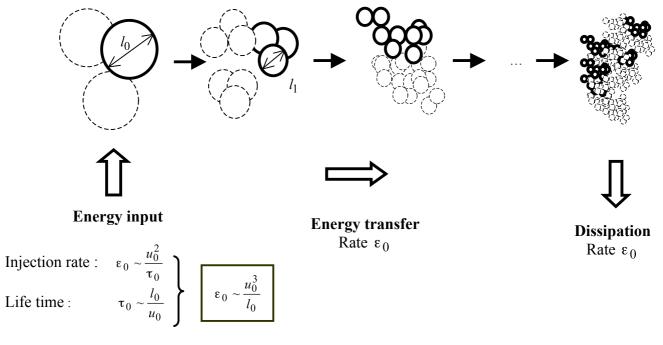
SOLUTION PC2

1. The inertial range of the turbulent cascade Richardson (1926)- Kolmogorov (1941)

The model of the energy cascade by Richardson works as follows :



(a) Inertial range : By definition, the inertial range consists of scales *l* such that : $l_v \ll l \ll l_0$ where l_0 denotes the scale of energy input, and l_v the scales where energy is dissipated (or viscous scales), which satisfy $\frac{u_v l_v}{v} \approx 1$. The rate of energy transfer being constant and equal to ε_0 at every scale, $\varepsilon_0 \sim \frac{u_l^3}{l}$, hence : $u_l \sim (\varepsilon_0 l)^{1/3}$. This result can also be obtained by dimensional analysis from the relation : $u_l = F(\varepsilon_0, l)$ in the inertial range (note the absence of u_0 , l_0 and v in the inertial regime). Since $\left[\varepsilon_0\right] = \frac{L^2}{T^3}$ the above relationship follows. The life time is : $\overline{\tau_l \sim \frac{l}{u_l} \sim \varepsilon_0^{-1/3} l^{2/3}}$.

Comments :

- What is conserved in the cascade is the rate of energy transfer ε_0 . This means that each scale receives as much energy (from larger scales) as the energy it loses (towards smaller scales).
- For a given ε_0 , the energy at equilibrium, $u_l^2 \sim (\varepsilon_0 l)^{2/3}$, decays with the scale of structures. Smaller structures contain less energy but equilibrium is maintained because the energy is transferred faster.
- This process does indeed ensure the reduction of the Reynolds number $\text{Re} = \frac{u_l l}{v} \propto l^{4/3}$ until it reaches values around unity.
- The relationship $u_l \sim (\epsilon_0 l)^{1/3}$ implies invariance of velocity with respect to a change in scale with exponent $\frac{1}{3}$: $\forall \lambda \in \mathbb{R}^+$, $u(\lambda l) = \lambda^{1/3}u(l)$. This type of scaling law is typically checked with log-log pots. Indeed: $\log[u(l_1)] - \log[u(l_2)] = 1/3 \log \lambda = 1/3 (\log l_1 - \log l_2) \Rightarrow \frac{d \log u}{dl} = \frac{1}{3}$.

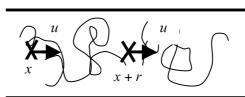
(b) Viscous regime : In order to derive the scales l_{ν} and u_{ν} , we use the relations : $\frac{u_{\nu}^3}{l_{\nu}} \sim \varepsilon_0, \frac{u_{\nu}l_{\nu}}{\nu} \approx 1 \Rightarrow \frac{u_{\nu}^4}{\nu} \sim \varepsilon_0,$

 $\frac{\mathbf{v}^3}{l_v^4} = \varepsilon_0 \Rightarrow \boxed{u_v \sim (v\varepsilon_0)^{1/4} = u_k} \text{ et } \left[\frac{l_v \sim \left(\frac{\mathbf{v}^3}{\varepsilon_0} \right)^{1/4} \equiv \eta}{\varepsilon_0} \right].$ If we again use dimensional analysis, $F(u_v, l_v, \varepsilon_0, v) = 0$ where a new physical scale appears (v) compared to the inertial range. One can rearrange the function F to account for the fact that

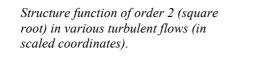
the Reynolds number is close to unity at the viscous scales : $F'\left(\frac{u_{\nu l_{\nu}}}{\nu}=1, l_{\nu}, \varepsilon_0, \nu\right)=0 \implies F'(l_{\nu}, \varepsilon_0, \nu)=0$ or

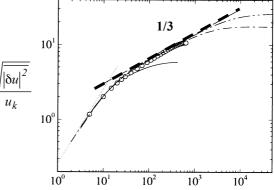
$$F''\left(u_{\nu}, \frac{l_{\nu}u_{\nu}}{\nu} = l, \varepsilon_{0}, \nu\right) = 0 \Rightarrow F''\left(u_{\nu}, \varepsilon_{0}, \nu\right) = 0.$$
 Dimensional analysis leads to the equations written above.

(c) Structure function

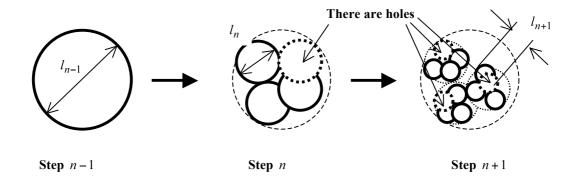


In the inertial range, $l_v \ll r \ll l_0$, the structure function $|\delta u|^p (r) = \frac{1}{T} \int_0^T |u(\underline{x} + r \underline{e}_1, t) - u(\underline{x}, t)|^p dt$ must satisfy the dimensional relation : $|\delta u|^p (r) = F(r, \varepsilon_0)$. Hence : $|\delta u|^p (r) \sim (\varepsilon_0 r)^{p/3}$, and $\zeta_p = \frac{p}{3}$. The figure below shows experimental data verifying the value of the exponent with p=2.



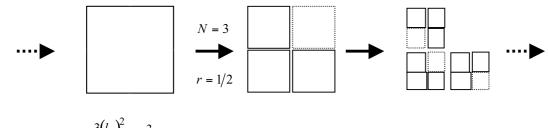


2. An intermittent cascade : the "β-model" (Frish, Sulem and Nelkin, 1978)



(a) The two parameters of the self-similar cascade are: the volume fraction $\beta = N(l_n)^3 / (l_{n-1})^3$ (or more generally $\beta = N(l_n)^d / (l_{n-1})^d$ in dimension d), with $\beta < 1$ in the intermittent case (the structures do not fill the whole space), and the scale ratio $r = l_n / l_{n-1} < 1$. In other words, if the structure of size l_{n-1} generates N structures of size l_n , the volume fraction is $\beta = N r^3$ (more generally $\beta = N r^d$ in dimension d).

2D example. We fix *r* and *N*



In this case : $\beta = \frac{3(l_n)^2}{(l_{n-1})^2} = \frac{3}{4}$.

(c) Fractal dimension : The fractal dimension, or Kolmogorov capacity, is the exponent of the space in which structures with size l_n exactly cover the size l_{n-1} structure. It is there the dimension of the space such that $Nr^D = 1$, or $N = (l_{n-1}/l_n)^D = r^{-D}$. It follows that $N = r^{-D} \Rightarrow D = -\log N/\log(r)$. For the three-dimensional cascade, $N = \beta r^{-3} = r^{-D} \Rightarrow \log \beta - 3\log r = -D\log r \Rightarrow D = 3 - \log \beta/\log(r)$. (Note that $\beta = r^{3-D}$, $\beta^n = (r^n)^{3-D} = (l_n/l_0)^{3-D}$ where (3-D) is the co-dimension. In the 2D example above : $N = (\frac{l_{n-1}}{l_n})^3 = 2^D \Rightarrow D = \frac{\log 3}{\log 2} = 1.58$).

Example. For r = 1/2, we obtain the following depending on the values of N:

Number of structures	Ν	8	6	4	2
Fractal dimension	$D = -\log N / \log(r)$	3	2,58	2	1
Volume fraction	$\beta = N r^3$	1	3/4	1/2	1/4

Volume fraction and fractal dimension for a scale ratio r = 1/2

(d) The consequences of the intermittency of the cascade are :

- There are less and less structures for the same energy flux. The energy at each step of the cascade is now : $N_n (l_n)^3 u_n^2 = O^{n+2}$

$$e_n \sim \frac{N_n(l_n) \ u_n}{l_0^3} = \beta^n u_n$$

- The energy flux becomes $\mathcal{E}_n \sim \frac{\mathcal{E}_n}{\tau_n} \sim \frac{\beta^n u_n^3}{l_n} = \mathcal{E}_0$, hence the velocity is $u_n \sim \left(\frac{\varepsilon_0 l_n}{\beta^n}\right)^{1/3} = \left(\varepsilon_0 l_n\right)^{1/3} \beta^{-n/3}$ and the life time $\tau_n \sim \frac{l_n}{u_n} \sim \varepsilon_0^{-1/3} l_n^{2/3} \beta^{n/3}$. Therefore, as the intermittency increases ($\beta < 1$ decreases), the characteristic velocity of the structures increases and their life time decreases. (In terms of the co-dimension, $\beta^n = \left(l_n/l_0\right)^{3-D}$, we obtain $u_n \sim l_n^{1/3} \left(l_n/l_0\right)^{-(3-D)/3}$, $\tau_n \sim \frac{l_n}{u_n} \sim l_n^{2/3} \left(l_n/l_0\right)^{(3-D)/3}$).

- For the structure function $|\delta u|^p (l)$, using the same argument than the one we used for energy, we obtain $\overline{|\delta u|^p}(l) \sim \beta^n u_n^p \sim \beta^n (\varepsilon_0 l)^{p/3} \beta^{-pn/3} = \beta^{n(1-p/3)} (\varepsilon_0 l)^{p/3} \sim l^{p/3} (l/l_0)^{(3-D)(1-p/3)}$. We recover the earlier result when D=3 (no intermittency). The exponent is now $\zeta_p = \frac{p}{3} + (3-D)(1-p/3)$. It is reduced (smaller than p/3) when p > 3, which matches observations. Nevertheless the exponent is increased (larger than p/3) when p < 3. For instance with p=2 the structure function has exponent $\zeta_2 = \frac{2}{3} + (3-D)(1-2/3) = \frac{2}{3} + \frac{3-D}{3}$ whereas $\zeta_2 = \frac{2}{3}$ agrees very well with observations as shown in the figure of the previous exercise. This problem is still the subject of active research.

Caroline MULLER (LadHvX)