilde{Z}_{j}}}{d t}=i \lambda_{k} \widetilde{Z}_{j}$
(c) Solutions $\frac{d^{2} \overline{\widetilde{Z}_{j}}}{d t^{2}}=i \lambda_{k} \frac{d \widetilde{Z}_{j}}{d t}=\left(i \lambda_{k}\right)\left(-i \lambda_{k} \overline{\tilde{Z}_{j}}=\lambda_{\mathrm{k}}^{2} \overline{\widetilde{Z}}_{\mathrm{j}} \Rightarrow \widetilde{Z}_{\mathrm{j}}(\mathrm{t}) \propto \widetilde{\mathrm{Z}}_{\mathrm{j}}(0) \mathrm{e}^{ \pm \lambda \mathrm{kt}}\right.$.

Streamlines. Streamlines are defined by $\frac{d y}{v}=\frac{d z}{w}=C s t t$.

Hence $\frac{d \tilde{y}_{j}}{\lambda_{k} \tilde{z}_{j}}=\frac{d \tilde{z}_{j}}{\lambda_{k} \tilde{y}_{j}}=C s t t \Rightarrow \tilde{y}_{j}{ }^{2}-\tilde{z}_{j}{ }^{2}=C s t t$.

This is a shear oriented at 45°.

(d) A sinusoidal deformation in the plane of the shear is amplified. We obtain the picture above: The contact between the two vortices creates a cut (zero total vorticity at those points), which transforms the flow into a series of vortex rings.
If the perturbation is not in the plane of the shear, one can show that each vortex rotates around its axis (self-rotation), which eventually triggers the instability described above (alignment in the plane of the shear and amplification). This instability, known as the Crow instability (Crow, Journal of Aircraft, 1970) can sometimes be observed behind planes.

2- Vortex stretching : tornado (Burgers vortex) : solution

Hypothesis: $\frac{\partial \underline{u}}{\partial \theta}=0, \underline{\omega}=\omega_{z} \underline{e}_{z}$.
(a) Vorticity: $\omega_{z}(r, z, t)=\frac{1}{r} \frac{\partial r u_{\theta}}{\partial r} \cdot d i v(\omega)=\frac{\partial \omega_{z}}{\partial z}=0 \Rightarrow \omega_{z}=\omega_{z}(r, t) \Rightarrow u_{\theta}=u_{\theta}(r, t) ; \omega_{r}=-\frac{1}{r} \frac{\partial u_{\theta}}{\partial z}=0 \Rightarrow$ same ; $\omega_{\theta}=\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}=0 \Rightarrow$ $\frac{\partial u_{r}}{\partial z}=\frac{\partial u_{z}}{\partial r}$

From $\omega_{\theta}=\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}=0, \frac{\partial u_{z}}{\partial r}=0 \Rightarrow u_{z}=u_{z}(z, t)$. The last one is : $\frac{\partial \omega_{z}}{\partial t}+\underbrace{u_{r} \frac{\partial \omega_{z}}{\partial r}}_{\text {Advection }}=\underbrace{\omega_{z} \frac{\partial u_{z}}{\partial z}}_{\text {Stretching }}+\underbrace{v \Delta \omega_{z}}_{\text {Diffusion }}$

(b) Velocity

- Continuity : $\frac{1}{r} \frac{\partial r u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}=0 \Rightarrow \quad \frac{\partial}{\partial z}\left(\frac{1}{r} \frac{\partial r u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)=\frac{\partial^{2} u_{z}}{\partial z^{2}}=0 \Rightarrow u_{z}(z, t)=S(t) z$

$$
\Rightarrow \quad \frac{1}{r} \frac{\partial r u_{r}}{\partial r}=-S(t) \quad \Rightarrow \quad u_{r}(r, t)=-\frac{S(t)_{r}}{2}
$$

Note that the last equation assumes that there is no source at $r=0$.
(c) Streamlines : $\frac{d r}{u_{r}}=\frac{d z}{u_{z}} \Rightarrow-\frac{2}{S(t)} \frac{d r}{r}=\frac{1}{S(t) \frac{d z}{z}} \Rightarrow d \ln \left(\left(^{-2}\right)=d \ln z \Rightarrow z=A r^{-2}\right.$. see below.
(d) The vorticity equation is therefore :

$$
\text { Case } S(t)>0
$$

$\frac{\partial \omega_{z}}{\partial t}+\underbrace{-\frac{S(t)}{2} r \frac{\partial \omega_{z}}{\partial r}}_{$| Advection |
| :---: |
| toward the center |$}=\underbrace{S(t) \omega_{z}}_{$| Amplification |
| :---: |
| by stretching |$}+\underbrace{v \Delta \omega_{z}}_{$| Viscous |
| :---: |
| Spreading |$}$

The vorticity is advected toward the center where it is amplified by stretching
(e) At the center $r=0$, the temporal variation of ω_{z} results in the competition between the stretching and the diffusion which tends to spread the vortex. A steady state can be reached if those two mechanisms are at equilibrium. At $r=0$ there is no advection term in the above equation. The evolution of $\omega(0, t)$ is determined by the competition
between stretching, acting on a time scale $\tau_{S}=S^{-1}$ and diffusion, acting on a time scale, $\tau_{v}=\delta_{B}^{2} / v$ where δ_{B} is the thickness of the vortex. When the two opposite effects are at equilibrium, $\delta_{B}=\sqrt{v / S}$, the flow is stationary. This scale resulting from the balance stretching/spreading is the «Burgers scale ».
(f) At steady state : $0=\frac{S}{2} r \frac{d \omega_{z}}{d r}+S \omega_{z}+v \frac{1}{r} \frac{d}{d r}\left(r \frac{d \omega_{z}}{d r}\right)$, hence :
$0=\frac{S}{2} \frac{1}{r} \frac{d r^{2} \omega_{z}}{d r}+v \frac{1}{r} \frac{d}{d r}\left(r \frac{d \omega_{z}}{d r}\right)=\frac{1}{r} \frac{d}{d r}\left(S \frac{r^{2}}{2} \omega_{z}+v r \frac{d \omega_{z}}{d r}\right) \Rightarrow\left(S r \frac{\omega_{z}}{2}+v \frac{d \omega_{z}}{d r}\right)=C s t t$. Hence :
$\frac{d \ln \omega_{z}}{d r}=-\frac{S r}{2 v} \quad \Rightarrow \quad \omega_{z}=\omega_{0} e^{-\frac{S r^{2}}{4 v}}=\omega_{0} e^{-\left(\frac{r}{\delta_{B}}\right)^{2}}$.
This solution is determined by the characteristic scale (Burgers scale) :
$\delta_{B}=2 \sqrt{\frac{\nu}{S}}$ which results from the competition between the two mechanisms stretching/diffusion

(g) The circulation is : $\Gamma=2 \pi \int_{0}^{\infty} \omega_{z} r d r=2 \pi \omega_{0} \int_{0}^{\infty} e^{-\frac{S r^{2}}{4 v}} r d r=2 \pi \omega_{0} \frac{4 v}{2 S}=\omega_{0} \frac{4 \pi v}{S}$. Hence : $\omega_{0}=\frac{1}{4 \pi} \frac{S}{v} \Gamma \quad \delta_{B}=2 \sqrt{\frac{v}{S}}$

