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Internal gravity wave emission from a pancake vortex: An example
of wave—vortex interaction in strongly stratified flows
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At small Froude numbers the motion of a stably stratified fluid consists of a quasisteady vortical
component and a propagating wave component. The vortical component is organized into layers of
horizontal motions with well-pronounced vertical vorticity and often takes the form of so-called
“pancake” vortices. An analytical model of such a vortex that is a solution of the Euler—Boussinesq
equations at a vanishing Froude number is constructed as a superposition of horizontal
two-dimensional Kirchhoff elliptic vortices. This vortex is nonstationary and internal gravity waves
are, therefore, excited by its motion. The radiation properties are studied by matching the vortex
field with the far internal gravity wave field according to the procedure applied in acoustics to
determine vortex sound. The structure of the gravity wave field is completely quantified. By
calculating energy and angular momentum fluxes carried by outgoing waves and attributing them to
the adiabatic change of the vortex parameters, we calculate the backreaction of the internal gravity
waves radiation and show that, as in the case of acoustic radiation by the Kirchhoff vortex, this
adiabatic evolution leads to an elongation of the vortex, and its eventual destabilizatic®2D0
American Institute of Physics[DOI: 10.1063/1.1448297

I. INTRODUCTION waves (IGW), is thoroughly studiede.g., Ref. 14, espe-
cially in the linear context. Emission of IGW by the above-

review, see Ref. )3 strongly stratified flows are split, in the mentioned wakes is well document&dand the splitting of

leading order in the Froude number, which is defined as &G from the vortex component is well seen, for example,
ratio of buoyancy to advection time scales, into mutuallyWhile studying analytically the initial-value problem for

noninteracting vortex and wave components. The former $Mall disturbances discussed in Ref. 17: a small initial per-
concentrated in horizontal layers with a weII-pronouncedt“rbat'On in a stratified fluid splits into a outward propagating

vertical vorticity and, as stratification inhibits vertical mo- GW packet and a residual steady vorteortical motion
tion, follows the two-dimensional-D) incompressible Eu- here is steady only becgusg of _the Imeanzatpn of the equa-
ler dynamics 2 at the leading order. tions, in the next approximation its slow evolution appears—
The horizontal layering in strongly stratified flows has cf. Ref. 18. The vertical vorticity plays a crucial role in such
been confirmed in a number of analytic, numerical, and ex&n analysis as it allows one to determine the whole of the
perimental studies. Moreover, numerical simulations in Refvortical flow by inversion. The vertical vorticity is the
4 and later works have shown that coherent discus-shapdg@ding-order residue of Ertel's potential vorticit?V): g
“pancake” vortices tend to emerge from an initially random = V p®, Wherep is density andw is the total vorticity. One
field of decaying turbulence in a stratified fluid. Such vorti- ¢an reconstruct the whole slow vortical field in higher orders
ces are also recurrent in laboratory studies of wakes in &S Well using subsequent approximations for the PV, if only
stratified fluid: in the wake of a towed sphéror in decay-  the splitting persists and the fastly outgoing wave component
ing turbulence behind a towed grid.Layering structure and ~ can still be consistently filtered out. Thus, the problem of the
the ensuing vortices have also been observed during the laRersistence of splitting in the higher approximations is
stages of instability of tall columnar vortices in the stratified €quivalent to the problem of the slow manifakf., e.g., Ref.
fluid.>~** A rather detailed study of the internal structure of 19) in strongly stratified fluid dynamics, i.e., a subspace in
the pancake vortices was undertaken experimentally in Reféhe whole phase space of the system such that, once pro-
12 and 6 and numerically in Ref. 13. It was found that thesdected on it, the dynamics stays there and may be traced for
vortices obey the cyclostrophic balance conditions and exlong times without taking care of the fast wave motions. The
hibit a pinching of the isopycnals near the core. Pancaké@ossibility to filter out waves is practically very important
vortices are, thus, a universal feature of stratified flows.  (weather forecasting is, probably, the best exailed

The other component of the flow, the internal gravity much understanding of atmosphere and ocean dynamics has
come from the no-wave “balanced” models. It is also impor-

dAuthor to whom correspondence should be addressed. TeleptgB)et tantin any kind of numerical simulations m. S.tra.tlfled turby-
44 32 22 21; fax: (33 1 43 36 83 92 electronic mai: |€NCe as(at least some part pthe wave activity is usually
riwal.plougonven@polytechnique.org considered as a subgrid one. Therefore, a study of the

As was shown in the pioneering papetsfor a recent
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vortex—wave interaction mechanisms is crucial in this conposed in Ref. 29 and allows a calculation of eventual depar-

text as it allows us to check the validity of splitting and tures from the elliptic shape of the vortex in the course of its

slow-manifold ideas and to establish their limitations. slow evolution. It was shown that the presence of rotation
One of the essential mechanisms of wave—vortex interresylts in the appearance of logarithmic tet@$" log F) in

actions is well documented in acoustics: it is the emission of,e asymptotic expansion. Using symbolic computer compu-
sound waves by vorticegortex soundl As was shown in tations, the analysis was performed up to te@{&2 log F)

t_he pioneering paper by Lighthif nonst.anonary vorte>.< mo- .émder a simplifying reflectional symmetry assumption and
tions act as sources of sound waves in a compressible fluid. 2 . . . .
yvas stopped ad(F), as it was impossible to obtain closed

The theory of this phenomenon was developed for smal i . for hiah q i
Mach numbers when the vortex size is much smaller than thB"2Y'C EXpressions for '9 er-gr er .co.rrec.|ons.
The phenomenon of Lighthill radiation is conceptually

characteristic sound-wave length. Pressure fluctuations of the ) X ) "
incompressibldluid produced by the unsteady vortex in its important in the context of geophysical fluid dynamics be-
vicinity may be related to the pressure fluctuations in thecause it invalidates the idea of a strict slow manifold men-
compressibldar wave field, by comparing corresponding as-tioned above: even a purely vortical initial conditidie.,

ymptotics. Mathematically, the rigorous basis for this de-one exactly projected onto the would-be slow manifetdl,

scription was established in the work of Crétwvhere the if unsteady, radiate gravity waves and be altered at long
theory of matched asymptotic expansions in the inwer-  times by the backreaction of this radiation. Past a certain
tex) and outer(wave) regions were used. It was shown that time, a wave-filtered description of the flow becomes, thus,
the problem is well posed for small Mach numbers. The idegyroneous. In the RSW context, the limitations imposed on

of vortex sound has been subsequently used to determinge concepts of balance, slow manifold, and potential vortic-
acoustic radiation from numerous vortex flowesg., Refs. ity inversion by the Lighthill radiation were recently dis-

22, 23. cussed in detail in Ref. 19
A step further in the vortex sound theory was made when o . .
In the present paper, by applying the vortex sound phi-

it was realized that the backreaction of the radiation can be ) ' o :
calculated by attributing energy and angular momentun{osophy to the vortex motions in a stably stratified fluid, we

losses due to the sound-wave emission to a slow adiabatffake & step forward in studying wave emission by vortices
evolution of the vortex parameters. This has been done foRnd their backreaction by departing both from the two-
the first time in the axisymmetric case of two coaxial “leap- dimensionality of the previous studies and the isotropy of
frogging” vortex rings?* in planar situations, various con- sound wavegor surface inertia-gravity waves in the RSW
figurations of point vortices were investigated along thesecontexj. The wave emission from a localized nonstationary
lines in Ref. 25, where radiation-induced vortex collapse wasegion of uniform potential vorticity is calculated within the
discovered. Finally, in Ref. 26, a distributed vortex framework of the Euler equations in the Boussinesq approxi-
structure—the Kirchhoff vortexan elliptic patch of uniform  mation (Euler—Boussinesq in what followsor a stratified
vorticity surrounded by irrotational fluid cf., e.g., Ref.)27 quid with a constant background stratificatidiconstant

was studied. Using matched asymptotic expansions, as iﬁrunt—\/’éiséié frequency. The Boussinesq approximation
Ref. 21, the sound waves emitted by the vortex were calcu-

s . “means that sound waves are filtered out and only internal
lated. Assuming that the parameters of the vortex varied . . .
. ravity waves(IGW) may propagate in the medium. For
slowly in response to the loss of energy and angular momerg, lici il id ingl fluid bel
tum due to the waves in the adiabatic approximation, thes'mp'c'ty we will consider a nonrota.tmg ul ) _eow.
Kirchhoff vortex was found to elongate on a time scale In order to carry out the calculations explicitly, we con-
M ~4T,, whereM =U/c is the Mach numbefU is the char- struct a simple unsteady pancake vortex, which we call a 3-D
acteristic vortex velocity and is the velocity of soundand  Kirchhoff vortex: a region of uniform potential vorticity with
To=UI/L is the advective time scalg is the characteristic elliptic horizontal cross sections. All the horizontal ellipses
vortex scalg the same time scale as for a pair of point vor-bounding the vortex have the same aspect ratio and rotate at
tices of equal sign found in Ref. 25. the same angular frequency. Vortices of this kind have been
The shallow water equations being equivalent to a 2-Dstudied (Refs. 30 and 3Lin the context of the quasigeo-
compressible fluid with a specific equation of state, the samggrophic equations. As to our knowledge, this configuration
ideas were later used for an elliptic Kirchhoff vortex in the \yas not considered in the case of the Euler—Boussinesq

. . 8 . .
rotating shallow wate(RSW) equations;’ with special at- equations. We will suppose in the following, as is often the

tention paid to the gﬁect Of. rotation. In .the SW or RSW case in the observed strongly stratified flows, that the height
context, the waves in question are gravity waves, and the

Froude numbeF — U/+/gH replaces the Mach number. The Ef>>tf|1_(|a vortex is much smaller than its horizontal length scale:
waves were found to be radiated@¢F?). They are respon- '

sible for a flux of energy and angular momentum away from The paper i‘f‘ organized as fQIIOWS: in Sec. II, th? 3'.D
the vortex atO(F%), and induce a slow evolution of the Kirchhoff vortex is constructed using conformal dynamics in

vortex on a time scald@,=F *T,, whereT, is the vortex €ach horizontal plan€:?® The scaling for the farfield, the
advection time scale. The method used was a direct multinatching of the far asymptotics of the latter is done in Sec.
time scale perturbation expansion within the framework oflll. Finally, the backreaction on the vortex is calculated in
the conformal dynamics for 2-D vortex patches that was proSec. IV. Section V contains a summary and a discussion.
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Il. THREE-DIMENSIONAL KIRCHHOFF VORTEX IN A Instead of Egs(1a)—(1d), the divergence ofla-+(1b) and
STRONGLY STRATIFIED FLUID the horizontal curl of1a) will be used below.

The scaling is the same as in Ref.(8d references
therein, with some minor differences. The horizontal and
vertical coordinates, z are scaled ak andH, respectively;

We first recall the Euler—Boussine$gB) equations for
a stratified fluid in the form we use below:

DUy +po *VuP=0, (la  Un has a scaldJ, andt scales asU/L. By virtue of the
continuity equationw scales asUH/L. In the buoyancy
Dw+ pg t9,P—£=0, (lb)  equation, the ratio ofD.& over N°w scales asF?

=(U/NH)?, the square of the vertical Froude number. Fi-
Viup+9,w=0, (10 nally, in order to keep only one parameter, we assumeRhat
D.é+N2w=0, (1d) ar_1d the aspect r_atild/L are comparable. The nondimension-
alized EB equations are
where uy is the horizontal andv is the vertical velocity,
respectively(u will denote the full 3-D velocity below &is ~ 92(9:P— &) +F?[AP+V-(u-Vu)]=0, (5a)
buoyancy(é= —pg/pgy, Wherep is the density perturbation .
and p, is the basic state densjtyN is the Brunt—Visada 0:P = &+ F¥(aw+u-Vw) =0, (50)
frequency and=d/dt+udl Ix+vdldy+wdldz is the ad- |, | F2(0,£+U-V§)=0, (50)
vective derivative. Note that these equations are not hydro-
static. Yet the scaling we use corresponds to hydrostaticity a§,A ¢+ 7, Ayih) + Vi (VudA ) + Wa,A
the leading order.
+VwVa, i+ J(w,d,4)=0, (50
A. Preliminary scaling considerations A+ aW=0, (50
The solution of the wave emission problem by an un-
steady vortex by means of the method of matched asymptoti#here J denotes the horizontal Jacobiai(a,b) = dyadyb
expansions is well posed,provided there is a scale separa- — dxbdya.
tion between the length scale of the waves and that of the Using the above scaling we get for PV:
vortex. Here we find constraints imposed by this requirement _ _ 5
on a vortex of characteristic horizopntal sci]eand cﬂarac- 4=V O=Anyt FLEAND— o &y

teristic heightH. + T, &) +FATEW). (6)
If U is the characteristic horizontal velocity in the vortex _ ) ) )
region the advective time scaleTs=L/U. We suppose that All variables are expanded in an asymptotic serieSn
this time scale is much greater than the buoyancy period: W= o+ F24 + F4hp+ O(FS). @

Fy=U/NL<1. As the ultimate mechanism of IGW excita-
tion are the pressure fluctuations due to unsteadiness of the At zeroth order inF?, Eq. (5¢) yields wo=0. Through
vortex flow, they are expected to have the same vertical5e), ¢, is also zero, and we get

length scale as these latter, i.El,, and the same time scale.

The dispersion relation for low-frequency IGWQ?2 Wo=0, (8a)
=N2k2/k?, where Q) is wave frequency andy, k, are

horizontal and vertical wave numbers, respectively, yields $0=0, (8D)
U/L~NH/\. This gives an expression of the characteristic aA 4] A -0 8
wavelength\ in terms ofL: Bndot I(Wo, i) =0, (89
\ NH ) 1 ] . U o ApPo=—V-(up-Vup), (8d)
=—>L=—=L, wi =—_
) F NH £0=10,Py, (8¢)

Hence, for wave-vortex scale separation we need to have whereuy=+&,XV 1.

The motion at the leading order is, therefore, purely

<l (3) horizontal and vorticalbidimensionalization Equation(8c)
is equivalent to the 2-D Euler equations for incompressible
Here F will be the small parameter used in the asymptoticfluid, wherez enters as a parameter. Hence, within this accu-

F

~ NH

expansions below. racy it is possible to build a three-dimensional vortex as a
stack of 2-D Euler ones. The vertical profile should be cho-
B. Scaling in the inner (vortex ) region sen carefully in order not to invalidate the coherence of mo-

tions in different horizontal planes and to avoid unphysical
&ertical gradients. Oncgy, is obtained from the PV distribu-
tion, the rest of the zeroth-order fields and higher-order cor-
rections can be determined frog,: for example,(8d) de-
termines pressure an@e) determines buoyancyyv, will
u=+eXVyy+Vyod+we,. (4)  then be determined fronk, and &, through(5c).

In the vicinity of the vortex the motion is essentially
horizontal. To make the separation between the vortex an
wave motions clear, we can rewrite Eg$a)—(1d) using the
Helmholtz decomposition for the horizontal velocity:
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C. Construction of the 3-D Kirchhoff vortex Voeiwt_

Yxxzt) =5 (X— T, X/

(12)

A 3-D vortex in a stratified fluid is built from the same
principle as in shallow waté a bounded region of fluid
having homogeneous P{équal to unity is taken; it is sur-
rounded by fluid with zero PV where the flow follows from
the PV inversion. The 3-D region of homogeneous PV is
defined as follows: the intersection of each horizontal plan
with the region of nonzero PV is an ellipse; all such ellipses
are centered at the same vertical axis and have the same v§(¢.¢,2,t)= (F2 v5)¥(2) —lrowY(Z)
aspect ratio and orientation. Hence, the vortex region is en- ¢ (13)
tirely defined by(1) the aspect ratio(2) the orientation, and
(3) the vertical profiley(z) of the length of the major axis in The vertical profiley(z) has to be a sufficiently smooth
each horizontal plane. function with compact supportof order one, due to the

The flow in every horizontal planéfor everyz) will be  choice of scaling In what follows, we choose this profile to
calculated using the conformal dynamics approohich ~ be symmetric inz and normalized:
uses conformal mappings to parametrize the patches of uni- f

Note that there is no vertical shear inside the vortex.

In the exterior region, all fields are considered as func-
tions of ¢, ¢, z andt, where ¢ and { correspond to the
éocatlon defined by( x+iy=g({). The velocity is

©

dsy(s)?=1. (14

— oo

form vorticity on the plane. In each horizontal plane, an in-
terior and an exterior region will be considered; the flow in
the latter is described via a mapping of the exterior of thegq, instance, one can take

unit disk in the auxiliary{ plane onto the exterior of the

ellipse in the physical plane, arplane, whereg=x+iy. As Y (2)=K(*-1)?, for —1<z<1,
the ellipses rotate and as their size varies withese map-

pings depend parametrically @and are time periodic. n2)=0, for [7>1,

The expression fog at order 0 will account for the to- whereK is a normalization constant.
tality of PV, being equal to unity inside the vortex region and
zero outside. All higher-order correctionsdawill thus van-  D. Pressure, buoyancy, and vertical velocity fields
ish, which allows us to determine perturbatively the hydro-
dynamical fields in an unambiguous way.

At order 0, as can be seen frof@), PV coincides with
the vertical vorticity, Ay ¢, entirely determined by the hori- VPy=—3d;Ug— Uy-VUg. (16
zontal velocity. Hence the same equations as in the SW
casé® result, withz as a parameter, and we simply state the

(15

The pressure field can be obtained directly by integrating
the equation of horizontal motiofia):

The following expressions follow:

result. 1 _ _
The mapping of the exterior of the unit disk in the P(')_4 (XX— 2T, (voe "X+ Voe'wt?))
plane onto the exterior of the ellipse in the physiggblane
is given by - 0?’T'2y4(2), (1739
( ) th o wZF(Z) 1 1 Voeiwt Voefiwt )
g =I'(29)¢+ 7 9 Po'=— ZJFZ_FO TJFT Y (2).
(17b

where g depends orz andt parametrically, and’(z) and

v(Z) are supposed to be real and positive forzasind such From (8d), the buoyancy field can be obtained:

that v(z2)<I'(z). The major and minor semiaxes of each V= —2T2w2y(2)y'(2), (189
ellipse arel'(z) = v(z), respectively. As the aspect ratio of .
all the ellipses in the stack is the sanieand » have the L —ppelt
. . (e 2 2 O 0 ’
same vertical profile: =—Too™| 72— gt tc.C|¥(2)y (2).
0d"—voe
(18b)
I'=Tgy(2), v=vyy(2), (10 o _ _
The vortex is in the cyclostrophic balance by construction.

wherel’y and v, are real and positive. Hence, its core corresponds to a low-pressure anomaly and,

The rotation frequencw is determined by the geometri- as follows from the hydrostatic balance, buoyancy must have
cal parameters of the ellips¢éand by the value of PV, here a negative anomaly in the lower part of the vortex and a

unity): positive anomaly in the upper part. This is exactly the case in
(18a), which is illustrated in Fig. 1. Inside the vortex the
1 v(2)? isopycnals are horizontal and pinch, making the density gra-
T2 T T (22 1D dient steeper, like in the observed vortiéé$ One should be

cautious, however, while comparing our inviscid construc-
In the interior regiony=x+iy is the complex space tion with viscous simulations. For instance, vertical vorticity
coordinate, and horizontal velocity is at the first order has a discontinuous distribution in our ana-
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0.1 needed to obtain the equation f¢i, the form of the forcing
for Ay ¢, in the 3-D case differs significantly from the SW
case. In particular, in the nonrotating SW case only expres-

0. 05— v~

0 sions of the form?"{™ appear on the right-hand side of equa-
-0.08\——— ——— tions for A¢, (our ¢4). In the stratified 3-D case, on the
—0.1 contrary, we can see froif20b) that rational fractions with
~7 0.5 0 0.5 1 poles other than zero appear making integration much more

' _ _ _ involved. The reasoning of Ref. 28, therefore, cannot be di-
E:Sistp;f:np;g”ﬂz ;‘g'rfzacf’r"?g gg;’;a“t‘h‘:ié’:fele of the minor axis. Note thatectly transposed and applied in our situation. While the cor-
' rections in question were taken into account in Ref. 28 by
adding a termus{ 3 to the mapping(9) and some small
2 . . . . . .
lytical model; in laboratory experiments, vortices commonlyl O(F°)] corrections td”o andw, this is not sufficient here:
exhibit vorticity distributions of the Gaussian type. an infinite series should be added(®. Hence, the behavior
Vertical velocity and horizontal velocity potential are ab- ©f the 3-D vortexin each horizontal plane will be the same as

sent in the leading order; hence, the equations of motion df'€ 2-D shallow water Kirchhoff vortex only at the leading
O(F?) are needed to determine them: order. Unfortunately, the mathematics in the following orders

become too complicated to determine an explicit form of
W1 = —(d&o+ Up* Vo), (198 corrections.
Apdr=—3Wy. (19b

The vertical velocity following from(199 has a rather

complex form because of the time dependence of the map: In_ th_ls section, quantities that we will need below for the
ping (9): description of the long-term evolution of the vortex are cal-

_ culated.
wi’=0, (209

E. Circulation, energy, and angular momentum

1. Circulation

w&e)=i7<z>y'<z>r8w3{
Within the framework of equationg1a—(1d) the

_ (Fogz—l_ Vo€ @t)2 Kelvin's circulation theorem applied to a contodrstates:
fwt) 7 7—1_ 72\ _ 572
x| et ¢mee 0% voe'! dc 3§ § (229
. L= — . qr 66,
_(Voeth§2_voelwt§2)(roé«§l_VOelwt))_ dt
(LT o~ voe ) e
(20b) :f fS ds-(§,6c— &x8y), (22b)
L

The vertical velocity is zero inside the vortex and in the two
vertical planes containing the major and minor axes of th
ellipses outside. One can check from these expressions th
w;, is continuous across the vortex edgg=1). The diver-

gent part of order-one horizontal velocity field can be ob- . I . .
tained from (19b). However, we do not present the corre- see from(22b) that the first qonvanlsr;|ng contribution will
come fromé&,, and hence will beD(F<). Now, aswy=0

sponding cumbersome expressions. Nevertheless, note th .
due to the smoothing effect of the inversed Laplacian, the Verywhere andv; =0 on the vortex edgéct. (193], the

velocity field V ¢4 obtained from injecting20) into (19b) is ;loert(;(i?l (il(l)szleaceomegtz .?Iztzh; cqntggr,@wlmch : re neiﬁssary
continuous. The other first-order velocity corrections comec.rrC Ia%on canzo'?zarr :)n t'm’e\éwshorter(th“s?z. FepecTe €
from ¢, . The equation fok), is obtained using the fact that reutat vary ! i 0

the first-order term in(6) is zero: dc
_ _ — =0O(F"). (23)
A== €0 Anthot Eoxthorxt Soytozy— I ¢02,§o)-(21 dt

where C=¢ .dl-u is the circulation andS, is a surface
?unded by the contout.
We choseL to be a horizontal ellipse on the vortex edge.
As &, is a function only ofz inside the vorteXcf. (18], we

The corresponding velocity is also continuous due to inVer_.CaIcula_lting.the circulation, the following adiabatic invariant
sion of the Laplacian. Hence, the complete velocity correc’® obtained:
tions at order 1 are continuous and, in principle, calculable. k(2)=[T42)— v&(2)]= 20T 1(2)12=2ko[ ¥(2) ]2,

The behavior of the 3-D Kirchhoff vortex appears here (24)
to be different in several ways from the behavior of its SW
analog obtained in Ref. 28: first, the equation far (4, in ~ Where ko= wI'3. As (24) does not change on times shorter
Ref. 28 will not be the same because the expressions for P\¥han T for eachz and given the integral constraifit4) on
are differenfcompare Eq(21) with Eq. (36) (settingf=0) v(2), both kg andy(z) will be considered invariant on times

in Ref. 2g. Second, due to the vertical differentiations shorter thant;.
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2. Energy This expression fot is then injected into the expression for

In order to calculate the backreaction of the wave radiapressure(l?a):

tion, we need expressions for the leading-order energy and © 9id o 1 Vo

angular momentum. The equation of energy conservation Po =5 @ T'o¥(2) —r—2+ﬁcoa{20— t)

follows from (1a)—(1d):

+0(r™3), (32

2 2
u .
6’t(Po—2 + —) +V- =0. (29  wherey=re'’. The first term in this formula is monopolar

2N? . _ S
and static. The second term is quadrupolar and oscillating in

At the leading order in Froude number, the energy is givenime and will be matched with the wave field.
by the horizontal kinetic energy. The energy of the full 3-D

vortex may be calculated by vertical integration of the 2-D
results.

In each plane, we integrate the energy density in a disI|<”' THE FARFIELD
of radiusA (a cutoff length around a Kirchhoff vortex with ~ A. Scaling in the outer (wave) region
major and minor axeE* v, respectively. We, thus, obtain the
energyE,_p of the 2-D vortex(cf. Ref. 26:

u+Pu

u2 2
(POT 2N?

The scaling that we have used to obtain E§&)—(5€)
does not work anymore at large distances from the vortex.

ral 1 A 5 There, the fields vary at a scale greater thaand the veloc-
Eop= 7ol 7 Flogy | =7k®| 7 +log ). (26) ity will be weaker. The order of the nonlinear terms, there-
fore, need to be reevaluated.
~ This expression is then integrated Zrusing (14), and The equations are rescaled usiRg’L as a horizontal
gives the energy of the 3-D vortd; p: length scale, andi as a vertical length scale. The space
A1 % coordinates scaled with will be denoted by capital letters
Es.p= 7§ ('09F—+Z Mrf dsy(s)*log¥(2) |, (X, Y, or R). The velocity far from the region where the
0 o 27) potential vorticity is nonzero decays as 14t distances that
scale ad /F, the horizontal velocity therefore scalesrd,
where and the vertical velocity ag/=F?UH/L. The time scale is
w the same as in the inner region, thatidJ.
M4=J dsy(s)*. (28) With this scaling the EB equatiorida—(1d) yield
2 —
For vortices of the same volumé/,, “flatness,” increases Jily T VP+FU-Vuy =0, (339
for flatter vortices. 3,P— &+ F4(a,w+F2u-Vw)=0, (33b)
E+W+F2u-VE=0, (330
3. Angular momentum AxU+ dyv + d,w=0. (330

~ The angular momentum is calculated by integrating thegecause of the special form of the leading-order velocity
azimuthal velocity(u, in cylindrical coordinatestimes ra-  field (axisymmetric and purely azimuthalthe zeroth-order

dius. As for energy, we proceed by calculating the angulagdvective terms are zero. Hence, linear gravity waves are
momentum in each horizontal plane, following Ref. 26, andphoth order 0 and order 1 solutions.

then integrate ire. The 2-D calculation yields

rz 2 B. The matching procedure
_ o 21 V.
Ma.p=mol (A 2 2 ) (29 First, we note that, due to the different scalings in the
. inner and outer regiofR=rF andu~FU in the outer re-
The result for the 3-D vortex is gion), the terms withr =2 in P{® [cf. (32)] will match with
rZ 2 , the first-order ternP{") in the wave region.
Ma.p=7ko| —| 5 + 5 | Ma+ A7) (30) In the Appendix, we display the general form of the

) , ) wave fields in cylindrical coordinates. Retaining only sym-
These expressions will be used below for calculating they atric in z terms. this general form is

backreaction of the wave emission on the vortex.

(w) — C s
F. Pressure fluctuations far from the vortex P17(R.6,2,1) En: a”J’o durs(u)coguz)

In order to determine the wave field emitted by thg vor- > ng)(Ruy)ei(na— ", (34)
tex, we need to calculate the farfield pressure fluctuations. It , . .
is necessary first to invert the expressionfovheny>1 (or ~ WhereH? is the Hankel function.

equivalently/>1). The inversion of(9) yields Requiring the farfield fluctuations of the pressure ob-
tained in(32) to be equal to the near-field fluctuations of the
(= 1_,_ O(x Y. (31) wave field imposes=2 andv=w, thus reducing the general
Lo form of the wave field to
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wave vectors being of order (\LAMH), the energy will
propagate at a small angle of ordeH/L=F? to the hori-
zontal. Furthermore, as waves propagate in a layer of con-
stant thickness along the cone, their amplitude decreases as
1/Jr in the radial direction.

However, the source is not exactly a point source, but
rather an annular region where the fluctuations due to the
vortex motion occur at a horizontal length scale Thus,
qualitatively, the rays of propagation of the emitted waves
form a hyperboloid that deviates from the asymptotic cone,
FIG. 2. Vertical cross section of the pressure perturbations corresponding tout only in the vicinity of the origin. The difference is not
waves given by expressi_c(ﬁ?_a. Thc_e pattern is ver_y_simila_r to the “cross”  vjisible in Fig. 2, but becomes apparent in Figa)3 where
observed around an oscillating cylinder in a stratified fluid. the phase lines on the surface of the cone have been plotted.

These lines can be interpreted as approximate rays, indicat-
. ing the origin of the waves, which shows that their propaga-
P&W)(R,a,z,t)=Ae‘5f duffs(u)cosuz) tion is not exactly radial from the source.
0 The intensity of the perturbations in the horizontal plane
% H(zz)(Ruw)e“z”*“’t), (35 ?bove or belovx_/ the vortex_is pIoFted.in Fig(b3, and has a
orm of a fraction of a spiralwhich is natural for waves
whereA is a real and positive amplitude, adds a phase.  propagating at a constant speed away from a rotating source,
To obtain the near-field wave asymptotics, we use thgust like water from a rotating hogeAs the waves propagate

=7:5 =5 =2.5 0 2.5 5 7.5

following asymptotics of the Hankel functio: along a cone, the spiral wraps the cone.
i -n
HEZ)(X)N I—F(n)(z) ) (36) D. Fluxes of energy and angular momentum
™ 2 associated with the wave field
Matching of the fluctuating part & and the real part The fluxes of energy and angular momentum will be
of P{") gives for 75(u), A and & calculated for the wave field of the form
- +oo o
P(U)ZZWUZL dy y(s)]? cogus), (373 Pl(R,os',z,t)zAfJr duZFS(u)coguz)
0
T Tivy 7KV T X HP(Ruw)el(20-ot+9) (39)
A= 8 =815 5:_5' (37b 2 '

. . ) The energy flux at the leading order in the exterior re-
The emitted waves are of ord&? in the outer region gion is
and are, thus, rather weak.

fe: Plul . (39)
C. Description of the emitted wave field _ ) ) )
The total flux of energy will be obtained by integrating

In the first approximation, as vortex dimensions areihis expression over a cylindrical surface surrounding the
much smaller than the characteristic wavelength, the wavegyrtex. As the amplitude of the wave field decays fast in the
can be considered as emitted from a point source. Waves a{gical direction, we do not need to consider the energy flux
excited at a single frequency and we therefore expect, fro”&hrough the top and the bottom parts of the cylinder. Only

the_ dispersion rel_ation and the expression of the group V€, is, thus, needed: it can be obtained using B8a at the
locity, that they will propagate along a cotd. Ref. 14. A first order in cylindrical coordinates:
plot of the intensity of the perturbation in a vertical plane

(Fig. 2) shows that the situation is indeed close to this. Their  d,u;g=—drP1, (40

FIG. 3. (a) Phase lines plotted on the cone with angle to
the horizontal equal to the angle at which the energy of
the waves propagaté=¢). The region of wave genera-
tion appears as a ring at a certain distance from the
center, i.e., from the vortex. Note that this plot is ob-
tained from the farfield expressions, so the very center
part of the figure is not representativb) Pressure per-
turbation due to the waves in a horizontal plane above
the vortex; vortex thickness is 0.2=0.2, and the level

of the horizontal plane ig=1.

@ 75 =5 =235 0 25 35 75 (0
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which yields Using (37b), (44), and(46), and noting that the waves’ am-
plitudes are®(F?), we have

u1R=Af duf—'s(u)cos(uz)u
0 Fe=F4——— (483
X[J5(URw)SIN(20— wt+ §)

—Y(URw)cog20— wt+§)]. (41 Fu=F*———— = (48b)

The total flux of energy across the cylindrical surface of -
radiusR is whereG= [“_[ F5(u)]?du. With the help of the energy and

, angular momentum conservation laws the following coupled

+ o0 T 0 s} ~ ~ . . . .

FE:AZI dzf Rdaf duj du’ FS(u) FS(u')u’ evolution equations are obtained:
—®© 0 0 0

d d , 7GKy v
X coguz)cogu’z)[sir? J5Y,—cog J,Y} dt, (ro)= dt, a,, 0)_32M4 ry (49)
+cossitJ,J,—Y,Y5)], (42)  wheret,=F*%, is adequately rescaled time. The conserva-

tion of the area of the ellipse in each horizontal plane readily

where the argumentsiRw), (U’'Rw), and (20— wt) of the follows from (49) by integration:

Bessel and trigonometric functions have been omitted for
brevity. Carrying out integrations im and 6, and using the I'3— v3=S=const, (50)

known property of the Wronskian of the Bessel functidhs, .
property and, hence, the total volume of the vortex is conserved. De-

, , 2 notingy= »3 and integrating49), we obtain
Jn(@)Yn(a) - In(@Yi@)= ., (43) ’ .
V2 (S+y)3 7Gky
the total energy flux is obtained: LO dy y  32M, 2 (52)
A? (e
Fom— dul FS(u)12. 44 These results reproduce the ones of Ref. £&. corr-
£ Jo [Fw] “4 ection, however, has to be made to Ed6) of Ref. 26,

which parallels Eg.(51) here. Indeed, the dependence

The angular momentum flux will be calculated in a simi- on w of the coefficientAy was neglected there; the full equa-

lar way. The equation for the vertical component of the a

gular momentum, derived from the EB equations, is "o (16) reads as f}ﬁ‘dz(dy/y) (S+Ny)N+2
— N2N+3r2N+3/{(2C) 2N+2[ ( N+1)| ]2(277_) 2N+2}[(N
Jdmg N+1
— T VImau+P(e,XR)]=0, (45  +1)2]7t)

Similarly, we obtain forT'g,

where m;=Ru, is the vertical component of the angular
momentum. The linear term of,=mzu+ P(e,XR) will j
yield zero when integrated over an infinite vertical surface
because of periodicity d?; in 6. As only one term remains, The integrands in the last two equations are rational frac-
scaling considerations are unnecessary and calculations simjons and can be easily integrated:

lar to the previous ones give

2 3 5
T8 g X =’7TGKO

2 5 Ts T 3o,

0Oi

(52

2 el i) (“’)4 1 (el -
2A2 (= R —| =] — — || = — — || =] —
M:FJ du[ FS(u)]2. 46 3L\ T 2I'g [\ o o[\ o
0
s® F2 7TGK0
Note that the energy flux and the angular momentum F6 log (RS = 3o e ts, (539
flux are simply relatedF, = (2/w)Fg. 4
1[[ vo\® 3S [[wo)|* 387 v\ 2
2l gl
3 Voj 2V0i Voj VOi Voj
IV. THE BACKREACTION OF THE RADIATION 5
283| VO) 7Gxy . (530
. 0 ,
The evolution of the vortex due to the loss of energy and Vg, 9 Voi 32/\/14,,6 2

angular momentum by radiation is supposed to be adiabatic,

i.e., attributed to a slow change of its parameters. F¢@ri ~ Where the index corresponds to initial values.

and (30), we get As an example, we consider a vortex that is initially
slightly nonaxisymmetric with"y=1 andry=0.01. It can be

dEs. D__ 2 1dl (479  Se€en from(49) or from (53b) (in which the dominant term is
dt 0T, dt the one preceded byS3/v) that vy is then expected to
M. 0 dFO dug grow exponentially for initial timescf. Fig. 4):
gt = m<oMa| Tog +vog (47b Vo~ ;e TORYOAMAT Gtz (54)
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Semiaxes Aspect ratio

3 FIG. 4. (a) Evolution of the semiaxeE+ v at heightz
2.5 1o =0 of a 3-D Kirchhoff vortex. Initial values are 1 and
5 8 0.98. Time units are scaled a=T,/F*. At initial
L s 6 times, the evolution is exponential. For longer times,

the time law takes the same form as the law obtained
for point vortices[cf. Eq. (55)], but we then reach val-
0.5 2 ues for the aspect ratio that are not realisti.Evolu-

tion of the aspect ratio of the same vortex.

(a) 5 10 15 20 75 T (b) 5 10 15 20 25

As the semiaxes of the elliptic horizontal cross sectionderive the effects of the backreaction of the wave radiation.
are related ta via I'*= v, an elongation of the vortex at initial The backreaction’s calculation shows that the IGW emission
times results. As the vortex elongates, the rate of rotatiomeads to very slow but systematic changes in the vortex
decreasegcf. (24)]. [Note that, unlike Ref. 28, here we do shape.

not have a frequency threshold for the wave emisgfan Some remarks are in order in what concerns the backre-
SW)—this is a difference between rotating and nonrotatingaction, however. First, the elongation scenario discussed in
fluid.] the previous section is valid under the hypothesis that there

The time scale of thus obtained growth is very slow, forare no other factors inducing slow evolution of the vortex at
it scales asF~“L/U. If elongation continues for longer time scalesT, or faster(say, at the time scal€,=F ~2T).
times, we would havel{y/I';;))>1 and (vo/vo;)>1 and the  This latter may be necessary, for instance, if resonances arise
first terms in both equatior{$3) become dominant. An elon- while calculating the higher-order corrections to tfverti-
gation law of the same form as that for the distance betweega|) near-field (without any reference to the far wave figld
two point vortices of equal intensiticf. Ref. 23 then fol-  that have to be killed by slow time dependence of lower-
lows for late stages of evolution: order fields. Due to their excessivand rapidly increasing

To=Tg(1+1t,/7)", (55  Wwith the order of the perturbation thegrechnical complex-

6 5 ) _ ity we did not undertake here the corresponding calculations
wherer=(32M,l'g)/(3mGkq). In this form, however, itis g hence, cannot guarantee the validity of the above-
valid only for large aspect ratios of the ellips&®e Fig. 4 mentioned hypothesis. One remark here is that, the Kirchoff
and, as discussed below, the vortex is likely to become ungq ey peing an exact solution of the 2-D Euler equations,
stable before that. such evolution could come uniquely from the 3-D effects
and, therefore, would mean that the widely believed scenario
V. SUMMARY AND DISCUSSION of bidimensionalization of strongly stratified flows is broken

In the present paper we addressed the question of IG\glready in the next-to-leading order in stratificatiqmfi. the
emission from an isolated pancake vortex of the kind obdiscussion at the end of Sec. )l Albeit unplausible, we do
served in laboratory experiments and numerical simulation§0t see at present how such evolution couldaberiori ex-
of strongly stratified flows. There are two stages of wavecluded. This question deserves a further investigation.
production by perturbations bearing vorticity in stratified ~ Second, even if the elongation due to the backreaction of
flows. The first stage corresponds to the adjustment of arbthe wave radiation is not accompanied by other slow mo-
trary localized disturbances to tiflealanced state of hydro- tions, it is intuitively clear that it cannot last and should end
static and cyclostrophic equilibrium that is accompanied byup with some sort of instability. Unfortunately, nothing is
emission of the “redundant” part in the form of outgoing known on stability of the ellipsoidal regions of PV in the
waves. This is, thus, a transient wave emission. The lineastratified fluid. Again, the corresponding analytical calcula-
treatment of this process is presented in Ref. 17 and may béons are very complex. Stability calculations do exist for
pursued further on perturbatively in Froude number, follow-Similar ellipsoidal vortices in a much simpler context of
ing the lines of Ref. 33, where the geostrophic adjustmenguasigeostrophic dynamié$but modes of instability may,
was studied. The second stage corresponds to a permanditcourse, differ significantly in the two cases. The 2-D
Lighthill radiation by thebalancedbut nonstationary vortex Kirchhoff vortex is knowri* to be unstable when its aspect
motions, and it was this latter process we were concentratei@tio exceeds 3. It is unlikely that 3-D effects may prevent
on in the present paper. We, thus, treated the problem asthis 2-D instability so we anticipate that at least for aspect
radiation one. Any radiation problem requires exact knowl-ratios greater than 3 the pancake vortex will be destabilized.
edge of the wave source, and for this purpose we constructdtl because of imposed reflectional symmetry, as in Ref. 28,
an explicit example of a rotating ellipsoidal region of con- the first instability mode cannot be excited, the aspect ratio
stant PV in cyclostrophic balance, obeying the EB equationsnight grow further. In two dimensions, as argued in Ref. 28,
at the leading order in the Froude number. In doing this wghe wave resonances excite a quadrup@teode 4 instabil-
essentially used the quasibidimensionalization of stratifiedty of the elliptic vortex for aspect ratios beyoned.6, cor-
fluids due to a strong stratification, which allowed us to useresponding to #/I")?= J2—1. Whether the same is true for
the classical 2-D Kirchoff vortex as the base for our con-3-D stratified vortices remains an open question. In any case,
struction. The explicit knowledge of the vortex field allowed it is clear that once elongated enough the vortex is prone to
us to calculate analytically the emitted wave field and toinstabilities and, hence, although slow, the backreaction of

Downloaded 24 Jul 2002 to 129.199.115.248. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1268 Phys. Fluids, Vol. 14, No. 3, March 2002

the wave radiation will alter vortex dynamics in the 3-D

R. Plougonven and V. Zeitlin

turbulence in stably stratified fluids,” J. Fluid Meck02 117 (1989.

stratified fluid, as it was the case in 2-D acoustics and shal>G. R. Spedding, F. K. Browand, and A. M. Fincham, “The long-time

low water. This indicates that a strict slow manifold of purely

evolution of the initially turbulent wake of a sphere in a stable stratifica-
tion,” Dyn. Atmos. Ocean®3, 171(1996.

vortex motions does not exist in stratified nonrotating fluids ey Bonnier, 0. Eiff, and P. Bonneton, “On the density structure of far-

and sets a time limit ¢ F ) for a reliable description of
slow motions by filtering IGW.

ACKNOWLEDGMENT

R.P. acknowledges support from ACI “jeunes cher-

cheurs”(CNRS No. 0693.

APPENDIX: INTERNAL GRAVITY WAVES IN
CYLINDRICAL COORDINATES

wake vortices in a stratified fluid,” Dyn. Atmos. OceaB% 117 (2000.

’A. M. Fincham, T. Maxworthy, and G. R. Spedding, “Energy dissipation
and vortex structure in freely decaying, stratified grid turbulence,” Dyn.
Atmos. Ocean®3, 155(1996.

8G. R. Spedding, F. K. Browand, and A. M. Fincham, “Turbulence, simi-
larity scaling and vortex geometry in the wake of a towed sphere in a
stably stratified fluid,” J. Fluid Mech314, 53 (1996.

°A. J. Majda and M. J. Grote, “Model dynamics and vertical collapse in
decaying strongly stratified flows,” Phys. Flui@s 2932(1997.

0p, Billant and J. M. Chomaz, “Experimental evidence for a new instability
of a vertical columnar vortex pair in a strongly stratified fluid,” J. Fluid
Mech. 418 167 (2000.

We recall the wave equation one can obtain from the'*P. Billant and J. M. Chomaz, “Theoretical analysis of the zigzag instability

equations of motion as they are scaled for the outer region

(333—(33d):
azzdttW+AHW:0. (Al)

We separate variables and look for solutiomsof the
form

w(R,z,0,t)=g(R)e' ("~ "h(z), (A2)

whereh(z) is of the forme'™?, andg verifies the following
equation:
d’g 1 dg
—_ 2, -2 2 2 |\ _
dR2+RdR+ m-v R2>g 0.

Using the change of variablegs=mvR, one gets the
canonical Bessel equation:

d’g 1d
o’y 1dg
dp® pdp

n2
(A3)

n2
+<1—?)g=0. (Ad)

of a columnar vortex pair in a strongly stratified fluid,” J. Fluid Mech.

419, 29 (2000.

123, B. Flor and G. J. F. van Heijst, “Stable and unstable monopolar vortices
in a stratified fluid,” J. Fluid Mech311, 257 (1996.

M. Beckers, R. Verzicco, H. J. H. Clercx, and G. J. F. Van Heist, “Dy-
namics of pancake-like vortices in a stratified fluid: experiments, theory
and numerical simulations,” J. Fluid Mech33 1 (2002).

143, M. Lighthill, Waves in Fluid§Cambridge University Press, Cambridge,
1978.

15p, Bonneton, J. M. Chomaz, and E. J. Hopfinger, “Internal waves pro-
duced by the turbulent wake of a sphere moving horizontally in a stratified
fluid,” J. Fluid Mech. 254, 23 (1993.

18p, Bonneton, J. M. Chomaz, E. J. Hopfinger, and M. Perrier, “The struc-
ture of the turbulent wake and the random internal wave field generated by
a moving sphere in a stratified fluid,” Dyn. Atmos. Oce@3$5299(1996.

173, M. Lighthill, “Internal waves and related initial-value problems,” Dyn.
Atmos. Ocean23, 3 (1996.

18p, Caillol and V. Zeitlin, “Kinetic equations and stationary energy spectra
of weakly nonlinear internal gravity waves,” Dyn. Atmos. Oce&@?2s 81
(2000.

19R. Ford, M. E. Mclintyre, and W. A. Norton, “Balance and the slow quasi-
manifold: some explicit results,” J. Atmos. S&7, 1236(2000.

203, M. Lighthill, “On sound generated aerodynamically. I. General theory,”

Solutions corresponding to the radiation boundary con- Proc. R. Soc. London, Ser. L1, 564 (1952.

dition at infinity are Hankel functions of the second kind. We

then reconstruct the complete solution:
w(R,8,z,t)= >, anJ' du[ F3(u)coguz)
n 0

+ F3(u)sin(uz) JH? (Rup)el (M=),
(A5)
The same equation #81) can be obtained for the pres-

sure. Its expression will therefore be of the same form a

(A5).
If the vertical profile of the vortex is symmetric in

213, C. Crow, “Aerodynamic sound emission as a singular perturbation
problem,” Stud. Appl. Math49, 21 (1970.

22D, G. Crighton, “Acoustics as a branch of fluid mechanics,” J. Fluid
Mech. 106, 261 (1981).

ZT. Kambe, “Acoustic emissions by vortex motions,” J. Fluid MediT3
643(1986.

24y, 1. Klyatskin, “Emission of sound by a system of vortices,” Izv. Akad.
Nauk SSSR, Mekh. Zhidk. Gaz 87 (1966 (in Russian.

2V, M. Gryanik, “Emission of sound by linear vortical filaments,” Izv.
Atmos. Ocean. Phy4.9, 150(1983.

28y, Zeitlin, “On the backreaction of acoustic radiation for distributed two-
dimensional vortex structures,” Phys. Fluids3A1677(1991).

2'H. Lamb, Hydrodynamics6th ed.(Dovers, New York, 1932

8R. Ford, “The response of a rotating ellipse of uniform potential vorticity
to gravity wave radiation,” Phys. Fluidg, 3694(1994.

29B, Legras and V. Zeitlin, “Conformal dynamics for vortex motions,” Phys.

only the functionsF;(u) need to be considered: this is the gL A 167, 265(1992.

expression used for the matching.

1J.J. Riley, R. W. Metcalfe, and M. A. Weissman, “Direct numerical simu-

lations of homogeneous turbulence in density stratified fluids,Pin-

S. P. Meacham, “Quasigeostrophic, ellipsoidal vortices in a stratified
fluid,” Dyn. Atmos. Oceansl6, 189(1992.

314, Hashimoto, T. Shimonishi, and T. Miyazaki, “Quasigeostrophic ellip-
soidal vortices in a two-dimensional strain-field,” J. Phys. Soc. &&.
3863(1999.

ceedings of the AIP Conference on Nonlinear Properties of Internal Waveg?M. Abramowitz and |. Stegurklandbook of Mathematical Functionia-

(AIP, Woodbury, 198%, pp. 79-112.

tional Bureau of Standards, Applied Mathematics Series, 1964.

2D. K. Lilly, “Stratified turbulence and the mesoscale variability of the 33G. M. Reznik, V. Zeitlin, and M. Ben Jelloul, “Nonlinear theory of the

atmosphere,” J. Atmos. Scil0, 749(1983.

geostrophic adjustment. Part 1. Rotating shallow water model,” J. Fluid

8J. J. Riley and M.-P. Lelong, “Fluid motions in the presence of strong Mech. 445 93 (2001).

stable stratification,” Annu. Rev. Fluid MecB2, 613 (2000.
40. Métais and J. R. Herring, “Numerical simulations of freely evolving

34A. E. H. Love, “On the stability of certain vortex motions,” Proc. London

Math. Soc.25, 18 (1893.

Downloaded 24 Jul 2002 to 129.199.115.248. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



