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1. Introduction

Knox et al. (2008, hereafter KMW) document an

empirical relation between a diagnostic quantity and

clear-air turbulence (CAT) and argue for a theoretical

basis involving gravity waves to support this result.

While we do not question the empirical evidence for the

effectiveness of this diagnostic, KMW justify its success

based on the work of Ford (1994a), who described the

emission of gravity waves by balanced vortex motions in

rotating shallow water. Ford’s work itself was based on

the ideas of Lighthill (1952), describing the emission of

acoustic waves by small-scale turbulent motions. In fact,

that theory is not applicable to the flows and conditions

that KMW consider.

2. Diagnosing spontaneous generation of gravity
waves in shallow water

KMW argue that ‘‘a significant limitation for the

forecasting of all types of turbulence is identifying the

source of gravity waves’’ and hence base their approach

of CAT forecasting on studies of spontaneous gravity

wave generation. Their new indicator finds its origin in a

rearrangement of the equations of motion used by Ford

(1994a) to predict the emission of gravity waves by

balanced vortex motions, and hence KMW interpret

these forcing terms as indicative of generation of gravity

waves. They further assume that gravity waves play a

role in triggering CAT and hence use their ‘‘Lighthill–

Ford source term’’ as an indicator for turbulence.

In this reasoning, KMW overlook two important as-

pects of the shallow water problem analyzed by Ford

(1994a): first, there is a spatial scale separation between

the large-scale gravity waves in the far field and the small-

scale balanced motions generating the waves (section 2a).

Second, the forcing terms obtained on the rhs contribute

not only to the generation of gravity waves, but also and

predominantly to the balanced dynamics (section 2b).

a. Regarding spatial scales

By rearranging the equations of motion so as to make

a linear wave operator appear on the lhs, Ford (1994a)

obtained an equation of the general form

L(›
t
h) 5N (u, y, h), (1)

where L is the linear gravity wave operator and N is a

forcing coming from the nonlinear advection terms and

their derivatives. In the case of the rotating shallow

water model investigated by Ford (1994a), this equation

can be written
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where g is gravity, h is the height of the free surface, h0 is

the height for the fluid at rest, and f is the Coriolis pa-

rameter. The compact form of the nonlinear forcing

terms on the rhs, ›xi xj
Tij, is obtained when the equations

for momentum and mass conservation are written in

flux form.

To predict the emission of gravity waves, ‘‘the key

point in Lighthill’s theory is now to assume that the

source term Tij is only nonzero over a small enough

region that the right-hand side of (2) may be approxi-

mated by a quadrupole point source’’ (Ford 1994a). In

other words, it is crucial that there is a separation be-

tween the spatial scales of the two types of motions. This

scale separation is tied to the smallness of the Froude

number F 5 U/(gh0)1/2 � 1 and the common height

scale [see Plougonven and Zeitlin (2002) or Schecter

and Montgomery (2006) for an application to the baro-

clinic case]. In practice, this scale separation allowed

Ford to use either a Green’s function (Ford 1994a) or

matched asymptotics (Ford 1994b) to obtain the gravity

waves in the far field (i.e., in a different region of space

than the balanced vortex motions).

Hence, in configurations such as those described by

Ford et al. (2000) (rotating shallow water, small Froude

number, Rossby number larger than unity), using large

values of the rhs forcing term N as a local indicator of

spontaneously generated gravity waves is at the very

least misleading: the waves are present in the far field,

where N is zero, and their spatial scales are much

larger.

An additional remark can be made regarding this

separation of scales, as this is one of the unresolved is-

sues regarding the laboratory experiments of Williams

et al. (2005), to which KMW refer as support for their

approach. Williams et al. (2005) describe two-layer flows

in a rotating annulus, for which short-scale features,

interpreted as inertia–gravity waves, appear within cer-

tain regions of a baroclinic wave undergoing vacillation.

This region coincides with the large-scale maximum

of the Lighthill–Ford forcing term. There are at least

two crucial unresolved issues: 1) How does this large-

scale forcing generate small-scale waves? 2) Why does a

quadratic forcing produce waves with amplitude linear

in Rossby number? A spatial coincidence between well-

identified inertia–gravity waves and a diagnostic of

imbalance—for example, the Lagrangian Rossby num-

ber (O’Sullivan and Dunkerton 1995; Plougonven et al.

2003) or the residual of the nonlinear balance equa-

tion (Zhang 2004)—is of interest, but without a more

systematic investigation of the variations of the ex-

cited waves relative to the forcing, it only provides an

indication, not compelling evidence for a generation

mechanism.

b. Regarding time scales

Regardless of the separation of spatial scales, it is of

course always possible to rearrange the equations in

such a way that one obtains a linear wave operator

on the lhs and forcing terms on the rhs as in Eq. (1).

Once the equations have been rearranged, ‘‘no profound

progress has been made’’ (Snyder et al. 1993): the forc-

ing terms will force both balanced and gravity wave

responses. If one’s purpose is to quantify spontaneous

emission, the difficult task is then to determine which

part of N produces gravity waves. In other words, there

is no direct relationship between large instantaneous

values of N and strong gravity wave generation. To il-

lustrate this, we obtain below a wave equation forced by

nonlinear terms in the case of a continuously stratified

fluid and show that the well-known omega equation

(e.g., Holton 1992) is embedded in it.

We start from the primitive equations for a hydro-

static fluid in the Boussinesq approximation and on the

f plane (McWilliams and Gent 1980):

D
t
u

H
1 f k 3 u

H
1 $f 5 0, (3a)

f
z

5 x, (3b)

D
t
x 1 N2w 5 0, and (3c)
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where f is geopotential; z is a pseudoheight (Hoskins

and Bretherton 1972); x 5 g/u0u, with u being the po-

tential temperature; and N2 is the square of the Brunt–

Väisälä frequency, assumed to be uniform; Dt 5 ›t 1 u � $
is the full Lagrangian derivative.

We rewrite the equations for horizontal momentum

[Eq. (3a)] and for the potential temperature [Eq. (3c)]

in a way that isolates quasigeostrophic dynamics

(Holton 1992):
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where ug 5 f 21k 3 $f is the geostrophic wind, ua 5

u 2 ug is the ageostrophic residual, and Dg 5 ›t 1 ug � $
includes only the advection by the geostrophic wind.

Setting m 5 1 yields the full primitive equations [Eqs. (3)],

whereas m 5 0 leads to the quasigeostrophic approxi-

mation. The nonlinear terms on the rhs are the advection

terms involving ua:

Mu 5 u
a
� =u

g
1 u � $u

a
and (5a)

M
x

5 u
a
� =x. (5b)
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Standard manipulations of these lead to
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(6)

where Q 5 (›xug � $x)i 1 (›yug � $x)j is the Q vector

(Holton 1992).

Equation (6) is of the same form as Eq. (1). On the lhs,

we recognize (for m 5 1) the wave operator for inertia–

gravity waves in a fluid at rest (e.g., Holton 1992, chapter

7). On the rhs, one has (for m 5 1) the ‘‘forcing’’ N .

Now, embedded in Eq. (6), one clearly recognizes (for

m 5 0) the Q-vector form of the omega equation. This

provides, within quasigeostrophic theory, a diagnostic

of the vertical motion w. Therefore, solutions to Eq. (6)

are not only gravity waves, but also include slow, bal-

anced motions. In fact, for midlatitude flows the bal-

anced part of the vertical motion will generally domi-

nate (e.g., Viúdez and Dritschel 2006). Nonzero values

of the forcing terms N do not systematically indicate

gravity wave generation, and it is therefore wrong to

interpret these simply as a ‘‘source of gravity waves.’’

Although KMW do not discuss it, this is the essential

difficulty of the problem of spontaneous generation:

identifying the small fraction ofN that does project onto

gravity waves rather than slow motions. In support for

their approach, KMW refer to Medvedev and Gavrilov

(1995), who seek to diagnose gravity wave sources using

asymptotic, multi-time-scale expansions. But these au-

thors also evade this difficulty as they relax their multi-

time-scale assumption so as to obtain a tentative ‘‘gravity

wave source.’’ Without relaxing this assumption, their

approach would on the contrary lead to the conclusion

that no spontaneous generation occurs (Reznik et al.

2001; Zeitlin et al. 2003) for the flows described (small

Rossby number; one unique length scale). Because

Medvedev and Gavrilov (1995) do not provide any ev-

idence for the relevance of their gravity wave source—

for example, in the form of full primitive equation sim-

ulations of synoptic flows exhibiting spontaneous gen-

eration (O’Sullivan and Dunkerton 1995; Zhang 2004;

Plougonven and Snyder 2007)—their work cannot be

considered as support for KMW.

3. Discussion

The previous section shows that the ‘‘Lighthill–Ford

source term’’ cannot be used as a local indicator of

spontaneously generated gravity waves even in rotating

shallow water where the Lighthill–Ford theory is valid.

Now, as they acknowledge, KMW are interested in

continuously stratified applications, where Lighthill–

Ford theory need not apply. Indeed, the phenomenol-

ogy of gravity waves spontaneously generated by jets

and fronts in both observations (e.g., Thomas et al. 1999;

Pavelin et al. 2001; Zülicke and Peters 2006) and sim-

ulations (e.g., O’Sullivan and Dunkerton 1995; Zhang

2004; Plougonven and Snyder 2007) is distinctly differ-

ent than predicted by that theory because the waves are

small scale relative to the flow generating them, not

large scale.

This fact has important implications for understanding

the generation of the waves. For waves that are small

scale relative to a nonzero background flow, the advec-

tion by this flow becomes essential for determining the

characteristics of the waves. The relevant lhs operator in

Eq. (1) no longer is the operator for waves in a fluid at

rest but should have varying coefficients (Plougonven

and Zhang 2007). In general, the properties of a linear

wave operator on the background of a complex, three-

dimensional, time-dependent flow will not be easily

known. Moreover, even for simple flows the large-scale

flow relative to the forcing will be crucial to determine

the response (as for mountain waves). This makes it very

difficult to interpret the forcing term on its own in con-

trast to the configuration of Ford’s problem, where a

temporal Fourier transform ofN was sufficient to isolate

the part of N that contributes to the generation of

gravity waves [e.g., Eqs. (9) and (13) in Ford (1994a)].

Last, we can note that continuously stratified flows

allow propagation effects such as wave capture (Badulin

and Shrira 1993; Bühler and McIntyre 2005) that are

excluded in shallow water. This mechanism was shown

to be relevant for waves generated by a jet in baroclinic

life cycle experiments (Plougonven and Snyder 2005)

and in dipoles (Snyder et al. 2007; Viúdez 2007; Wang

et al. 2009). The opposite separation of scales (small-

scale waves in a large-scale flow, not the reverse) and

the possibility of wave capture make the problem of

spontaneously generated waves by jets and fronts

(e.g., O’Sullivan and Dunkerton 1995) fall outside the

scope of Lighthill–Ford theory, as clearly explained by

McIntyre (2009).

4. Conclusions

In conclusion, it is worth recalling that 1) the new

turbulence indicator introduced by KMW may well be

very efficient and relevant for CAT and 2) the above

arguments do not exclude the possibility that gravity

waves can play a role in triggering CAT. Case studies

have shown it is possible (e.g., Lane et al. 2004; Koch

et al. 2005).

However, we take issue with KMW’s implicit claim to

have applied Lighthill–Ford theory (Lighthill 1952; Ford
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et al. 2000) to predict the location and intensity of spon-

taneous gravity wave generation in midlatitude flow. The

Lighthill–Ford theory is valid in different regimes than

those considered by KMW and even when valid does not

provide a spatially local predictor for spontaneously

emitted waves. Moreover, it makes predictions that are

qualitatively at odds with observations and simulations of

inertia–gravity waves generated by midlatitude jets and

fronts. Hence, we argue that KMW’s interpretation of

their CAT indicator N as involving gravity waves is not

founded and that their study does not bring any element

to the debates on the generation of gravity waves or on

their role in producing CAT. Only a fraction of N will

contribute to the generation of gravity waves, and KMW

evade this difficulty. On the other hand, N is certainly

relevant as an indicator of strong forcing of (mostly bal-

anced) vertical motions and of significant nonlinearity in

the flow, as shown by Eq. (6). Balanced motions include

frontogenesis, which leads to regions of very strong shears

where small-scale shear instabilities likely become im-

portant (e.g., Snyder 1995). Hence, it is not necessary to

invoke gravity waves to see howN could be correlated to

regions of CAT. In addition, as discussed by KMW, N is

related to several established indicators for CAT, pro-

viding further reason to expect that N should be corre-

lated with CAT regardless of its dynamical underpinnings.

Thus, the effectiveness of N as a CAT indicator is

likely due to reasons other than those put forward in

KMW. A more rigorous interpretation will be needed

‘‘to place the subject of CAT forecasting on a firmer

theoretical footing’’ (KMW).
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Viúdez, A., 2007: The origin of the stationary frontal wave packet

spontaneously generated in rotating stratified vortex dipoles.

J. Fluid Mech., 593, 359–383.

——, and D. Dritschel, 2006: Spontaneous generation of inertia–

gravity wave packets by geophysical balanced flows. J. Fluid

Mech., 553, 107–117.

AUGUST 2009 N O T E S A N D C O R R E S P O N D E N C E 2509



Wang, S., F. Zhang, and C. Snyder, 2009: Generation and propa-

gation of inertia–gravity waves from vortex dipoles and jets.

J. Atmos. Sci., 66, 1294–1314.

Williams, P., T. Haine, and P. Read, 2005: On the generation

mechanisms of short-scale unbalanced modes in rotating two-

layer flows with vertical shear. J. Fluid Mech., 528, 1–22.

Zeitlin, V., G. Reznik, and M. B. Jelloul, 2003: Nonlinear theory of

geostrophic adjustment. Part 2: Two-layer and continuously

stratified primitive equations. J. Fluid Mech., 491, 207–228,

doi:10.1017/S0022112003005457.

Zhang, F., 2004: Generation of mesoscale gravity waves in

upper-tropospheric jet–front systems. J. Atmos. Sci., 61,
440–457.
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