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Internal gravity wave emission from a pancake vortex: An example
of wave–vortex interaction in strongly stratified flows

R. Plougonvena) and V. Zeitlin
Laboratoire de Me´téorologie Dynamique, Ecole Normale Supe´rieure, 24 rue Lhomond,
75231 Paris Cedex 05, France

~Received 13 March 2001; accepted 12 December 2001!

At small Froude numbers the motion of a stably stratified fluid consists of a quasisteady vortical
component and a propagating wave component. The vortical component is organized into layers of
horizontal motions with well-pronounced vertical vorticity and often takes the form of so-called
‘‘pancake’’ vortices. An analytical model of such a vortex that is a solution of the Euler–Boussinesq
equations at a vanishing Froude number is constructed as a superposition of horizontal
two-dimensional Kirchhoff elliptic vortices. This vortex is nonstationary and internal gravity waves
are, therefore, excited by its motion. The radiation properties are studied by matching the vortex
field with the far internal gravity wave field according to the procedure applied in acoustics to
determine vortex sound. The structure of the gravity wave field is completely quantified. By
calculating energy and angular momentum fluxes carried by outgoing waves and attributing them to
the adiabatic change of the vortex parameters, we calculate the backreaction of the internal gravity
waves radiation and show that, as in the case of acoustic radiation by the Kirchhoff vortex, this
adiabatic evolution leads to an elongation of the vortex, and its eventual destabilization. ©2002
American Institute of Physics.@DOI: 10.1063/1.1448297#
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I. INTRODUCTION

As was shown in the pioneering papers1,2 ~for a recent
review, see Ref. 3!, strongly stratified flows are split, in th
leading order in the Froude number, which is defined a
ratio of buoyancy to advection time scales, into mutua
noninteracting vortex and wave components. The forme
concentrated in horizontal layers with a well-pronounc
vertical vorticity and, as stratification inhibits vertical mo
tion, follows the two-dimensional~2-D! incompressible Eu-
ler dynamics1–3 at the leading order.

The horizontal layering in strongly stratified flows h
been confirmed in a number of analytic, numerical, and
perimental studies. Moreover, numerical simulations in R
4 and later works have shown that coherent discus-sha
‘‘pancake’’ vortices tend to emerge from an initially rando
field of decaying turbulence in a stratified fluid. Such vor
ces are also recurrent in laboratory studies of wakes i
stratified fluid: in the wake of a towed sphere,5,6 or in decay-
ing turbulence behind a towed grid.7,8 Layering structure and
the ensuing vortices have also been observed during the
stages of instability of tall columnar vortices in the stratifi
fluid.9–11 A rather detailed study of the internal structure
the pancake vortices was undertaken experimentally in R
12 and 6 and numerically in Ref. 13. It was found that the
vortices obey the cyclostrophic balance conditions and
hibit a pinching of the isopycnals near the core. Panc
vortices are, thus, a universal feature of stratified flows.

The other component of the flow, the internal grav

a!Author to whom correspondence should be addressed. Telephone:~33! 1
44 32 22 21; fax: ~33! 1 43 36 83 92; electronic mail:
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waves ~IGW!, is thoroughly studied~e.g., Ref. 14!, espe-
cially in the linear context. Emission of IGW by the abov
mentioned wakes is well documented15,16and the splitting of
IGW from the vortex component is well seen, for examp
while studying analytically the initial-value problem fo
small disturbances discussed in Ref. 17: a small initial p
turbation in a stratified fluid splits into a outward propagati
IGW packet and a residual steady vortex~vortical motion
here is steady only because of the linearization of the eq
tions, in the next approximation its slow evolution appears
cf. Ref. 18!. The vertical vorticity plays a crucial role in suc
an analysis as it allows one to determine the whole of
vortical flow by inversion. The vertical vorticity is the
leading-order residue of Ertel’s potential vorticity~PV!: q
5“r"v, wherer is density andv is the total vorticity. One
can reconstruct the whole slow vortical field in higher orde
as well using subsequent approximations for the PV, if o
the splitting persists and the fastly outgoing wave compon
can still be consistently filtered out. Thus, the problem of
persistence of splitting in the higher approximations
equivalent to the problem of the slow manifold~cf., e.g., Ref.
19! in strongly stratified fluid dynamics, i.e., a subspace
the whole phase space of the system such that, once
jected on it, the dynamics stays there and may be traced
long times without taking care of the fast wave motions. T
possibility to filter out waves is practically very importan
~weather forecasting is, probably, the best example! and
much understanding of atmosphere and ocean dynamics
come from the no-wave ‘‘balanced’’ models. It is also impo
tant in any kind of numerical simulations in stratified turb
lence as~at least some part of! the wave activity is usually
considered as a subgrid one. Therefore, a study of
9 © 2002 American Institute of Physics
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vortex–wave interaction mechanisms is crucial in this c
text as it allows us to check the validity of splitting an
slow-manifold ideas and to establish their limitations.

One of the essential mechanisms of wave–vortex in
actions is well documented in acoustics: it is the emission
sound waves by vortices~vortex sound!. As was shown in
the pioneering paper by Lighthill,20 nonstationary vortex mo
tions act as sources of sound waves in a compressible fl
The theory of this phenomenon was developed for sm
Mach numbers when the vortex size is much smaller than
characteristic sound-wave length. Pressure fluctuations o
incompressiblefluid produced by the unsteady vortex in i
vicinity may be related to the pressure fluctuations in
compressiblefar wave field, by comparing corresponding a
ymptotics. Mathematically, the rigorous basis for this d
scription was established in the work of Crow,21 where the
theory of matched asymptotic expansions in the inner~vor-
tex! and outer~wave! regions were used. It was shown th
the problem is well posed for small Mach numbers. The id
of vortex sound has been subsequently used to determ
acoustic radiation from numerous vortex flows~e.g., Refs.
22, 23!.

A step further in the vortex sound theory was made wh
it was realized that the backreaction of the radiation can
calculated by attributing energy and angular moment
losses due to the sound-wave emission to a slow adiab
evolution of the vortex parameters. This has been done
the first time in the axisymmetric case of two coaxial ‘‘lea
frogging’’ vortex rings;24 in planar situations, various con
figurations of point vortices were investigated along the
lines in Ref. 25, where radiation-induced vortex collapse w
discovered. Finally, in Ref. 26, a distributed vorte
structure—the Kirchhoff vortex~an elliptic patch of uniform
vorticity surrounded by irrotational fluid cf., e.g., Ref. 2!
was studied. Using matched asymptotic expansions, a
Ref. 21, the sound waves emitted by the vortex were ca
lated. Assuming that the parameters of the vortex var
slowly in response to the loss of energy and angular mom
tum due to the waves in the adiabatic approximation,
Kirchhoff vortex was found to elongate on a time sca
M 24T0 , whereM5U/c is the Mach number~U is the char-
acteristic vortex velocity andc is the velocity of sound! and
T05U/L is the advective time scale~L is the characteristic
vortex scale!, the same time scale as for a pair of point vo
tices of equal sign found in Ref. 25.

The shallow water equations being equivalent to a 2
compressible fluid with a specific equation of state, the sa
ideas were later used for an elliptic Kirchhoff vortex in th
rotating shallow water~RSW! equations,28 with special at-
tention paid to the effect of rotation. In the SW or RS
context, the waves in question are gravity waves, and
Froude numberF5U/AgH replaces the Mach number. Th
waves were found to be radiated atO(F2). They are respon-
sible for a flux of energy and angular momentum away fr
the vortex atO(F4), and induce a slow evolution of th
vortex on a time scaleT25F24T0 , whereT0 is the vortex
advection time scale. The method used was a direct m
time scale perturbation expansion within the framework
the conformal dynamics for 2-D vortex patches that was p
Downloaded 24 Jul 2002 to 129.199.115.248. Redistribution subject to A
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posed in Ref. 29 and allows a calculation of eventual dep
tures from the elliptic shape of the vortex in the course of
slow evolution. It was shown that the presence of rotat
results in the appearance of logarithmic termsO(Fn logF) in
the asymptotic expansion. Using symbolic computer com
tations, the analysis was performed up to termsO(F2 logF)
under a simplifying reflectional symmetry assumption a
was stopped atO(F4), as it was impossible to obtain close
analytic expressions for higher-order corrections.

The phenomenon of Lighthill radiation is conceptua
important in the context of geophysical fluid dynamics b
cause it invalidates the idea of a strict slow manifold me
tioned above: even a purely vortical initial condition~i.e.,
one exactly projected onto the would-be slow manifold! will,
if unsteady, radiate gravity waves and be altered at lo
times by the backreaction of this radiation. Past a cert
time, a wave-filtered description of the flow becomes, th
erroneous. In the RSW context, the limitations imposed
the concepts of balance, slow manifold, and potential vor
ity inversion by the Lighthill radiation were recently dis
cussed in detail in Ref. 19.

In the present paper, by applying the vortex sound p
losophy to the vortex motions in a stably stratified fluid, w
make a step forward in studying wave emission by vortic
and their backreaction by departing both from the tw
dimensionality of the previous studies and the isotropy
sound waves~or surface inertia-gravity waves in the RSW
context!. The wave emission from a localized nonstationa
region of uniform potential vorticity is calculated within th
framework of the Euler equations in the Boussinesq appro
mation ~Euler–Boussinesq in what follows! for a stratified
fluid with a constant background stratification~constant
Brunt–Väisälä frequency!. The Boussinesq approximatio
means that sound waves are filtered out and only inte
gravity waves~IGW! may propagate in the medium. Fo
simplicity we will consider a nonrotating fluid below.

In order to carry out the calculations explicitly, we co
struct a simple unsteady pancake vortex, which we call a
Kirchhoff vortex: a region of uniform potential vorticity with
elliptic horizontal cross sections. All the horizontal ellips
bounding the vortex have the same aspect ratio and rota
the same angular frequency. Vortices of this kind have b
studied ~Refs. 30 and 31! in the context of the quasigeo
strophic equations. As to our knowledge, this configurat
was not considered in the case of the Euler–Boussin
equations. We will suppose in the following, as is often t
case in the observed strongly stratified flows, that the he
of the vortex is much smaller than its horizontal length sca
L@H.

The paper is organized as follows: in Sec. II, the 3
Kirchhoff vortex is constructed using conformal dynamics
each horizontal plane.29,28 The scaling for the farfield, the
matching of the far asymptotics of the latter is done in S
III. Finally, the backreaction on the vortex is calculated
Sec. IV. Section V contains a summary and a discussion
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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II. THREE-DIMENSIONAL KIRCHHOFF VORTEX IN A
STRONGLY STRATIFIED FLUID

We first recall the Euler–Boussinesq~EB! equations for
a stratified fluid in the form we use below:

DtuH1r0
21

“HP50, ~1a!

Dtw1r0
21]zP2j50, ~1b!

“H"uH1]zw50, ~1c!

Dtj1N2w50, ~1d!

where uH is the horizontal andw is the vertical velocity,
respectively~u will denote the full 3-D velocity below!, j is
buoyancy~j52rg/r0 , wherer is the density perturbation
and r0 is the basic state density!, N is the Brunt–Va¨isälä
frequency andDt5]/]t1u]/]x1v]/]y1w]/]z is the ad-
vective derivative. Note that these equations are not hyd
static. Yet the scaling we use corresponds to hydrostaticit
the leading order.

A. Preliminary scaling considerations

The solution of the wave emission problem by an u
steady vortex by means of the method of matched asymp
expansions is well posed,21 provided there is a scale separ
tion between the length scale of the waves and that of
vortex. Here we find constraints imposed by this requirem
on a vortex of characteristic horizontal scaleL and charac-
teristic heightH.

If U is the characteristic horizontal velocity in the vorte
region the advective time scale isT5L/U. We suppose tha
this time scale is much greater than the buoyancy per
FH5U/NL!1. As the ultimate mechanism of IGW excita
tion are the pressure fluctuations due to unsteadiness o
vortex flow, they are expected to have the same vert
length scale as these latter, i.e.,H, and the same time scale
The dispersion relation for low-frequency IGW:V2

5N2kH
2 /k'

2 , where V is wave frequency andkH , k' are
horizontal and vertical wave numbers, respectively, yie
U/L;NH/l. This gives an expression of the characteris
wavelengthl in terms ofL:

l5
NH

U
L5

1

F
L, with F5

U

NH
. ~2!

Hence, for wave-vortex scale separation we need to hav

F5
U

NH
!1. ~3!

Here F will be the small parameter used in the asympto
expansions below.

B. Scaling in the inner „vortex … region

In the vicinity of the vortex the motion is essential
horizontal. To make the separation between the vortex
wave motions clear, we can rewrite Eqs.~1a!–~1d! using the
Helmholtz decomposition for the horizontal velocity:

u51ezÃ“Hc1“Hf1wez . ~4!
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Instead of Eqs.~1a!–~1d!, the divergence of~1a!1~1b! and
the horizontal curl of~1a! will be used below.

The scaling is the same as in Ref. 3~and references
therein!, with some minor differences. The horizontal an
vertical coordinatesx, z are scaled asL andH, respectively;
uH has a scaleU, and t scales asU/L. By virtue of the
continuity equation,w scales asUH/L. In the buoyancy
equation, the ratio ofDtj over N2w scales as F2

5(U/NH)2, the square of the vertical Froude number. F
nally, in order to keep only one parameter, we assume thF
and the aspect ratioH/L are comparable. The nondimensio
alized EB equations are

]z~]zP2j!1F2@DHP1“"~u"“u!#50, ~5a!

]zP2j1F2~] tw1u"“w!50, ~5b!

w1F2~] tj1u"“j!50, ~5c!

] tDHc1J~c,DHc!1“H"~“HfDHc!1w]zDHc

1¹w¹]zc1J~w,]zf!50, ~5d!

DHf1]zw50, ~5e!

where J denotes the horizontal Jacobian:J(a,b)5]xa]yb
2]xb]ya.

Using the above scaling we get for PV:

q5v"“u5DHc1F2@jzDHc2jxczx2jyczy

1J~fz ,j!#1F4J~j,w!. ~6!

All variables are expanded in an asymptotic series inF2:

c5c01F2c11F4c21O~F6!. ~7!

At zeroth order inF2, Eq. ~5c! yields w050. Through
~5e!, f0 is also zero, and we get

w050, ~8a!

f050, ~8b!

] tDHc01J~c0 ,DHc0!50, ~8c!

DHP052“"~u0"“u0!, ~8d!

j05]zP0 , ~8e!

whereu051ezÃ“Hc0 .
The motion at the leading order is, therefore, pure

horizontal and vortical~bidimensionalization!. Equation~8c!
is equivalent to the 2-D Euler equations for incompressi
fluid, wherez enters as a parameter. Hence, within this ac
racy it is possible to build a three-dimensional vortex as
stack of 2-D Euler ones. The vertical profile should be ch
sen carefully in order not to invalidate the coherence of m
tions in different horizontal planes and to avoid unphysi
vertical gradients. Oncec0 is obtained from the PV distribu
tion, the rest of the zeroth-order fields and higher-order c
rections can be determined fromc0 : for example,~8d! de-
termines pressure and~8e! determines buoyancy;w1 will
then be determined fromc0 andj0 through~5c!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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C. Construction of the 3-D Kirchhoff vortex

A 3-D vortex in a stratified fluid is built from the sam
principle as in shallow water:28 a bounded region of fluid
having homogeneous PV~equal to unity! is taken; it is sur-
rounded by fluid with zero PV where the flow follows from
the PV inversion. The 3-D region of homogeneous PV
defined as follows: the intersection of each horizontal pla
with the region of nonzero PV is an ellipse; all such ellips
are centered at the same vertical axis and have the s
aspect ratio and orientation. Hence, the vortex region is
tirely defined by~1! the aspect ratio,~2! the orientation, and
~3! the vertical profileg(z) of the length of the major axis in
each horizontal plane.

The flow in every horizontal plane~for everyz! will be
calculated using the conformal dynamics approach,29 which
uses conformal mappings to parametrize the patches of
form vorticity on the plane. In each horizontal plane, an
terior and an exterior region will be considered; the flow
the latter is described via a mapping of the exterior of
unit disk in the auxiliaryz plane onto the exterior of the
ellipse in the physical plane, orx plane, wherex5x1 iy . As
the ellipses rotate and as their size varies withz these map-
pings depend parametrically onz and are time periodic.

The expression forq at order 0 will account for the to
tality of PV, being equal to unity inside the vortex region a
zero outside. All higher-order corrections toq will thus van-
ish, which allows us to determine perturbatively the hyd
dynamical fields in an unambiguous way.

At order 0, as can be seen from~6!, PV coincides with
the vertical vorticity,DHc, entirely determined by the hori
zontal velocity. Hence the same equations as in the
case28 result, withz as a parameter, and we simply state t
result.

The mapping of the exterior of the unit disk in thez
plane onto the exterior of the ellipse in the physicalx plane
is given by

g~z!5G~z!z1
n~z!eivt

z
, ~9!

where g depends onz and t parametrically, andG(z) and
n(z) are supposed to be real and positive for allz and such
that n(z),G(z). The major and minor semiaxes of ea
ellipse areG(z)6n(z), respectively. As the aspect ratio o
all the ellipses in the stack is the same,G and n have the
same vertical profile:

G5G0g~z!, n5n0g~z!, ~10!

whereG0 andn0 are real and positive.
The rotation frequencyv is determined by the geometr

cal parameters of the ellipses~and by the value of PV, here
unity!:

v5
1

2 S 12
n~z!2

G~z!2D . ~11!

In the interior regionx5x1 iy is the complex space
coordinate, and horizontal velocity is
Downloaded 24 Jul 2002 to 129.199.115.248. Redistribution subject to A
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~ i !~x,x̄,z,t !5

i

2 S x2
n0eivt

G0
x̄ D . ~12!

Note that there is no vertical shear inside the vortex.
In the exterior region, all fields are considered as fun

tions of z, z̄, z, and t, where z and z̄ correspond to the
location defined byx5x1 iy5g(z). The velocity is

v0
~e!~z,z̄,z,t !5

i

2G0
~G0

22n0
2!g~z!

1

z̄
5 iG0vg~z!

1

z̄
.

~13!

The vertical profileg(z) has to be a sufficiently smoot
function with compact support~of order one, due to the
choice of scaling!. In what follows, we choose this profile t
be symmetric inz and normalized:

E
2`

`

dsg~s!251. ~14!

For instance, one can take

g~z!5K~z221!2, for 21,z,1,
~15!

g~z!50, for uzu.1,

whereK is a normalization constant.

D. Pressure, buoyancy, and vertical velocity fields

The pressure field can be obtained directly by integrat
the equation of horizontal motion~1a!:

“P052] tu02u0"“u0 . ~16!

The following expressions follow:

P0
~ i !5

v

4 S xx̄2
1

2G0
~n0e2 ivtx21n0eivtx̄2! D

2v2G0
2g2~z!, ~17a!

P0
~e!5

v2G0
2

2 F2
1

zz̄
1

1

2G0
S n0eivt

z2 1
n0e2 ivt

z̄2 D Gg2~z!.

~17b!

From ~8d!, the buoyancy field can be obtained:

j0
~ i !522G0

2v2g~z!g8~z!, ~18a!

j0
~e!52G0

2v2S G0zz̄212n0eivt

G0z22n0eivt 1c.c.D g~z!g8~z!.

~18b!

The vortex is in the cyclostrophic balance by constructio
Hence, its core corresponds to a low-pressure anomaly
as follows from the hydrostatic balance, buoyancy must h
a negative anomaly in the lower part of the vortex and
positive anomaly in the upper part. This is exactly the cas
~18a!, which is illustrated in Fig. 1. Inside the vortex th
isopycnals are horizontal and pinch, making the density g
dient steeper, like in the observed vortices.6,13 One should be
cautious, however, while comparing our inviscid constru
tion with viscous simulations. For instance, vertical vortic
at the first order has a discontinuous distribution in our a
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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lytical model; in laboratory experiments, vortices common
exhibit vorticity distributions of the Gaussian type.8

Vertical velocity and horizontal velocity potential are a
sent in the leading order; hence, the equations of motio
O(F2) are needed to determine them:

w152~] tj01u0"“Hj0!, ~19a!

DHf152]zw1 . ~19b!

The vertical velocity following from~19a! has a rather
complex form because of the time dependence of the m
ping ~9!:

w1
~ i !50, ~20a!

w1
~e!5 ig~z!g8~z!G0

3v3F 1

~G0z22n0eivt!2

3S n0eivt~zz̄212z2!22z2
~G0zz̄212n0eivt!2

G0z22n0eivt

2
~n0e2 ivtz22n0eivtz̄2!~G0zz̄212n0eivt!

zz̄~G0z̄22n0e2 ivt!
D 2c.c.G .

~20b!

The vertical velocity is zero inside the vortex and in the tw
vertical planes containing the major and minor axes of
ellipses outside. One can check from these expressions
w1 is continuous across the vortex edge~uzu51!. The diver-
gent part of order-one horizontal velocity field can be o
tained from ~19b!. However, we do not present the corr
sponding cumbersome expressions. Nevertheless, note
due to the smoothing effect of the inversed Laplacian,
velocity field“f1 obtained from injecting~20! into ~19b! is
continuous. The other first-order velocity corrections co
from c1 . The equation forc1 is obtained using the fact tha
the first-order term in~6! is zero:

DHc152j0zDHc01j0xc0zx1j0yc0zy2J~f0z ,j0!.
~21!

The corresponding velocity is also continuous due to inv
sion of the Laplacian. Hence, the complete velocity corr
tions at order 1 are continuous and, in principle, calculab

The behavior of the 3-D Kirchhoff vortex appears he
to be different in several ways from the behavior of its S
analog obtained in Ref. 28: first, the equation forc1 ~c2 in
Ref. 28! will not be the same because the expressions for
are different@compare Eq.~21! with Eq. ~36! ~setting f 50!
in Ref. 28#. Second, due to the vertical differentiation

FIG. 1. Isopycnals at leading order in the plane of the minor axis. Note
the isopycnals are horizontal inside the vortex.
Downloaded 24 Jul 2002 to 129.199.115.248. Redistribution subject to A
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needed to obtain the equation forf1 , the form of the forcing
for DHf1 in the 3-D case differs significantly from the SW
case. In particular, in the nonrotating SW case only expr
sions of the formznz̄m appear on the right-hand side of equ
tions for Df2 ~our f1!. In the stratified 3-D case, on th
contrary, we can see from~20b! that rational fractions with
poles other than zero appear making integration much m
involved. The reasoning of Ref. 28, therefore, cannot be
rectly transposed and applied in our situation. While the c
rections in question were taken into account in Ref. 28
adding a termm3z23 to the mapping~9! and some small
@O(F2)# corrections toG0 andn0 , this is not sufficient here:
an infinite series should be added to~9!. Hence, the behavio
of the 3-D vortex in each horizontal plane will be the same
the 2-D shallow water Kirchhoff vortex only at the leadin
order. Unfortunately, the mathematics in the following orde
become too complicated to determine an explicit form
corrections.

E. Circulation, energy, and angular momentum

In this section, quantities that we will need below for th
description of the long-term evolution of the vortex are c
culated.

1. Circulation

Within the framework of equations~1a!–~1d! the
Kelvin’s circulation theorem applied to a contourL states:

dC
dt

5 R
L
dl"jez , ~22a!

5E E
SL

ds"~jyex2jxey!, ~22b!

where C5rLdl"u is the circulation andSL is a surface
bounded by the contourL.

We choseL to be a horizontal ellipse on the vortex edg
As j0 is a function only ofz inside the vortex@cf. ~18a!#, we
see from~22b! that the first nonvanishing contribution wi
come fromj1 , and hence will beO(F2). Now, asw050
everywhere andw150 on the vortex edge@cf. ~19a!#, the
vertical displacements of the contour, which are necess
for dl"ez to be nonzero in~22a!, will be O(F4). Hence, the
circulation cannot vary on times shorter thanT35F26T0 :

dC
dt

5O~F6!. ~23!

Calculating the circulation, the following adiabatic invaria
is obtained:

k~z!5@G2~z!2n2~z!#52vG0
2@g~z!#252k0@g~z!#2,

~24!

wherek05vG0
2. As ~24! does not change on times short

thanT3 for eachz and given the integral constraint~14! on
g(z), bothk0 andg(z) will be considered invariant on time
shorter thanT3 .

at
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2. Energy

In order to calculate the backreaction of the wave rad
tion, we need expressions for the leading-order energy
angular momentum. The equation of energy conserva
follows from ~1a!–~1d!:

] tS r0

u2

2
1

j2

2N2D1“"F S r0

u2

2
1

j2

2N2Du1PuG50. ~25!

At the leading order in Froude number, the energy is giv
by the horizontal kinetic energy. The energy of the full 3
vortex may be calculated by vertical integration of the 2
results.

In each plane, we integrate the energy density in a d
of radiusL ~a cutoff length! around a Kirchhoff vortex with
major and minor axesG6n, respectively. We, thus, obtain th
energyE2-D of the 2-D vortex~cf. Ref. 26!:

E2-D5pv2G4S 1

4
1 log

L

G D5pk2S 1

4
1 log

L

G D . ~26!

This expression is then integrated inz using ~14!, and
gives the energy of the 3-D vortexE3-D :

E3-D5pk0
2F S log

L

G0
1

1

4DM42E
2`

`

dsg~s!4 logg~z!G ,
~27!

where

M45E
2`

`

dsg~s!4. ~28!

For vortices of the same volume,M4 , ‘‘flatness,’’ increases
for flatter vortices.

3. Angular momentum

The angular momentum is calculated by integrating
azimuthal velocity~uu in cylindrical coordinates! times ra-
dius. As for energy, we proceed by calculating the angu
momentum in each horizontal plane, following Ref. 26, a
then integrate inz. The 2-D calculation yields

M2-D5pvG2S L22
G2

2
2

n2

2 D . ~29!

The result for the 3-D vortex is

M3-D5pk0F2S G0
2

2
1

n0
2

2 DM41L2G . ~30!

These expressions will be used below for calculating
backreaction of the wave emission on the vortex.

F. Pressure fluctuations far from the vortex

In order to determine the wave field emitted by the v
tex, we need to calculate the farfield pressure fluctuation
is necessary first to invert the expression forx whenx@1 ~or
equivalentlyz@1!. The inversion of~9! yields

z5
x

G0
1O~x21!. ~31!
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This expression forz is then injected into the expression fo
pressure~17a!:

P0
~e!5

1

2
v2G0

4g2~z!S 2
1

r 2 1
n0

G0r 2 cos~2u2vt ! D
1O~r 23!, ~32!

wherex5reiu. The first term in this formula is monopola
and static. The second term is quadrupolar and oscillatin
time and will be matched with the wave field.

III. THE FARFIELD

A. Scaling in the outer „wave … region

The scaling that we have used to obtain Eqs.~5a!–~5e!
does not work anymore at large distances from the vor
There, the fields vary at a scale greater thanL and the veloc-
ity will be weaker. The order of the nonlinear terms, the
fore, need to be reevaluated.

The equations are rescaled usingF21L as a horizontal
length scale, andH as a vertical length scale. The spa
coordinates scaled withl will be denoted by capital letters
~X, Y, or R!. The velocity far from the region where th
potential vorticity is nonzero decays as 1/r ; at distances tha
scale asL/F, the horizontal velocity therefore scales asFU,
and the vertical velocity asW5F2UH/L. The time scale is
the same as in the inner region, that isL/U.

With this scaling the EB equations~1a!–~1d! yield

] tuH1“P1F2u"“uH50, ~33a!

]zP2j1F4~] tw1F2u"“w!50, ~33b!

] tj1w1F2u"“j50, ~33c!

]Xu1]Yv1]zw50. ~33d!

Because of the special form of the leading-order veloc
field ~axisymmetric and purely azimuthal!, the zeroth-order
advective terms are zero. Hence, linear gravity waves
both order 0 and order 1 solutions.

B. The matching procedure

First, we note that, due to the different scalings in t
inner and outer region~R5rF and u;FU in the outer re-
gion!, the terms withr 22 in P0

(e) @cf. ~32!# will match with
the first-order termP1

(w) in the wave region.
In the Appendix, we display the general form of th

wave fields in cylindrical coordinates. Retaining only sym
metric in z terms, this general form is

P1
~w!~R,u,z,t !5(

n
anE

0

`

duF̂ n
s~u!cos~uz!

3Hn
~2!~Run!ei ~nu2nt !, ~34!

whereHn
(2) is the Hankel function.

Requiring the farfield fluctuations of the pressure o
tained in~32! to be equal to the near-field fluctuations of th
wave field imposesn52 andn5v, thus reducing the genera
form of the wave field to
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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P1
~w!~R,u,z,t !5AeidE

0

`

duF̂ s~u!cos~uz!

3H2
~2!~Ruv!ei ~2u2vt !, ~35!

whereA is a real and positive amplitude, andd is a phase.
To obtain the near-field wave asymptotics, we use

following asymptotics of the Hankel function:32

Hn
~2!~x!;

i

p
G~n!S x

2D 2n

. ~36!

Matching of the fluctuating part ofP0
(e) and the real part

of P1
(w) gives for F̂ s(u), A andd:

F̂s~u!52pu2E
0

1`

ds@g~s!#2 cos~us!, ~37a!

A5
pv4G0

3n0

8
5

pk0
4n0

8G5 , d52
p

2
. ~37b!

The emitted waves are of orderF2 in the outer region
and are, thus, rather weak.

C. Description of the emitted wave field

In the first approximation, as vortex dimensions a
much smaller than the characteristic wavelength, the wa
can be considered as emitted from a point source. Waves
excited at a single frequency and we therefore expect, f
the dispersion relation and the expression of the group
locity, that they will propagate along a cone~cf. Ref. 14!. A
plot of the intensity of the perturbation in a vertical pla
~Fig. 2! shows that the situation is indeed close to this. Th

FIG. 2. Vertical cross section of the pressure perturbations correspondi
waves given by expression~37a!. The pattern is very similar to the ‘‘cross
observed around an oscillating cylinder in a stratified fluid.
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wave vectors being of order (1/l,1/H), the energy will
propagate at a small angle of orderFH/L5F2 to the hori-
zontal. Furthermore, as waves propagate in a layer of c
stant thickness along the cone, their amplitude decrease
1/Ar in the radial direction.

However, the source is not exactly a point source,
rather an annular region where the fluctuations due to
vortex motion occur at a horizontal length scalel. Thus,
qualitatively, the rays of propagation of the emitted wav
form a hyperboloid that deviates from the asymptotic co
but only in the vicinity of the origin. The difference is no
visible in Fig. 2, but becomes apparent in Fig. 3~a!, where
the phase lines on the surface of the cone have been plo
These lines can be interpreted as approximate rays, ind
ing the origin of the waves, which shows that their propag
tion is not exactly radial from the source.

The intensity of the perturbations in the horizontal pla
above or below the vortex is plotted in Fig. 3~b!, and has a
form of a fraction of a spiral~which is natural for waves
propagating at a constant speed away from a rotating sou
just like water from a rotating hose!. As the waves propagat
along a cone, the spiral wraps the cone.

D. Fluxes of energy and angular momentum
associated with the wave field

The fluxes of energy and angular momentum will
calculated for the wave field of the form

P1~R,u,z,t !5AE
0

1`

duF̂ s~u!cos~uz!

3H2
~2!~Ruv!ei ~2u2vt1d!. ~38!

The energy flux at the leading order in the exterior
gion is

fe5P1u1 . ~39!

The total flux of energy will be obtained by integratin
this expression over a cylindrical surface surrounding
vortex. As the amplitude of the wave field decays fast in
vertical direction, we do not need to consider the energy fl
through the top and the bottom parts of the cylinder. O
u1R is, thus, needed; it can be obtained using Eq.~33a! at the
first order in cylindrical coordinates:

] tu1R52]RP1 , ~40!

to
to
of

-
the
b-
ter

ve
FIG. 3. ~a! Phase lines plotted on the cone with angle
the horizontal equal to the angle at which the energy
the waves propagate (F2). The region of wave genera
tion appears as a ring at a certain distance from
center, i.e., from the vortex. Note that this plot is o
tained from the farfield expressions, so the very cen
part of the figure is not representative.~b! Pressure per-
turbation due to the waves in a horizontal plane abo
the vortex; vortex thickness is 0.2,v50.2, and the level
of the horizontal plane isz51.
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which yields

u1R5AE
0

`

duF̂ s~u!cos~uz!u

3@J28~uRv!sin~2u2vt1d!

2Y28~uRv!cos~2u2vt1d!#. ~41!

The total flux of energy across the cylindrical surface
radiusR is

FE5A2E
2`

1`

dzE
0

2p

RduE
0

`

duE
0

`

du8F̂ s~u!F̂ s~u8!u8

3cos~uz!cos~u8z!@sin2 J28Y22cos2 J2Y28

1cos sin~J2J282Y2Y28!#, ~42!

where the arguments (uRv), (u8Rv), and (2u2vt) of the
Bessel and trigonometric functions have been omitted
brevity. Carrying out integrations inz and u, and using the
known property of the Wronskian of the Bessel functions32

Jn8~a!Yn~a!2Jn~a!Yn8~a!5
2

pa
, ~43!

the total energy flux is obtained:

FE5
A2

v E
0

1`

du@F̂ s~u!#2. ~44!

The angular momentum flux will be calculated in a sim
lar way. The equation for the vertical component of the a
gular momentum, derived from the EB equations, is

]m3

]t
1“@m3u1P~ezÃR!#50, ~45!

where m35Ruu is the vertical component of the angul
momentum. The linear term offm5m3u1P(ezÃR) will
yield zero when integrated over an infinite vertical surfa
because of periodicity ofP1 in u. As only one term remains
scaling considerations are unnecessary and calculations
lar to the previous ones give

FM5
2A2

v2 E
0

`

du@F̂ s~u!#2. ~46!

Note that the energy flux and the angular moment
flux are simply related:FM5(2/v)FE .

IV. THE BACKREACTION OF THE RADIATION

The evolution of the vortex due to the loss of energy a
angular momentum by radiation is supposed to be adiab
i.e., attributed to a slow change of its parameters. From~27!
and ~30!, we get

dE3-D

dt
52pk0

2M4

1

G0

dG0

dt
, ~47a!

dM3-D

dt
52pk0M4S G0

dG0

dt
1n0

dn0

dt D . ~47b!
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Using ~37b!, ~44!, and~46!, and noting that the waves’ am
plitudes areO(F2), we have

FE5F4
p2k0

7G

64

n0
2

G0
8 , ~48a!

FM5F4
2p2k0

6G

64

n0
2

G0
6 , ~48b!

whereG5*2`
` @F̂ s(u)#2du. With the help of the energy and

angular momentum conservation laws the following coup
evolution equations are obtained:

d

dt2
~G0

2!5
d

dt2
~n0

2!5
pGk0

5

32M4

n0
2

G0
6 , ~49!

where t25F4t0 is adequately rescaled time. The conserv
tion of the area of the ellipse in each horizontal plane read
follows from ~49! by integration:

G0
22n0

25S5const, ~50!

and, hence, the total volume of the vortex is conserved.
noting y5n0

2 and integrating~49!, we obtain

E
n0i

2

n0
2

dy
~S1y!3

y
5

pGk0
5

32M4
t2 . ~51!

These results reproduce the ones of Ref. 26.~A corr-
ection, however, has to be made to Eq.~16! of Ref. 26,
which parallels Eq. ~51! here. Indeed, the dependen
on v of the coefficientA0 was neglected there; the full equa

tion ~16! reads as * ub0u2
ubu2 ( dy/y ) ( S1Ny ) N12

5 N2N13G2N13 / $ ( 2c ) 2N12 @ ( N11 )! # 2 ( 2p ) 2N12 %@(N
11)/2#N11t.!

Similarly, we obtain forG0 ,

E
G0i

2

G0
2

dx
x3

x2S
5

pGk0
5

32M4
t2 . ~52!

The integrands in the last two equations are rational fr
tions and can be easily integrated:

1

3 F S G0

G0i
D 6

21G1
S

2G0i
2 F S G0

G0i
D 4

21G1
S2

G0i
4 F S G0

G0i
D 2

21G
1

S3

G0i
6 logS G0

22S

G0i
2 2SD 5

pGk0
5

32M4G0i
6 t2 , ~53a!

1

3 F S n0

n0i
D 6

21G1
3S

2n0i
2 F S n0

n0i
D 4

21G1
3S2

n0i
4 F S n0

n0i
D 2

21G
1

2S3

n0i
6 logS n0

n0i
D5

pGk0
5

32M4n0i
6 t2 , ~53b!

where the indexi corresponds to initial values.
As an example, we consider a vortex that is initia

slightly nonaxisymmetric withG051 andn050.01. It can be
seen from~49! or from ~53b! ~in which the dominant term is
the one preceded by 2S3/n0i

6 ! that n0 is then expected to
grow exponentially for initial times~cf. Fig. 4!:

n0;n0ie
~pGk0

5/64M4G0i
6

!t2. ~54!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. ~a! Evolution of the semiaxesG6n at heightz
50 of a 3-D Kirchhoff vortex. Initial values are 1 and
0.98. Time units are scaled asT25T0 /F4. At initial
times, the evolution is exponential. For longer time
the time law takes the same form as the law obtain
for point vortices@cf. Eq. ~55!#, but we then reach val-
ues for the aspect ratio that are not realistic.~b! Evolu-
tion of the aspect ratio of the same vortex.
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As the semiaxes of the elliptic horizontal cross sect
are related ton via G6n, an elongation of the vortex at initia
times results. As the vortex elongates, the rate of rota
decreases@cf. ~24!#. @Note that, unlike Ref. 28, here we d
not have a frequency threshold for the wave emission~f in
SW!—this is a difference between rotating and nonrotat
fluid.#

The time scale of thus obtained growth is very slow,
it scales asF24L/U. If elongation continues for longe
times, we would have (G0 /G0i)@1 and (n0 /n0i)@1 and the
first terms in both equations~53! become dominant. An elon
gation law of the same form as that for the distance betw
two point vortices of equal intensity~cf. Ref. 25! then fol-
lows for late stages of evolution:

G05G0i~11t2 /t!1/6, ~55!

wheret5(32M4G0i
6 )/(3pGk0

5). In this form, however, it is
valid only for large aspect ratios of the ellipses~see Fig. 4!
and, as discussed below, the vortex is likely to become
stable before that.

V. SUMMARY AND DISCUSSION

In the present paper we addressed the question of I
emission from an isolated pancake vortex of the kind
served in laboratory experiments and numerical simulati
of strongly stratified flows. There are two stages of wa
production by perturbations bearing vorticity in stratifie
flows. The first stage corresponds to the adjustment of a
trary localized disturbances to the~balanced! state of hydro-
static and cyclostrophic equilibrium that is accompanied
emission of the ‘‘redundant’’ part in the form of outgoin
waves. This is, thus, a transient wave emission. The lin
treatment of this process is presented in Ref. 17 and ma
pursued further on perturbatively in Froude number, follo
ing the lines of Ref. 33, where the geostrophic adjustm
was studied. The second stage corresponds to a perma
Lighthill radiation by thebalancedbut nonstationary vortex
motions, and it was this latter process we were concentr
on in the present paper. We, thus, treated the problem
radiation one. Any radiation problem requires exact kno
edge of the wave source, and for this purpose we constru
an explicit example of a rotating ellipsoidal region of co
stant PV in cyclostrophic balance, obeying the EB equati
at the leading order in the Froude number. In doing this
essentially used the quasibidimensionalization of strati
fluids due to a strong stratification, which allowed us to u
the classical 2-D Kirchoff vortex as the base for our co
struction. The explicit knowledge of the vortex field allowe
us to calculate analytically the emitted wave field and
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derive the effects of the backreaction of the wave radiati
The backreaction’s calculation shows that the IGW emiss
leads to very slow but systematic changes in the vor
shape.

Some remarks are in order in what concerns the bac
action, however. First, the elongation scenario discusse
the previous section is valid under the hypothesis that th
are no other factors inducing slow evolution of the vortex
time scalesT2 or faster~say, at the time scaleT15F22T0!.
This latter may be necessary, for instance, if resonances
while calculating the higher-order corrections to the~vorti-
cal! near-field~without any reference to the far wave field!
that have to be killed by slow time dependence of low
order fields. Due to their excessive~and rapidly increasing
with the order of the perturbation theory! technical complex-
ity we did not undertake here the corresponding calculati
and, hence, cannot guarantee the validity of the abo
mentioned hypothesis. One remark here is that, the Kirch
vortex being an exact solution of the 2-D Euler equatio
such evolution could come uniquely from the 3-D effec
and, therefore, would mean that the widely believed scen
of bidimensionalization of strongly stratified flows is broke
already in the next-to-leading order in stratification~cf. the
discussion at the end of Sec. II F!. Albeit unplausible, we do
not see at present how such evolution could bea priori ex-
cluded. This question deserves a further investigation.

Second, even if the elongation due to the backreactio
the wave radiation is not accompanied by other slow m
tions, it is intuitively clear that it cannot last and should e
up with some sort of instability. Unfortunately, nothing
known on stability of the ellipsoidal regions of PV in th
stratified fluid. Again, the corresponding analytical calcu
tions are very complex. Stability calculations do exist f
similar ellipsoidal vortices in a much simpler context
quasigeostrophic dynamics,30 but modes of instability may,
of course, differ significantly in the two cases. The 2
Kirchhoff vortex is known34 to be unstable when its aspe
ratio exceeds 3. It is unlikely that 3-D effects may preve
this 2-D instability so we anticipate that at least for asp
ratios greater than 3 the pancake vortex will be destabiliz
If, because of imposed reflectional symmetry, as in Ref.
the first instability mode cannot be excited, the aspect ra
might grow further. In two dimensions, as argued in Ref. 2
the wave resonances excite a quadrupolar~mode 4! instabil-
ity of the elliptic vortex for aspect ratios beyond;4.6, cor-
responding to (n/G)25A221. Whether the same is true fo
3-D stratified vortices remains an open question. In any c
it is clear that once elongated enough the vortex is pron
instabilities and, hence, although slow, the backreaction
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the wave radiation will alter vortex dynamics in the 3-
stratified fluid, as it was the case in 2-D acoustics and s
low water. This indicates that a strict slow manifold of pure
vortex motions does not exist in stratified nonrotating flu
and sets a time limit (;F24) for a reliable description of
slow motions by filtering IGW.
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APPENDIX: INTERNAL GRAVITY WAVES IN
CYLINDRICAL COORDINATES

We recall the wave equation one can obtain from
equations of motion as they are scaled for the outer reg
~33a!–~33d!:

]zz] ttw1DHw50. ~A1!

We separate variables and look for solutionsw of the
form

w~R,z,u,t !5g~R!ei ~nu2nt !h~z!, ~A2!

whereh(z) is of the formeimz, andg verifies the following
equation:

d2g

dR2 1
1

R

dg

dR
1S m2n22

n2

R2Dg50. ~A3!

Using the change of variablesr5mnR, one gets the
canonical Bessel equation:

d2g

dr2 1
1

r

dg

dr
1S 12

n2

r2Dg50. ~A4!

Solutions corresponding to the radiation boundary c
dition at infinity are Hankel functions of the second kind. W
then reconstruct the complete solution:

w~R,u,z,t !5(
n

anE
0

`

du@F̂ n
s~u!cos~uz!

1F̂ n
a~u!sin~uz!#Hn

~2!~Run!ei ~nu2nt !.

~A5!

The same equation as~A1! can be obtained for the pres
sure. Its expression will therefore be of the same form
~A5!.

If the vertical profile of the vortex is symmetric inz,
only the functionsF̂ n

s(u) need to be considered: this is th
expression used for the matching.
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