
Gravity Waves Generated by Sheared Potential Vorticity Anomalies

FRANCxOIS LOTT AND RIWAL PLOUGONVEN
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ABSTRACT

The gravity waves (GWs) generated by potential vorticity (PV) anomalies in a rotating stratified shear flow

are examined under the assumptions of constant vertical shear, two-dimensionality, and unbounded domain.

Near a PV anomaly, the associated perturbation is well modeled by quasigeostrophic theory. This is not the

case at large vertical distances, however, and in particular beyond the two inertial layers that appear above

and below the anomaly; there, the perturbation consists of vertically propagating gravity waves. This structure

is described analytically, using an expansion in the continuous spectrum of the singular modes that results

from the presence of critical levels.

Several explicit results are obtained. These include the form of the Eliassen–Palm (EP) flux as a function of

the Richardson number N2/L2, where N is the Brunt–Väisälä frequency and L the vertical shear. Its non-

dimensional value is shown to be approximately exp(2pN/L)/8 in the far-field GW region, approximately twice

that between the two inertial layers. These results, which imply substantial wave–flow interactions in the inertial

layers, are valid for Richardson numbers larger than 1 and for a large range of PV distributions. In dimensional

form they provide simple relationships between the EP fluxes and the large-scale flow characteristics.

As an illustration, the authors consider a PV disturbance with an amplitude of 1 PVU and a depth of 1 km,

and estimate that the associated EP flux ranges between 0.1 and 100 mPa for a Richardson number between 1

and 10. These values of the flux are comparable with those observed in the lower stratosphere, which suggests

that the mechanism identified in this paper provides a substantial gravity wave source, one that could be

parameterized in GCMs.

1. Introduction

It is well established that gravity waves (GWs) have

a substantial influence on the large-scale atmospheric

circulation, particularly in the middle atmosphere. As

a result, sources of atmospheric GWs have received

a great deal of attention. Significant tropospheric sour-

ces include topography, convective and frontal activities

(Bretherton and Smolarkiewicz 1989; Shutts and Gray

1994), wind shear instabilities (Lalas and Einaudi 1976;

Rosenthal and Lindzen 1983; Lott et al. 1992), non-

modal growth (Lott 1997; Bakas and Ioannou 2007), and

geostrophic adjustment.

When it comes to geostrophic adjustment, one should

distinguish classical adjustment, in which an initially

unbalanced flow radiates GWs as it returns to near-

geostrophic balance (Rossby 1937, Blumen 1972, Fritts

and Luo 1992), from spontaneous adjustment, in which

a well-balanced flow radiates weakly GWs in the course

of its (near balanced) evolution (Ford et al. 2000). The

source of GW activity differs between the two types of

adjustment. In the first case, GW generation should be

attributed to the mechanism responsible for the initial

imbalance rather than to the adjustment.1 In the second

case, spontaneous adjustment itself is the GW source.
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1 It is in this context that Scavuzzo et al. (1998) and Lott (2003)

attributed the presence of inertia–gravity waves near mountains to

a large-scale adjustment to breaking small-scale gravity waves.
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Spontaneous adjustment, on which the present pa-

per focuses, has been the subject of intense research

activity. Much of this has been motivated by theoretical

issues related to the limitations of balanced models and

the nonexistence of exactly invariant slow manifolds

(e.g., Vanneste 2008 and references therein). There are,

however, practical implications, in particular for the

parameterization of nonorographic GWs in general

circulation models, since the (pseudo) momentum flux

associated with the GWs generated spontaneously may

well be significant. To assess this, it is important to

quantify the GW activity generated by simple, physically

plausible processes. This is the main aim of this paper.

The process that we examine is the generation of GWs

that results from the advection of potential vorticity

(PV) anomalies by a vertically sheared wind. Since we

consider background flow with uniform PV, it is related

to the work of Plougonven et al. (2005) on the un-

balanced instabilities associated with surface edge waves

(see also Molemaker et al. 2005). In our case, however,

there is no boundary, and the PV disturbance is imposed

within the flow and can have a finite vertical extent. The

process that we examine is also related to the work of

Vanneste and Yavneh (2004) and Olafsdottir et al.

(2008) on GWs generated by PV anomalies in a hori-

zontal shear with the difference that the wind shear is

vertical in our case. A common feature of all of these

processes, one which is likely generic for spontaneous-

generation phenomena (Vanneste 2008), is that the GW

activity is exponentially weak in the limit of small

Rossby number, or equivalently large Richardson number.

Our study, which is not restricted to this limit, confirms

this conclusion; it nevertheless suggests that for rea-

sonable values of the parameters, the GW amplitudes

generated by PV anomalies in a vertical shear can be

significant—comparable, for instance, with those observed

in the low stratosphere by constant-level balloons far from

mountain ranges (Hertzog et al. 2008).

In the background flow that we consider, with uniform

PV, the small-amplitude PV anomalies are advected

passively by the shear. The spectral representation of

this dynamics involves a continuous spectrum of singular

modes whose phase velocities are in the range of the

basic-flow velocity, (2‘, ‘) in the unbounded domain

that we assume. The vertical structure of the PV asso-

ciated with the singular modes is simple: each mode is

represented by a Dirac distribution centered at the

critical level, where the phase velocity equals the basic

flow velocity [see Pedlosky (1979) for a discussion of the

analogous continuous spectrum in the quasigeostrophic

(QG) Eady problem]. The fields decay rapidly above

and below the critical level as far as the inertial levels

where the Doppler-shifted frequency is equal to the

Coriolis parameter (Jones 1967). Beyond these levels,

the structure is oscillatory and can be identified as the

GW signature of the (Dirac) PV anomaly.

The first purpose of this paper is to obtain the vertical

structure of the singular modes with Dirac PV analytically.

The second is to deduce, by integration over the contin-

uous spectrum, the GW response to a vertically smooth,

localized PV distribution. The third is to show that this

GW response can yield substantial Eliassen–Palm (or

pseudomomentum) fluxes at large vertical distances from

the PV anomaly. Interestingly, we find that about half

(exactly so in the limit of large Richardson number) of the

pseudomomentum generated by the advection of PV is

transported by GWs over arbitrarily large distances; the

other half is deposited in an inertial layer, where sub-

stantial wave–flow interactions likely take place.

The plan of the paper is as follows: The general for-

mulation of the problem and its transformation to a di-

mensionless form are given in section 2. Section 3 is

devoted to the derivation of the vertical structure of the

singular modes associated with a Dirac in PV. In sec-

tion 4 we rephrase the result of section 3 in dimensional

terms and estimate the amplitude of the pseudomo-

mentum fluxes that can be expected from horizontally

monochromatic PV anomalies; these compare with

those measured in the lower stratosphere during field

campaigns. We also consider PV distributions that are

localized horizontally and have a finite depth so that the

GW response is transient. In section 5, we summarize

our results and discuss their significance for (i) the pa-

rameterization of GWs in GCMs, (ii) the transient

evolution of baroclinic disturbances, and (iii) the treat-

ment of the more general initial value problem. An

appendix is devoted to approximate solutions valid in

the limit of large Richardson number.

2. General formulation

a. Disturbance equations and potential vorticity

In the absence of mechanical and diabatic forcings, the

hydrostatic–Boussinesq equations for the evolution of

a two-dimensional disturbance in the uniformly sheared

flow u0 5 (Lz, 0, 0), where L . 0 denotes the shear,

read as

(›
t
1 Lz›

x
)u9 1 Lw9� f y9 5� 1

r
r

›
x
p9, (2.1a)

(›
t
1 Lz›

x
)y9 1 fu9 5 0, (2.1b)

0 5� 1

r
r

›
z
p9 1 g

u9

u
r

, (2.1c)
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(›
t
1 Lz›

x
)g

u9

u
r

� f Ly9 1 N2w9 5 0, (2.1d)

and

›
x
u9 1 ›

z
w9 5 0. (2.1e)

Here u9, y9, and w9 are the three components of the

velocity disturbance, p9 is the pressure disturbance, rr is

a constant reference density, u9 is the potential tem-

perature disturbance, ur is a constant reference potential

temperature, g is the gravity constant, f is the Coriolis

parameter, and N2 5 gu0z/ur is the square of the con-

stant Brunt–Väisälä frequency, with u0(y, z) the back-

ground potential temperature. Note that L appears in

(2.1d) because the background shear flow is in thermal

wind balance, u
0y

5�u
r
f L/g.

Equations (2.1a)–(2.1e) imply the conservation

equation,

(›
t
1 Lz›

x
)q9 5 0, (2.2)

for the PV perturbation,

q9 5
1

r
r

(u
0z

›
x
y9 1 u

0y
›

z
u9 1 f ›

z
u9). (2.3)

Note here that (2.2) and (2.3) correspond to the linear-

ization of the conservation equation for the hydrostatic

and Boussinesq approximation of the Ertel PV, the

background PV, L�u0y 1 f �u0z, being constant. It follows

from (2.2) that the PV at any time t is given explicitly in

terms of the initial condition q90(x, z) 5 q9(x, z, t 5 0) by

q9(x, z, t) 5 q9
0
(x� Lzt, z). (2.4)

b. Normal-mode decomposition

To evaluate the disturbance field associated with the

PV anomaly (2.4), we express this solution in Fourier

space:

q9(x, z, t) 5

ð1‘

�‘

q̂(k, z, t)eikx dk

5

ð1‘

�‘

q̂
0
(k, z)eik(x�Lzt) dk, (2.5)

where q̂
0

is the Fourier transform of q90, satisfying

q9
0
(k, z) 5

ð‘

�‘

q̂
0
(k, z)eikx dk. (2.6)

We rewrite (2.5) in the form

q9(x, z, t) 5

ð1‘

�‘

ð1‘

�‘

q̂
0
(k, z9)eik(x�Lz9t) kL

f
d

kL

f
(z� z9)

� �
dz9 dk, (2.7)

where d(j) is the Dirac function of the variable

j 5
kL

f
(z� z9). (2.8)

Note that (2.7) can be interpreted as the expansion of

the perturbation PV in the (singular) normal modes of

(2.3); these modes form a continuum, parameterized by

the phase speed Lz9. The scaling used in (2.8) places the

inertial levels of these modes at j 5 61 (Inverarity and

Shutts 2000).

We are interested in the response of other fields,

which can display GW activity, to the evolving PV

(2.5). As a representative of these fields, we mainly

focus on the perturbation streamfunction c9, related to

the perturbation velocity in the (x, z) plane accord-

ing to

u9 5 ›
z
c9, w9 5�›

x
c9. (2.9)

The expansion of the streamfunction corresponding to

the expansion (2.7) of the PV can be written as

c9 5

ð1‘

�‘

ð1‘

�‘

ĉ
0
(k, z9)eik(x�Lz9t)C

kL

f
(z� z9)

� �
dz9 dk,

(2.10)

where ĉ0(k, z9) is the amplitude of the normal mode and

C(j) its vertical structure. Note that this expansion, which

describes the part of c9 slaved to the PV, is not complete:

an additional continuum of singular modes, representing

free sheared GWs, would need to be added to the ex-

pansion to solve an arbitrary initial value problem.

The velocities u9, y9, w9 and the potential temperature

u9 have expansions analogous to (2.10), with ĉ0 replaced

by û0, ŷ0, ŵ0 and û0, and with C replaced by U, V, W.

Introducing these expansions into (2.1a)–(2.1e) and

choosing

û
0

5
kL

f
ĉ

0
, ŷ

0
5 i

kL

f
ĉ

0
,

ŵ
0

5�ikĉ
0
, and û

0
5

u
r
kL2

fg
ĉ

0
(2.11)

gives
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U 5 C
j
, V 5

C
j

j
, W 5 C, and Q 5

C
j

j2
1

JC

j
,

(2.12)

where we have introduced the Richardson number

J 5
N2

L2
. (2.13)

We now introduce (2.11) and (2.12) into the expressions

(2.3) and (2.7) for the PV. Choosing the streamfunction

amplitude

ĉ
0
(k, z9) 5

g

ku
r
L2

r
r
q̂

0
(k, z9) (2.14)

then leads to the differential equation for the stream-

function structure C(j):

1� j2

j2

� �
C

jj
� 2

j3
C

j
� J

j2
C 5 d(j). (2.15)

We solve this equation explicitly in the next section.

3. Evaluation of C(j)

To find a solution to (2.15), we first derive its homo-

geneous solutions for j . 0 and impose a radiation

condition for j � 1 to obtain a solution that represents

an upward-propagating GW. We deduce from this a so-

lution valid for j , 0, which represents a downward-

propagating GW for j � 21. The amplitudes of these

two solutions are then chosen to satisfy the jump con-

ditions associated with (2.15),

[C]01

0� 5 0;
C

j

j2

� �01

0�
5 1. (3.1)

a. Homogeneous solution for j . 0

The change of variable h 5 j2 transforms (2.15) into

the canonical form of the hypergeometric equation

[Eq. (15.5.1) in Abramowitz and Stegun (1964), here-

after AS]:

h(1� h)C
hh

1 [c� (a 1 b 1 1)h]C
h
� abC 5 0,

(3.2a)

where

a 5�1

4
1

i

2
m, b 5 a*, c 5�1

2
5 a 1 b, and

m 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J � 1/4
p

. (3.2b)

Note that a 1 b 2 c 5 0, a relation that is related to the

fact that the two inertial levels at j 5 61 are logarithmic

singularities of (2.15), as described by Jones (1967).

For j . 1 we retain one of the two independent

solutions of the hypergeometric equations [see AS,

(15.5.8)], written as

C(u)(j) 5 j�2bF(a9, b9; a9 1 b9; j�2), (3.3)

where F denotes the hypergeometric function, a9 5 a*,

and b9 5 1 2 a. We retain this solution because its as-

ymptotic form,

C(u)(j) ; j1/21im as j ! ‘, (3.4)

corresponds to a GW propagating upward (Booker and

Bretherton 1967). The other solution [given by (15.5.7)

in AS] corresponds to a GW propagating downward.

It is important to note here that, without the hydro-

static approximation, the equation for C in (2.15) would

present turning points in the very far field. At these

turning points, the GWs would be entirely reflected back

toward the critical levels. This effect, and the fact that we

are only interested here in the emission of the GWs by

the PV, has motivated our choice to make the hydro-

static approximation.

For 0 , j , 1 the solution to (3.2a) is best written as

a linear combination of the two independent solutions:

C(u)(j) 5 AF(a, b; a 1 b; j2)

1 Bj3F(a0, b0; a0 1 b0; j2), (3.5)

where a0 5 1 2 a*, b0 5 1 2 a, and A and B are two

complex constants [(15.5.3–4) in AS]. To connect this

solution to (3.3), we use a transformation formula for

F [(15.3.10) in AS] and obtain the asymptotic approxi-

mations

C(u)(j) ; a9 ln(j � 1) 1 b9, as j ! 11, (3.6a)

and

C(u)(j) ; (aA 1 a0B) ln(1� j) 1 bA 1 b0B, as

j! 1�. (3.6b)

In these expressions,

a 5�G(a 1 b)

G(a)G(b)
, and

b 5a[c
d
(a) 1 c

d
(b) 1 ln(2)� 2c

d
(1)], (3.7)

where G is the gamma function and cd is the digamma

function (see AS, chapter 6). The other coefficients

(a9, b9) and (a0, b0) are defined by the same formulas

with (a, b) replaced by (a9, b9) and (a0, b0), respectively.

To continue the solution (3.6a) below the inertial level

at j 5 1, we follow Booker and Bretherton (1967) and

introduce a infinitely small linear damping that shifts the

real j axis into the lower half of the complex plane so that
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j � 1 5 (1� j)e�ip for j , 1. (3.8)

Thus, (3.6a) matches (3.6b) provided that

aA 1 a0B 5 a9, bA 1 b0B 5 b9� ipa9. (3.9)

Solving for A and B gives

A 5

ffiffiffiffi
p
p

2

G(1� im)

G(5/4� im/2)2
e1ipa*,

B 5�4
ffiffiffiffi
p
p

3

G(1� im)

G(�1/4� im/2)2
e�ipa, (3.10)

after simplifications using reflection formulas for the

gamma and digamma functions [(6.1.17) and (6.3.7) in

AS]. This completes the determination of C(u)(j).

b. Solution over the entire domain

The solution for j , 0 can be deduced from C(u)(j) by

noting that (2.15) only contains real coefficients and is

even. A possible solution is simply

C(d)(j) 5 C(u)(�j)*. (3.11)

This satisfies the radiation condition for j / 2‘ since

C(d)(j) ; (�j)1/2�im, (3.12)

which represents a downward-propagating GW.

The two solutions C(u) and C(d) can be combined to

obtain a solution valid in the entire domain that satisfies

the jump condition (3.1). This is given by

C(j) 5

A*C(u)(j)

3(BA* 1 AB*)
, for j . 0

AC(d)(j)

3(BA* 1 AB*)
, for j , 0.

8>>>><
>>>>:

(3.13)

The jump condition is readily verified by noting that,

if jjj , 1,

C(j) 5
A*A

BA* 1 A*B
F(a, b; a 1 b; j2) 1

BA*j3

3(BA* 1 AB*)
F(a0, b0; a0 1 b0; j2) for j . 0, (3.14a)

C(j) 5
A*A

BA* 1 A*B
F(a, b; a 1 b; j2)� AB*j3

3(BA* 1 AB*)
F(a0, b0; a0 1 b0; j2) for j , 0. (3.14b)

The first terms on the right-hand sides of (3.14a) and

(3.14b) are identical and ensure the continuity of C in

j 5 0 and do not contribute to the jump in (3.1); the

second terms do not affect the value of C in j 5 0 but

combine so that Cj/j2 jumps by 1 at j 5 0 as required.

Several conclusions can be derived from the explicit

form (3.13) of the streamfunction C(j). First, for small

jjj, C(j) approaches the value

C(0) 5
AA*

3(AB* 1 A*B)
;

J�1 1

2 J3/2
, (3.15)

where the symbol ;
J � 1 is used to denote the asymptotic

behavior for large J. This asymptotic estimate, derived

here using Stirling’s formula for the gamma function [see

AS’s (6.1.37)], is also obtained when the quasigeostrophic

approximation of (2.15) is solved (see section 1 of the

appendix). Second, we obtain from (3.4) and (3.13) that

C ; Ej1/21im, as j! ‘, (3.16)

where

E 5
A*

3(AB* 1 A*B)
5�A*

e�pm

2m
. (3.17)

The behavior as j / 2‘ is similar. Accordingly, the

amplitude of the GWs in the far field (jjj � 1) is

jEj5 jG(1 1 im)j
jG(5/4 1 im/2)j

ffiffiffiffi
p
p

2

e�pm/2

m
;

J�1 e�p
ffiffi
J
p

/2

2 J
. (3.18)

The large J approximation in (3.18) is one of the main

results of this paper. Obviously it cannot be recovered in

the quasigeostrophic approximation, which filters out

GWs completely, but it can be recovered by a WKB

treatment of (2.15). This is demonstrated in section 2 of

the appendix.

A third result derived from (3.13) concerns the EP flux

(Eliassen and Palm 1961), or pseudomomentum flux,

associated with the solution C(j). Multiplying (2.15) by

J3/2C* and integrating by parts results in a conservation

relation for the nondimensional EP flux

F j 5 Re
i J3/2

2

1� j2

j2
C

j
C*

� �
5 const (3.19)

that is valid away from j 5 0, 61. Using the asymptotic

approximation (3.16) shows that F j 5 m J3/2jEj2/2 for
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jjj . 1. The flux F j is discontinuous across the inertial

level j 5 1. To evaluate its jump, we use the approxi-

mations (3.6a) and (3.6b) valid for j / 16 to find that

F j(11) 2 F j(12) 5 2pJ3/2jEj2ja0j2. Finally, the Taylor

series expansions of (3.14a) and (3.14b) near j 5 0

shows that the flux is continuous across j 5 0: F j(01) 2

F j(02) 5 0. Using the explicit expression of a0 and

Stirling’s formula, our results for the EP flux are sum-

marized as follows:

F j 5

m

2
J3/2jEj2 ;

J�1 e�p
ffiffi
J
p

8
, jjj. 1

[1 1 coth(mp)]
m

2
J3/2jEj2 ;

J�1 e�p
ffiffi
J
p

4
, jjj, 1.

8>><
>>:

(3.20)

This shows, in particular, that the GWs produced by the

PV anomalies deposit almost as much momentum at the

inertial levels as they transport in the far field.

c. Results

The four panels in Fig. 1 show the solution (3.13) for C

for four values of the Richardson number J. For all

values of J, the streamfunction amplitude decays away

from j 5 0 in the region between j 5 61, where it has an

almost constant phase, indicating a nonpropagating

character. The decay for small j is well predicted by the

quasigeostrophic approximation Cg (also shown), which

behaves essentially like exp(�
ffiffiffi
J
p
jjj) (see section 1 of the

appendix).

Beyond the inertial levels, that is, for jjj . 1, the

disturbance is propagating, with the real and imaginary

part of C in quadrature. The asymptotic behavior

Ej1/21im as jjj/ ‘ is also shown in Fig. 1: it corresponds

to a pure GW in our context. The amplitude jEj of the

far-field GW, given in (3.18), is compared in Fig. 2 with

its large J asymptotic estimate, also given in (3.18). The

figure confirms the validity of this estimate and shows

that it remains useful for values of J as small as 1. The

figure also highlights the rapid decrease of the GW

amplitude with J that is encapsulated in the exponen-

tial factor exp(�
ffiffiffi
J
p

p/2) appearing in the asymptotic

estimate. A crude argument is suggestive of this de-

pendence: if the quasigeostrophic approximation is

used (well beyond its range of validity) up to the in-

ertial levels j 5 61, the amplitude attained there, and

hence the GW amplitude, is predicted to be roughly

exp(�
ffiffiffi
J
p

). The presence of the factor p/2 can be traced

to the breakdown of the quasigeostrophic approxima-

tion for j 5 O(1) and the replacement of the decay in

exp(�
ffiffiffi
J
p
jjj) of the quasigeostrophic solution by a de-

cay in exp(�
ffiffiffi
J
p
jsin�1jj). This is demonstrated explicitly

by the WKB solution in section 2 of the appendix.

Figure 2a also compares the value of C(0) with its large

J (quasigeostrophic) estimate, confirming the validity

and usefulness of the estimate.

The amplitude of the nondimensional EP fluxes, be-

tween and beyond the inertial levels j 5 61, is shown in

Fig. 2b. The exact results are compared with the large J

estimates, which again prove accurate for J as small as 1.

The figure, like Fig. 2a, illustrates the strong sensitivity

of the GW generation to J.

4. Solutions for various PV distributions

To gauge the possible importance of sheared PV

anomalies as a mechanism of GW generation, we now

evaluate the GW field produced by a variety of localized

anomalies. From now on, we report the results in di-

mensional form.

We compute the perturbation fields on a grid by

evaluating the integral (2.10) numerically for different

initial PV distributions q90(x, z) using the analytical so-

lutions derived in section 3. The computational domain

2X , x , X and 2Z , z , Z is discretized in a regular

grid with 2L 1 1 points in the horizontal and 2M 1 1

in the vertical. Correspondingly, the Fourier transform

q̂
0
(k, z) is also discretized and given as q̂

0
(k

l
, z

m
),

where kl 5 pl/X, l 5 2L, . . . , L and zm 5 pm/Z, m 5

2M, . . . , M. In the computations presented below, we

typically take X 5 4000 km, Z 5 10 km, L 5 2048,

and M 5 200, which ensures excellent resolutions in

both directions of propagation as well as in the spectral

space.

Given q̂
0
(k

l
, z

m
), the perturbation PV at different

times is computed as

q9(x, z, t) ’ DkDz �
L

�L
�
M

�M
q̂

0
(k

l
, z

m
)e(ik

l
x�ik

l
Lz

m
t)d(z� z

m
),

(4.1)

which is the discretized version of (2.7), where the values

of x and z lie on the grid, Dk 5 p/(LX) and Dz 5 Z/M.

The perturbation streamfunction then takes the analo-

gous form

c9(x, z, t) ’ DkDz�
L

�L
�
M

�M
ĉ

0
(k

l
, z

m
)e(ik

l
x�ik

l
Lz

m
t)C

k
l
L

f
(z� z

m
)

� �
, (4.2)
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FIG. 1. Structure function C(j) associated with a monochromatic PV distribution equal to d(j) for a Richardson

number (a) J 5 2, (b) J 5 5, (c) J 5 10, and (d) J 5 25. The thick black curves and thick dotted curves show the real and

imaginary parts of C, respectively; the thick gray curves show the quasigeostrophic approximation Cg; and the gray

dots show the real part of the far-field GW approximation Ej1/21im.
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where ĉ0(kl, zm) 5 grrq̂0(kl, zm)/(kurL
2) [see (2.10) and

(2.14)]. Similar expressions can be written down for u9,

y9, w9, and u9 using (2.11) and (2.12).

a. Monochromatic, infinitely thin PV

The simplest case that we consider is that of uniform

PV, with value qr, in a layer of depth sz that varies

monochromatically with wavelength 2p/kr. Modeling

this layer as infinitely thin corresponds to taking

q9
0
(x, z) 5 s

z
q

r
eikrxd(z). (4.3)

The associated streamfunction is then simply

c9(x, z) 5 s
z
c

r
eik

r
xC

k
r
L

f
z

� �
, (4.4)

where cr 5 grrqr/(krurL
2). This is of course nothing

other than the solution discussed in section 3 except for

the dimensional factor. We focus on the dimensional

aspect and examine the dimensional EP flux,

F
z

5�r
r

u9w9� f
y9u9

u
0z

 !
5

r
r
g2

f u2
r N3

(r
r
q

r
s

z
)2F j

k
l
L

f
z

� �
,

(4.5)

where the overbar denotes the horizontal average.

Let us estimate an order of magnitude for this EP flux.

If we consider a 1-km-thick layer of stratospheric air

entering in the troposphere, we can take a PV amplitude

of rrqr 5 1 PVU, yielding rrqrsz 5 1023 K s21. As-

suming that this air enters the troposphere at mid-

latitudes, we take rr 5 1 kg m23, N 5 0.01 s21, ur 5

300 K, and f 5 1024 s21. For these parameters the di-

mensional factor, in Eq. (4.5),

r
r

g2

f u2
r N3

(r
r
q

r
s

z
)2

5 10 Pa. (4.6)

Thus, the value of the nondimensional flux F j needs to

be multiplied by 10 Pa to be dimensionally meaningful.

This scaling, which is independent of the horizontal

wavenumber kr, is used in Fig. 2 for the axis on the right

of the panel. For J between 1 and 10, the EP flux is seen

to be between 0.1 and 100 mPa. This covers the range of

values measured in the lower stratosphere away from

mountains during the constant-level-balloon Vorcore

campaigns (Hertzog et al. 2008).

b. Horizontally localized, infinitely thin PV

We now consider a PV distribution that is localized in

the horizontal but can still be modeled as infinitely thin

in the vertical. Choosing a Gaussian profile in the hori-

zontal, we represent the initial PV as

q9
0
(x, z) ’ s

z
q

r
e�x2/(2s2

x)d(z), (4.7)

where sx gives the width of the PV distribution, by

taking in (4.1)

q̂
0
(k

l
, z

m
) 5

s
x
s

z
q

rffiffiffiffiffiffi
2p
p

Dz
e�k2

l s2
x/2, z

m
5 0

0, z
m
6¼ 0.

8<
:

The vertical velocity field corresponding to this dis-

tribution of PV is shown in Fig. 3. The width of the PV

anomaly has been taken as sx 5 40 km (which corre-

sponds to about 0.58 of longitude when f 5 1024 s21); the

other parameters are as in the preceding subsection. The

four panels are obtained for different values of the shear

L and hence of J, with the value of N kept constant.

For small values of J (J 5 2 and J 5 5), there are clear

differences in the response to the PV anomaly between

FIG. 2. Characteristic amplitudes of the disturbances produced

by the Dirac PV anomaly: (a) exact and approximate values for the

GW amplitude jEj given by (3.18) (black solid and gray dashed

curves, respectively) and exact and approximate values of C(0)

given by (3.15) (gray solid curve and black dots, respectively), (b)

exact and approximate values of the EP flux F j between the in-

ertial levels (black solid curve and gray solid curve) and exact and

approximate values of F j beyond the inertial levels (black dashed

curve and gray dashed curve); see (3.20). The axis on the right of (b)

gives the results in the dimensional form corresponding to the

parameter choice (4.6).
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a region immediately surrounding the PV anomaly and

the two far-field regions. The transition between these

three regions can be located around the altitudes zI 5

6fsx/L of the inertial levels of disturbances with wave-

length 1/sx (for J 5 2 and 5, zI 5 6500 m and zI 5

61 km, respectively). In what follows, we call the tran-

sition regions ‘‘inertial layers.’’ Between the inertial

layers, the vertical velocity is everywhere positive to the

east of the positive PV disturbance (i.e., for x . 0) and

negative to the west. This is because the transverse wind

y9 is cyclonic (with y9 , 0 for x . 0 and y9 , 0 for x , 0)

and the meridional advection of background potential

temperature, 2fLy9 in (2.1d), is balanced by the vertical

advection N2w9. Note also that the vertical velocity is

almost untilted in the vertical in this region and de-

creases in amplitude when jzj increases. These indicate

that the dynamics near z 5 0 is well predicted by the

quasigeostrophic theory.

Above and below the inertial layers, the disturbance

has a propagating character, with w9 changing sign with

altitude at a given horizontal location. In these two re-

gions w9 is also tilted against the shear, indicating up-

ward propagation in the upper region and downward

propagation in the lower one. The GW signal is com-

parable in magnitude with the signal near the PV

anomaly for J 5 2 (Fig. 3a) but substantially smaller

when J 5 5 (Fig. 3b). For even larger J (Figs. 3c and 3d)

the GW signal becomes very weak—so weak as to be

undetectable for J 5 25.

As noted, the fact that the PV disturbance is not

monochromatic spreads the inertial levels over an in-

ertial layer of finite depth. To illustrate how this affects

the interactions with the large scales, Fig. 4 shows the

averaged EP flux evaluated as

F
z
(z) 5� 1

2s
x

ð1‘

�‘

r
r

u9w9� f
y9u9

u
0z

 !
dx (4.8)

from the discrete approximations of u9, w9, y9 and u9.

The EP flux is almost constant between the inertial

layers, falls off by a factor of about 2 across the in-

ertial layers, and is constant beyond. This suggests

that substantial wave–mean flow interactions can oc-

cur at distances of up to a few kilometers from PV

anomalies.

FIG. 3. Vertical velocity induced by a horizontally localized but infinitely thin PV anomaly [see the PV horizontal

profile in (4.7)] for (a) J 5 2, (b) J 5 5, (c) J 5 10, and (d) J 5 25, with dashed curves indicating negative values. The

contour interval, indicated on each panel, varies.
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Note that the value of the EP flux in the far field can be

estimated analytically. Returning to the continuous

formalism, using the Gaussian distribution (4.7) and that

F j is constant and independent of k for j . 1, gives

F
z

;
ffiffiffiffi
p
p r

r
g2

f u2
r N3

(r
r
q

r
s

z
)2F j(j . 1), z! ‘, (4.9)

as in the monochromatic case (4.5), up to the multipli-

cative factor
ffiffiffiffi
p
p

.

c. Horizontally localized, finite-depth PV

The PV anomalies examined in sections 4a and 4b are

approximated as infinitely thin layers. This approxima-

tion neglects the vertical shearing of the PV and hence

the changes that this induces in the horizontal distribu-

tion of the PV. If this shearing occurs very rapidly, the

results obtained so far are only relevant for a short time,

after which the GW emission stops. To assess this, and

more generally to demonstrate how our results predict

a time-dependent GW generation, we now consider a

PV distribution that has a finite depth. For simplicity,

we take a PV distribution that is separable in x and z at

t 5 0. Specifically, we choose

q̂
0
(k

l
, z

m
) 5

s
x
q

rffiffiffiffiffiffi
2p
p

Dz
e�k2

l s2
x/2 cos2 pz

m

s
z

 !
, jz

m
j,

s
z

2

0, jz
m
j.

s
z

2
,

8>>><
>>>:

which has the same vertical integral as (4.7).

The time-dependent streamfunction corresponding to

the PV is computed according to (4.2). Because x and t

enter (4.2) only in the combination x 2 Lzmt, it is pos-

sible to reduce considerably the computations involved

by summing vertical and horizontal translations of the

solution in section 4b. To illustrate briefly how the

horizontal translations are done, for fixed zm, the sum

over the index l of the wavenumber kl at some time t can

be inferred from the corresponding sum for t 5 0 pro-

vided that t is a integer multiple of Dx/(LDz). We have

adjusted our grid size to take advantage of this for the

values of t chosen for the results presented.

Figure 5 shows the evolution of the disturbance PV

(gray shading) and of the vertical velocity it produces for

sz 5 1 km, J 5 5, and all other parameters as in the

previous sections. The solution is shown only for nega-

tive values of t. Indeed, the symmetries in our problem

are such that, for the shallow PV disturbances consid-

ered, the solutions for positive t are almost symmetric to

that at negative t. The background velocity shears the

PV, which is strongly tilted against the shear for large

negative time and with the shear for large positive time

(not shown). Accordingly, the width of the PV distri-

bution is deeply altered, decreasing here by a factor of

;2 from t 5 224 h to t 5 0. As a result, the vertical

velocity signal has a decreasing width and increasing

amplitude as t increases toward 0.

Comparing the four panels in Fig. 5 to the (time in-

dependent) disturbance produced by the infinitely thin

distribution of Fig. 3b indicates that the GW patterns in

the far field are comparable at t 5 212 h and almost

identical at t 5 0 h. Accordingly, and because the EP

flux is a quadratic quantity, it is only in a time interval of

a day or so that we can expect the EP flux to approach

the values shown in Fig. 4. This last point is confirmed by

Fig. 6, which displays the evolution of F
z

evaluated at

z 5 110 km for the finite-depth PV anomaly. For all

values of J, the EP flux peaks at t 5 0, with peak values

that compare well with the (time independent) values

obtained for the infinitely thin distribution [see Fig. 4

and Eq. (4.9)]. The peak in EP flux shown in Fig. 6

broadens as J increases because the PV advection also

slows. Nevertheless, the characteristic durations of the

burst in EP flux remain of the order of a day in the range

of J considered here.

Although this last result is quite sensitive to the spatial

extent of the PV distribution (with the characteristic

duration of the EP flux bursts decreasing when the depth

of the PV disturbance increases and/or when its width

decreases), it clearly illustrates that our mechanism of

GWs generation is quite robust: the EP flux in the far

field predicted by (4.9) at some time are representa-

tive of the flux within a few hours of that time. This is

FIG. 4. Vertical profiles of Eliassen–Palm flux for the four solutions in

Fig. 3. Note the rescaling of the flux for the different values of J.
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important for the parameterization of the GWs pro-

duced by PV anomalies in GCMs since these parame-

terization schemes can realistically be updated every

few hours.

5. Summary and applications

a. Summary

In the presence of a uniform vertical shear, and in the

absence of boundaries in the vertical, localized PV

anomalies produce disturbances associated with two

inertial layers. These layers are located above and below

the PV anomaly, at a distance zI 5 sxf /L, where sx is the

typical width of the PV anomaly. Between these two

inertial layers, the form of the disturbance is qualita-

tively well predicted by the quasigeostrophic theory, and

geostrophic balance is a good approximation for the

meridional wind in this region. Accordingly, the decay

with altitude of the disturbance amplitude is exponen-

tial with a decay rate of the order of N/( fsx). Beyond the

inertial layers, the intrinsic frequency of the disturbance

is larger than f so that the disturbance propagates ver-

tically in the form of a GW. If the disturbance ampli-

tude is substantial at the inertial level, the GW

amplitudes produced by this mechanism can be signifi-

cant. This condition is satisfied provided z
I
N/( f s

x
) 5

N/L 5
ffiffiffi
J
p

is not large. More specifically, we show that

FIG. 5. Evolution of the vertical velocity field associated with the evolution of a PV disturbance of finite depth sz 5

1 km, finite width sx 5 40 km, and maximum value of rr qr 5 1 PVU, and when the Richardson number J 5 5. PV

values above 0.1 PVU are shaded; contours for the vertical velocity as in Fig. 3b.

FIG. 6. Temporal evolution of the far-field EP flux for finite-

depth, finite-width PV anomaly and for different values of the

Richardson number J. Note that the EP flux has been rescaled as in

Fig. 4.
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the amplitude of the GW is near exp(�
ffiffiffi
J
p

p/2)/(2 J) for

J . 1. Correspondingly, the Eliassen–Palm flux associ-

ated with the GW depends also exponentially on J,

scaling almost like exp(�p
ffiffiffi
J
p

)/8 beyond the inertial

levels and almost like exp(�p
ffiffiffi
J
p

)/4 between them.

The robustness of these results has been tested nu-

merically and for the case of a PV disturbance localized

horizontally and of finite depth. Horizontal localization

spreads the inertial level of the monochromatic case

over an inertial layer, and finite depth leads to a time-

dependent perturbation. It is nevertheless shown that

under these circumstances the GW amplitudes and the

EP fluxes in the far field remain well predicted by the

monochromatic results, with multiplicative factors that

are O(1) [see (4.9)]. The characteristic time over which

they evolve is also found to exceed a few hours, sug-

gesting that our formula can usefully predict the EP

fluxes produced by PV anomalies (if these anomalies are

diagnosed every hour, for instance).

b. Applications

These results can be directly useful for the parame-

terization of GWs in GCMs that include the middle at-

mosphere. The dimensional results of section 4 suggest

that the EP fluxes in the far field produced by localized

PV anomalies compare in amplitude with the EP fluxes

measured in the lower stratosphere by almost constant-

level balloons during the Vorcore campaign (Hertzog

et al. 2008). Although the analytical expressions we give

are well suited to this context, notably because the GW

parameterization routines typically reevaluate the EP

fluxes according to the large-scale flow every hour, they

require an estimation of the PV anomalies at subgrid

scales.

In most of the parameterizations used currently, the

GW EP fluxes from the troposphere toward the middle

atmosphere are imposed regardless of the GWs tropo-

spheric sources. There are nevertheless some excep-

tions, as in Charron and Manzini (2002), where the GW

amplitude is larger if fronts are identified. Our formula

in (3.20) could well be used in this context since large PV

anomalies form during frontogenesis. It could therefore

be used to parameterize quantitatively the GW radiated

by fronts as well as by other processes that induce lo-

calized PV anomalies.

Our results are also relevant to the problem of non-

modal growth of baroclinic disturbances (Farrell 1989).

In fact, the inertial levels, which are ignored in balanced

approximations, change the boundary conditions at large

distances from the critical level from decay conditions

into radiation conditions; as a result, the global structure

of the solutions in the continuous spectrum is deeply

altered. Consequently an inflow PV anomaly of short

horizontal scales can have a much larger surface signa-

ture than predicted by balanced models. This is because

the disturbances produced in this case can have an in-

ertial layer between the PV and the surface. As our

solutions are the nongeostrophic counterpart of the

building blocks that are used by Bishop and Heifetz

(2000) to explain the triggering of storms by upstream

PV anomalies or to explain the optimal perturbations

evolution by de Vries and Opsteegh (2007), they may be

useful to examine these problems in the nongeostrophic

case.

Finally, our results could be useful to study the evo-

lution of initial disturbances or of disturbances produced

by any external causes (the classical adjustment prob-

lem). For this purpose, it should nevertheless be noticed

that the modes with Dirac PV are not the only modes

associated with the continuous spectrum. In fact, for

each value of the phase velocity, there are two further

singular modes, with zero PV and singular behavior of

the other fields at the inertial levels. These modes are

essential to the completeness of the modal representa-

tion of the solutions.
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APPENDIX

Approximate Solutions

1. Quasigeostrophic approximation

The quasigeostrophic approximation can be recovered

by approximating the perturbation PV as

r
r
q9

g
5 u

0z
›

x
y9 1 f ›

z
u9. (A.1)

Using the polarization relations (2.11) and (2.12), the

QG PV equation has a streamfunction solution c9g that

can be written as a spectral expansion similar to (2.10),

where ĉ
0

is as in (2.14) and C(j) is replaced by the

structure function Cg(j). This new structure function

Cg(j) is a solution of the QG approximation of the

structure equation (2.15), namely

1

j2

� �
C

gjj
� 2

j3
C

gj
� J

j2
C

g
5 d(j). (A.2)

The solution vanishing for jjj/ ‘ is given by
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C
g

5
jjj
2 J

e�
ffiffi
J
p
jjj1

1

2
ffiffiffiffiffi
J3

p e�
ffiffi
J
p
jjj. (A.3)

2. WKB approximation

In this section, we solve the differential Eq. (2.15)

asymptotically using a WKB method. This method has

the interest of providing the solution in terms of

(mostly) elementary functions: these reveal the struc-

ture of the solution more explicitly than the exact so-

lutions do.

To derive an approximate homogeneous solution

C(u)(j) valid for j . 0, we distinguish four different re-

gions in which C(u)(j) takes a different asymptotic form:

(i) an inner region with j � 1; (ii) an outer region

with O(1) 5 j , 1; (iii) an inner region for j ’ 1; and

(iv) a second outer region for j . 1. In the outer regions

(ii) and (iv), two independent solutions are found by

introducing the WKB ansatz

C(u) 5 ( f
0

1 J�1/2 f
1

1 � � � )e
ffiffi
J
p Ð

jf(j9)dj9

to find that

f 5
61ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p , f
0

5
Ajffiffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � 1
p 5

Aj

(1� j2)1/4

for some constant A. Thus, we obtain

C(u) ;
j

(1� j2)1/4
(A(ii)e�

ffiffi
J
p

sin�1j 1 B(ii)e
ffiffi
J
p

sin�1j)

(A.4)

in region (ii) and

C(u) ;
j

(j2 � 1)1/4
(A(iv)ei

ffiffi
J
p

ln(j1
ffiffiffiffiffiffiffiffi
j2�1
p

)

1 B(iv)e�i
ffiffi
J
p

ln(j1
ffiffiffiffiffiffiffiffi
j2�1
p

)) (A.5)

in region (iv), where A(ii), B(ii), A(vi), and B(vi) are arbi-

trary constants. The proper radiation condition as j / ‘

is satisfied by (A.5) provided that

B(vi) 5 0.

The WKB solutions (A.4) and (A.5) break down as

the inner regions are approached and (2.15) needs to

be rescaled. For region (i), we introduce Z 5
ffiffiffi
J
p

z into

(2.15) and obtain at leading order the equation

C
ZZ
� 2

Z
C

Z
�C 5 0,

which is equivalent to the quasigeostrophic approxi-

mation (A.2), giving

C(u) ; A(i)e�
ffiffi
J
p

j(
ffiffiffi
J
p

j 1 1) 1 B(i)e
ffiffi
J
p

j(
ffiffiffi
J
p

j � 1). (A.6)

In region (iii), we introduce the scaled variable z 5

J(j 2 1) and obtain the leading-order equation

2zC
zz

1 2C
z
1 C 5 0.

The solution can be conveniently written in terms of

Hankel functions (see chapter 9 of AS):

C(u) ; A(iii)H
(1)
0 (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 J(j � 1)

p
) 1 B(iii)H

(2)
0 (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 J(j � 1)

p
).

(A.7)

The response to a Dirac of PV can then be constructed

as in (3.11) by combining C(u)(j) for j . 0 with

[C(u)(2j)]* for j , 0. The jump condition at j 5 0,

applied to (A.6), gives

A(i) 1 B(i) 5
1

2 J3/2
. (A.8)

All the constants can then be obtained by matching the

various asymptotic results across regions. Matching be-

tween regions (i) and (ii) gives

ffiffiffi
J
p

A(i) 5 A(ii);
ffiffiffi
J
p

B(i) 5 B(ii).

To match between (ii) and (iii), we recall the branch

choice (3.8) and note the asymptotic formulas

H
(1)
0 (x) ;

ffiffiffiffiffiffi
2

px

r
ei(x�p/4); H

(2)
0 (x) ;

ffiffiffiffiffiffi
2

px

r
e�i(x�p/4),

(A.9)

valid for jxj / ‘, and 2p , argx , 2p and 22p ,

argx , p, respectively [see (9.2.3–4) in AS]. Using this

in (A.7) and comparing with the expansion of (A.4) for

j / 12 gives

e�
ffiffi
J
p

p/2A(ii) 5
21/2

p1/2J1/4
A(iii); e

ffiffi
J
p

p/2B(ii) 5 i
21/2

p1/2J1/4
B(iii).

Similarly, comparing with the expansion of (A.5) for

j / 11 gives

A(iv) 5
21/2e�ip/4

p1/2J1/4
A(iii); B(iv) 5

21/2eip/4

p1/2J1/4
B(iii).

Since the radiation condition for large j implies that

B(iv) 5 0, we conclude that
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B(i) 5 B(ii) 5 B(iv) 5 0.

It follows that A(i) 5 1/(2 J3/2) and, hence, that

A(i) 5
1ffiffiffi
J
p A(ii) 5

eip/4e
ffiffi
J
p

p/2ffiffiffi
J
p A(iv) 5

1

2 J3/2
.

Thus, we find that C(0) ; 1/(2 J3/2) and that the gravity

wave amplitude is jA(iv)j ; e�
ffiffi
J
p

p/2/(2 J), consistent with

(3.15) and (3.18), respectively. The EP fluxF j ; e�
ffiffi
J
p

p/8

for jjj . 1 follows immediately, consistent with (3.20).

The evaluation of the EP flux for jjj, 1 is more delicate

because it includes terms that are exponentially small inffiffiffi
J
p

and are ignored here.
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