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Inertial instability is investigated numerically in a two-dimensional setting in order to understand its
nonlinear stage and saturation. To focus on fundamental mechanisms, a simple barotropic shear
U(y)=tanh y on the f-plane is considered. The linear stability problem is first solved analytically,
and the analytical solutions are used to benchmark numerical simulations. A simple scenario of the
nonlinear development of the most unstable mode was recurrently observed in the case of
substantial diffusivity: while reaching finite amplitude the unstable mode spreads laterally, distorting
the initially vertical instability zone. This process produces strong vertical gradients which are
subsequently annihilated by diffusion, making the flow barotropic again but with the shear spread
over a wider region. In the course of such evolution, unexpectedly, strong negative absolute vorticity
anomalies are produced. In weakly diffusive simulations, the horizontal spreading of the unstable
motions and the enhancement of the anticyclonic vorticity extremum persist, but small-scale
motions/instabilities render the flow considerably more complex. It is known that the barotropic
component of the final state can be predicted from the conservation of momentum. Our simulations
confirm the relevance of this simple prediction in the cases investigated regardless of resolution and
diffusion. The baroclinic component of the final state is also analyzed and three types of structures
are identified: persistent stationary stratification layers, subinertial waves trapped in the anticyclonic
shear, and freely propagating inertia-gravity waves. The subinertial waves and the stratification
staircase have clear signatures and can therefore help to identify the regions that have undergone

inertial instability. © 2009 American Institute of Physics. [doi:10.1063/1.3242283]

I. INTRODUCTION

Symmetric instability occurs in rotating fluids when the
potential vorticity (PV) is of opposite sign to the Coriolis
parameter1 and is the geophysical analog of centrifugal, or
Taylor—Couette, instability. Inertial instability is the special
case when the relative vorticity is stronger than —f in a cer-
tain region of the flow, where f is the (local) Coriolis
parameter.2 It occurs in the atmosphere and oceans in the
vicinity of the equator due to either meridional shear™ or
interhemisphere advection’ or due to diabatic processes
modifying the PV.2 Occurrences of inertial instability due to
advection can be found at significant distances from the
equator.ﬁ’7

Linear aspects of inertial instability were extensively
studied for zonally symmetric flows,**"" flows with zonal
v211r121ti0ns,12’13 and oscillating flows at the equator.14 For zon-
ally symmetric flows in an inviscid fluid, linear theory shows
that the growth rates monotonically increase for increasing
vertical wavenumber. However, vertical wavelengths found
in observations, for instance, in the equatorial stratosphere
and mesosphere at solstice, are not consistent with theoreti-
cal predictions based solely on molecular diffusion, making
it necessary to understand the nonlinear stage of the instabil-
ity in order to explain the vertical scale selection.” It has
been hypothesized that Kelvin—Helmholtz (KH) instabilities
inhibiting modes with smaller vertical scales play a role, and
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this has been tested convincingly with simulations relevant
to the equatorial middle atmosphere.16 In a different configu-
ration the role of KH instabilities in the equilibration of sym-
metric instability has also been highlighted by numerical
simulations in the oceanic context.

In the diffusive regime, the nonlinear behavior of inertial
instability has been described in depth via analytical and
numerical approaches for a uniform shear near the equator.15
In the weakly nonlinear regime, it was found that the most
unstable mode would grow to a finite amplitude, induce per-
sistent mean-flow changes sufficient to neutralize the flow
(homogenization of fQ to a small, negative value, with Q the
PV), and then decay. As nonlinearity increases, the overturn-
ing cells extend poleward, mixing angular momentum and
homogenizing fQ over a wider region. It had been noticed
previously18 for an unstratified flow on the f-plane that a
latitudinally narrow mode of inertial instability could,
through its nonlinear development, homogenize a latitudi-
nally wide region. A similar behavior has also been docu-
mented for axisymmetric flows: numerical simulations of in-
ertial instability in barotropic vortices have shown the
formation of dipoles that move horizontally and mix angular
momentum throughout a larger region than the initially un-
stable one."

Regarding the end state of evolution of the inertial insta-
bility, it has been shown recently that it can be predicted
from simple momentum conservation considerations, in what
concerns its barotropic component.20 The argument is similar
to that for geostrophic adjustment of a barotropic jet,21’22
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with the notable difference that PV is not conserved for fluid
parcels where it is initially negative. Several questions arise
regarding the relevance of this prediction, as well as its sen-
sitivity to the parameters of the numerical simulations, such
as resolution and viscosity.

Although the end state does not consist only of the baro-
tropic component, the baroclinic component has received
little attention up to now. The construction of the vertically
averaged state turns out to be quite simple, yet some devel-
oped structures with fine vertical scales may persist. Thorpe
and Rotunno,23 in their numerical investigation of the non-
linear development of symmetric instability, noted that the
instability drives the flow toward a state in which regions of
negative PV may still exist but are broken down to small,
fragmented patches, each having insufficient spatial extent
for instability to develop (at least at the resolution used).
Hence several questions arise regarding the end state of evo-
lution of the inertial instability: What type of baroclinic mo-
tions persist and how intense are they? How sensitive to
dissipation and resolution are they? Can they give a clear
signature of the former presence of inertial instability?

For flows with strong shears, it should be kept in mind
that barotropic instability may compete with inertial
instability.lg’20 Inertial instability will nevertheless have the
dominant growth rates for the flows considered here (see
Ref. 11, Sec. IV), and hence the possibility of barotropic
instability will not be investigated.

The object of the present study is to investigate the non-
linear development of inertial instability, with emphasis on
the details of nonlinear saturation and its persistent signa-
tures. Our strategy consists in choosing a configuration
simple enough to be analytically solved in the linear approxi-
mation. The explicitly known unstable mode will allow us to
benchmark the numerical model at the initial growth stage,
allowing thus for neat investigation of the nonlinear stage.

The paper is organized as follows: The linear stability
problem is solved for a barotropic shear layer in Sec. II. The
numerical simulations of inertial instability are described and
benchmarked in Sec. III. The nonlinear evolution and satu-
ration of the instability are presented in Sec. IV. The question
of the final state is addressed in Sec. V, and conclusions are
presented in Sec. VI

Il. ANALYTICAL SOLUTIONS OF THE LINEAR
STABILITY PROBLEM

A motivation for considering a barotropic shear on the
f-plane is the possibility to solve analytically the linear sta-
bility problem. The equations of motion are introduced and
scaled in Sec. II A, and the linear stability problem is solved
in Sec. I B. The growth rates and structures of the unstable
modes are described in Sec. II C.

A. General form of the eigenvalue problem
Following Ref. 16 we start from the primitive equations
in the Boussinesq approximation and including only the ver-

tical diffusion, with the tildes denoting dimensional
variables:
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Here iy is the horizontal velocity, D/Df=d-+1u-V is the full
Lagrangian derivative, f=fk is the Coriolis parameter times
the unit vertical vector, w is the vertical velocity, and v and «
are the vertical (turbulent) viscosity and diffusivity, respec-
tively. In the atmospheric context, ¢, is the total geopoten-
tial, Emt is the total potential temperature, g is the gravity, and

6, is a reference potential temperature. The vertical coordi-
nate is the modified pressure coordinate introduced in Ref.
24 and for shallow layers it differs only slightly from geo-
metric height. In the oceanic context, 7 is the geometric
height, ¢, is P/ Po» and 6 is the density. In what follows we
will consider f>0, and negative PV will correspond to iner-
tially unstable regions. Finally, we suppose that the smallest
scales occur in the vertical direction; that is why only verti-
cal diffusion is included.

We restrict our attention to flows that are symmetric in X:
d:=0. From the incompressibility constraint (1d) we can

then introduce a streamfunction ljf such that 0’ =—z9zzz/ and w

:o";(?/. The potential temperature is split into a background
one that varies only in the vertical and a perturbation:

07,2 =0(9) +6(7,7). For simplicity we will assume that
N’=g/ Gr(d@/dz) is constant and that the Prandtl number is

unity, i.e., k=v. We also introduce the notation Y= gg/ 5,.

We now proceed to scale the equations in order to ana-
lyze the instability of barotropic shear regions. The shear
flow U tanh(y/L) provides a natural horizontal length scale L
and velocity scale U. As the basic flow contains no vertical
length scale, it is natural to choose H such that the Burger
number N’H?/f?L?=1. In the equations for the nondimen-
sional (no-tilde) variables (u,i,,y), three parameters
appear:

* R=U/fL, the Rossby number, which measures the in-
tensity of the shear relative to planetary vorticity. It
appears in the Lagrangian derivative D=d,+R(d,d,
—d,4d,).

o y=v/ sz, the “Ekman” number, which measures the
importance of diffusion relative to rotation. Because
inertial instability develops at the smallest available
vertical scales in the inviscid fluid, diffusion will in
fact be important even for small values of y=v/fH>.
Note that the Reynolds number is obtained as Re
=R/y.

e 0=H/L, the aspect ratio. As the Burger number is
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unity, we also have 6=f/N. For atmospheric and oce-
anic flows one has §<1, and so the hydrostatic ap-
proximation (86— 0) is justified.

In the case of the inviscid fluid (y=0) it is well known
(e.g., Ref. 24) that zonally symmetric flows (d,=0) have two
Lagrangian invariants: geostrophic momentum and potential
temperature. The PV may be expressed in terms of them. The
nondimensional expressions of the invariants are, respec-
tively,

M=u-R'y and O=x+R. (2)

Now, we consider a background barotropic flow that is in
geostrophic equilibrium, U(y)=-d,®,, and hence is a sta-
tionary solution of the equations. Linearizing about this flow
(w=U+u', ¢p=D,+¢', x=x', ¥=4y'), the following equa-
tions are obtained:

Du' +(1-RU,)i,=0, (3a)
Di,—u' - ¢, =0, (3b)
8Dy, — x+ ¢, =0, (3¢)
Dx+ i, =0, (3d)

where D=(d,—yd..) and subscripts denote partial deriva-
tives.

Looking for normal mode solutions of the form
(y,z,0)=(y)e’™=) and combining the equations in Eq.
(2) following standard manipulations, a single equation for
#(y) is obtained:

2

zpyy+m[¢a2—(1 -RU) =0, (4)
where the notation @=w+iym? is introduced. This equation
gives the structure of normal modes within the barotropic
shear. It describes a continuous spectrum of inertia-gravity
waves that are freely propagating, subinertial waves that are
trapped in the anticyclonic shear region, and, possibly, un-
stable modes if the shear is strong enough.

B. Explicit solutions for a tanh shear layer

Equation (4) was much studied in quantum mechanics in
the particle-in-a-potential-well context, e.g., Ref. 25, and we
can profit from this knowledge. The inertial instability of a
tanh shear profile has previously been discussed"’ using an
asymptotic approach which included finite along-stream
wavenumbers. The analysis described below yields a com-
pact and explicit form of the dispersion relation in the case
with no along-stream variations both with and without the
hydrostatic approximation.

We choose the standard representation of the shear flow:

U(y) = tanh(y). (5)

Note that the velocity and the length scales being already
fixed, no parameter enters this definition. The profiles of M
and O will change with R, as follows from Eq. (2) and Fig.
1. Injecting Eq. (5) into Eq. (4) yields
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FIG. 1. Profile of velocity U(y) (top), of geostrophic momentum M(y)
(middle), and of PV Q(y)=R~'-U, (bottom) for the basic state correspond-
ing to three values of R: 1.5 (dashed line), 2 (thin line), and 3 (thick line).
Also indicated in both figures are the bounds of the unstable regions
(dU/dy>R") for the three values of R.

2 R
b+ — - |1- J=0. (6)
R A cosh® y

Following Ref. 25 we change variables as £=tanh(y) and
transform this equation into

A

i[(l —52)1}2» [s(s+ 1)—&}41:0, (7a)

dé dé
where
m’R m*(1 — &%)
)=, f= 22 7b
sbrl)=1"0g [y (76)

Note that we have supposed that ®><1 to define e.
Solutions that are finite for £&=1 (y — +) are of the form

J=(1-&) Fe-s,e+s+ 1 e+ 1;5(1-8)], (8)

where F is the hypergeometric function (Ref. 26, Chap. 15).
For ¢ to remain bounded at é=—1 (y— —=), we need to have

e-s=-n with n=0,1,2,3, .... 9)

The parameter n corresponds to the number of nodes of ¢(y):
inside the “potential well,” where (2)2—(1—RUy)>O, ¢ os-
cillates and has n nodes. Outside the potential well the func-
tion ¢(y) decays exponentially (e.g., Fig. 4 in Ref. 22).

The constraint (9), together with definitions (7b), yields
the following dispersion relation:

1 - & _—

— 5 +2n+
1- 5@

G(&* m,n,8,R) =2m

4m’R

g (10)

-\/1+
For the configurations with §<<1 under consideration it turns
out that this form is redundant. The hydrostatic limit (6=0)
of the dispersion relation can be used instead:
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FIG. 2. Upper panel: Dispersion curves &*(m) for R=1.5 with §=1072 for
n=0-4. Two sets of curves are shown: from the full expression (10) in thin
black lines and from the hydrostatic expression (11) in thick, dashed, gray
lines. Horizontal lines indicate the separation (thin line, ®*=1) between the
continuous spectrum of freely propagating waves and discrete spectrum of
trapped waves, the separation (thick line, »>=0) between trapped waves and
unstable modes, and the asymptote for the lowest value of & (thin line,
®*=1-R=-0.5). Lower panel: Growth rate o as a function of the vertical
wavenumber m for the fundamental mode n=0. The three curves correspond
to y=0, 3.10X 1073, and 1.55 X 1072, Maximum growth rates are found on
the thick gray curve as vy varies, tending for y—0 toward the asymptote
shown as a thin black line.

1
6)2:1—4—2(2n+1—\/1+47€m22, (11)
m

which is valid only for @*<1 [cf. Eq. (7b)], i.e., only for
m>+n(n+1)/R. The latter condition implies that there is
always an interval of wavenumbers m close to zero that are
stable. The width of this interval increases with n (Fig. 2).

The upper panel of Fig. 2 describes &* obtained both by
the hydrostatic [Eq. (11)] and nonhydrostatic [Eq. (10)] rela-
tions for a Rossby number R=1.5 and 6=1072. The curves
are indistinguishable, which confirms that for the low values
of 6, commonly found in the atmosphere, the hydrostatic
limit is largely sufficient. We will use the form (11) in what
follows.

C. Growth rates of the symmetric unstable modes

It is insightful to first examine the dispersion relation
(11) in the inviscid case, i.e., when &= w. For strongly anti-
cyclonic flows (R > 1), @* becomes negative for sufficiently
large m (the corresponding mode then changes from a
trapped subinertial wave”’ to an inertially unstable mode).
Figure 2 shows that, as m increases, the n=0 mode is the first
to become unstable, and it is followed by modes with in-
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creasing n. The growth r@ncrease monotonically with m
and tend toward o,,,=\VR—-1 as m— for all values of n,
though more slowly as n increases.

The inclusion of diffusion in the vertical only modifies
the definition of @=w+iym?. The growth rates of unstable
inviscid modes diminish, and for large enough values of m
these modes become decaying. Hence, as illustrated in the
lower panel of Fig. 2, only a finite range of vertical wave-
numbers m are unstable, and the maximum growth rate is
attained at a finite value m,,, in contrast to the inviscid case
(well-defined scalings for the variation of m,,,, as y—0 can
be obtainedzg’zg). This fact will allow for well-resolved nu-
merical simulations in what follows.

The linear theory provides not only the growth rates but
also the structure of the modes. The streamfunction is

W(y,z,0)=(y)e’™ with i given by Eq. (8). Other vari-
ables are expressed in terms of lAﬂ as follows:

i=2(1-RU)Y, ©=—imi, (12a)
w
di) i d

I (12b)
dy o dy

The unstable modes are confined within the region with
negative PV. Outside the region of anticyclonic vorticity,
they decay exponentially. Within the unstable region, the
most ;mstable mode (n=0) consists of a stack of overturning
cells.

lll. LINEAR INSTABILITY IN NUMERICAL
SIMULATIONS

The analytical solutions described above provide a
benchmark for validation of the linear stage of the instability
in the numerical simulations. The numerical setup of the
simulations is described in Sec. IIl A and the comparison
with the analytical solutions in Sec. III B.

A. Numerical setup and simulation parameters

The simulations were carried out with the Weather Re-
search and Forecast model (WRF, version 2.2, Ref. 30),
which allows both idealized simulations and real-case studies
for atmospheric flows. Choosing a community model that
has a wide range of capabilities and is widely used has sev-
eral advantages: it makes it easier for other investigators to
reproduce present results, and what is more important, it
opens the possibility, in further studies using the same
model, to increase the complexity and realism of simulations
(three dimensions, incorporation of moist processes) and to
move toward case studies which can be compared with ob-
servations (e.g., for air masses advected from one hemi-
sphere to the other, as described in Refs. 5 and 6).

The model integrates the equations for a fully compress-
ible, nonhydrostatic atmosphere in flux form with terrain-
following hydrostatic pressure as the vertical coordinate.™
The prognostic variables are the velocity components, the
potential temperature, the geopotential, and the surface pres-
sure, and they are discretized using a staggered Arakawa C
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grid. The equations are integrated in time using a time-split
third order Runge—Kutta scheme with a smaller time step for
acoustic modes. The top of the model is a constant pressure
surface.

One implication of using WRF is that the simulated flows
will differ in several aspects from the flows for which ana-
lytical solutions were obtained: the model describes the evo-
lution of a compressible atmosphere, whereas the Boussinesq
approximation was used in Sec. II. The fluid is bounded be-
low by a rigid, flat bottom with free-slip conditions, and the
upper boundary condition corresponds to a free surface with
constant pressure. Lateral walls with free-slip boundary con-
ditions close the domain in the transverse direction. Finally,
in order to provide dimensionful variables for the code, the
horizontal length scale L=25 km for the width of the shear
zone was chosen. The domain used for the simulations has
dimensional width of 1000 km and a height of about 10 km
(the last model level is an isobaric surface; its geometric
height is not constant). The dimensional Coriolis parameter
is f=10‘4 s~!. so that one nondimensional time unit will
correspond to 1/f=2.78 h dimensionally.

Preliminary simulations showed that the top and bottom
boundary conditions introduced undesired effects if the baro-
tropic shear was taken to extend throughout the whole com-
putational domain. Indeed, the unstable mode would not
grow homogeneously in the vertical but would be strongly
enhanced near the top boundary. This is presumably due to
the free surface condition at the top boundary, which allows
fast surface modes to exist and propagate with a strong sig-
nature near the top of the domain. In consequence, to avoid
any influence of the top and bottom boundaries, the basic
state was chosen to be a barotropic unstable shear in the
center of the domain, decaying and becoming stable close to
the top and bottom boundaries. By the thermal wind balance,
this introduces horizontal gradients of temperature in the re-
gion where there is vertical shear. In order to limit the extent
of these regions, the basic velocity was chosen to have a
slow horizontal decrease far from the barotropic shear
region:

U(y,z) = tanh(y)(1/4)
X (tanh[6(z/L; — 0.15)] — tanh[6(z/L, — 0.85)])
X (tanh[ 12(y/Ly — 0.125)]
— tanh[12(y/L;; - 0.875)]), (13)

where Ly and L, are the domain width and height. The re-
sulting distribution of wind and potential temperature is dis-
played in Fig. 3. In the center of the domain, for 15<z
<25 and for —10<y <10, the flow is a barotropic shear with
U(y)=tanh(y) as described in Sec. II, and the boundaries no
longer affect the development of the instability, although
they will play a role at late times due to the reflection of
emitted gravity waves (see Sec. V B 3).

The initial fields for velocity and temperature were ob-
tained numerically by solving iteratively for the pressure so
that the geostrophic zonal wind corresponds to the one pre-
scribed and that the stratification be such that §=1072 on
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FIG. 3. Contours of the zonal velocity U(y,z) of the basic state (black lines,
dashed for negative values, contour integral of 0.2) and potential tempera-
ture (thin gray lines) for simulations with R =3. Horizontal axis is y, non-
dimensionalized by L=25 km, and vertical axis is z, nondimensionalized by

fL/N=250 m. Also shown is the zero contour of PV (thick black line) and

the region in which the flow is well approximated as a barotropic shear
(dashed line).

average. Wind was deduced from geostrophic equilibrium
and potential temperature was obtained from hydrostatic
balance.

More than 50 simulations were carried out, varying the
Rossby number R, the diffusion 7, and resolution as de-
scribed in Table I. Corresponding Reynolds numbers range
from 20 to 1000 in the simulations where explicit diffusion
was included. Simulations will be referenced below by the
values of these numbers: for example, simulation R2-y1-r3
corresponds to a Rossby number R=2 and a diffusion pa-
rameter y=3.10X 1073 simulated at resolution 128 X 128.

For each simulation, a breeding procedure was used to
isolate the most unstable growing mode: a simulation is
started with a small random perturbation in the temperature
field. After 4.3 nondimensional time units (12 h dimension-
ally), the anomaly relative to the initial state is isolated,
rescaled to a small amplitude, and added to the basic state to
start a new simulation. This cycle is repeated five times. A

TABLE I. Summary of the various parameter values that were used in the
two-dimensional simulations.

R Ekman number y Resolution
1.5 0: y=0 1: 32X32
2.0 1: y=3.10x 1073 2: 64X 64
3.0 2: y=155%1072 3: 128 X128

3: y=7.75% 1072 4: 256 X256

(5: 512X512)
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FIG. 4. Comparison of the analytical and numerically obtained growth rates.
Circles correspond to runs with R=1.5, squares for R=2, and triangles for
‘R=3. Symbols are in black for resolution 4 runs, in gray for resolution 3,
and in light gray for resolution 2. For a given set of symbols, the analytical
growth rate increases as the Ekman number decreases from y=7.75X 1072
to y=1.55%X10"2 to y=3.10X 1073 and finally 0. For R=1.5, flows with
y=7.75X107% were stable.

simulation was then restarted in 52 nondimensional time
units with this mode present in the initial condition with a
weak amplitude.

B. Comparison with analytical predictions

The availability of analytical solutions for the linear sta-
bility problem provides a benchmark for the numerical simu-
lations. The growth rates and the structure of the modes ob-
tained numerically are found to agree well with those
obtained analytically for configurations which were suffi-
ciently diffusive (Fig. 4). If one takes into account the finite
resolution while calculating the theoretical maximum growth
rate, the agreement improves for the simulations with y=0.
Finally, the agreement is not as good for the strongly un-
stable case (R=3), in part because the breeding procedure
was less successful in isolating the unstable mode in a clean
way (the breeding cycles were too long to ensure that only
linear growth occurred) and in part because of insufficient
resolution (theoretically, one would expect modes close to
the grid scale).

The structure of the numerically obtained modes is also
in agreement with that predicted theoretically. It is illustrated
in Fig. 5 by the structure of the meridional velocity for simu-
lation R3-vy3-r4. Both the analytical and the numerically
obtained normal modes are shown. The simulated normal
mode has a slightly smaller vertical wavelength, but the two
structures are otherwise essentially the same.

IV. NONLINEAR SATURATION

The linear normal mode solution describes an overturn-
ing motion (Fig. 5), and uninterrupted growth of these mo-
tions will lead to static instability in a finite time. For suffi-
ciently diffusive flows, however, it is known that a purely
diffusive equilibration may occur, as described for the case
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FIG. 5. Meridional (thick black line) and vertical (thin gray line) velocity
isolines for the most unstable normal mode of a barotropic shear with R
=3 and y=7.76 X 1072, The analytical solution (top panel) compares very
well with the numerically obtained normal mode (bottom panel). Contours
correspond to the same values on both panels (=1/6[1,2,3,4,5] of the maxi-
mum value of v and w, with negative contours dashed), and the bounds of
the unstable region are shown (vertical lines).

of a constant shear at the equator in Ref. 15. A simple sce-
nario of nonlinear saturation of the instability can be identi-
fied in strongly diffusive simulations (Sec. IV A). Essential
features of this scenario persist in weakly diffusive simula-
tions as well, although small-scale motions become much
more active (Sec. IV B). Sensitivity to the numerical setup is
discussed in Sec. IV C.

A. Strongly diffusive simulations

For strongly diffusive flows, it is expected from previous
studies that the instability will grow and then decay, leaving
behind a modified mean flow."> For strongly unstable situa-
tions, the unstable mode is expected to deform and affect a
region wider than the initially unstable 1regi0n.15’Ig We focus
below on two specific signatures of this strongly nonlinear
case: nonlinearity manifests itself in the horizontal spreading
of the unstable motions and in the temporary enhancement of
the maximum anticyclonic vorticity.

Figure 6 depicts the evolution of the unstable mode in
the strongly diffusive and strongly unstable simulation
R3-y3-r4. The structure of the mode remains smooth and
well resolved, and the mode spreads horizontally once it has
reached finite amplitude. This can be understood as a conse-
quence of the modification of the background stratification
(weaker stratification ahead of the transverse flow, see Fig. 6,
favors spreading). The resulting alternating northward and
southward jets do not induce an overall mass flux but do
induce a negative flux of geostrophic momentum.

During this process of horizontal spreading, a somewhat
counterintuitive effect occurs ahead of the transverse jets. In
such regions, the fluid undergoes considerable vertical
stretching, as can be seen in the middle column of Fig. 6. For
parcels which are initially unstable, absolute vorticity ini-
tially is negative, and the stretching therefore amplifies the
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FIG. 6. Horizontal spreading of the unstable mode in simulation R3-7y3-r4
for nondimensional times r=2.9, 4.4, 5.8, and 7.2, from top to bottom. Left:
meridional and vertical velocity, as in Fig. 5 but with less contours for
clarity [contours are for 1/3 and 2/3 of max(|jv|), indicated in the top left].
Middle: isolines of potential temperature and of PV [gray shading for posi-
tive PV and contours for PV=0 (thick line) and PV=0.25 (thin line)]. Right:
velocity (shading) and PV=0 contour (white line). Also shown in the lower-
right panel are the heights corresponding to the profiles of relative vorticity
presented in Fig. 7.

anticyclonic vorticity. This is illustrated in Fig. 7 by horizon-
tal profiles of the relative vorticity taken at the center of a
northward and a southward jet. Hence, although the instabil-
ity is caused by the negative absolute vorticity, nonlinear
evolution temporarily produces its significant intensification
(more than doubling, see Fig. 7). This is reminiscent of the
behavior described by Griffiths'® for fO, where Q is the ver-
tically averaged vorticity anomalies (paragraph 4.6 and Fig.
7 of Ref. 15). However, the equatorial problem has an asym-
metry due to the S-effect such that enhanced negative vor-
ticity anomalies are found only on the poleward side of the
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FIG. 7. Vertical component of the absolute vorticity at heights z=20.0 (plain
line) and z=18.4 (dashed line) for simulation R3-93-r4 (as in Fig. 6, as a
function of y) at four successive nondimensional times, r=2.2, 4.4, 6.6, and
8.8, from top to bottom.
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FIG. 8. Same as in Fig. 6 but for simulation R2-90-r4.

unstable region. In contrast, the vorticity anomalies de-
scribed above appear on both sides of the initially unstable
region, at different heights.

Finally, the saturation of the instability can be under-
stood as follows: as the mode spreads out, the column of
negative PV becomes severely distorted, in such a way that
meanders offer strong vertical gradients for diffusion to act
upon (middle and right columns of Fig. 6). The distribution
of zonal velocity then returns to a barotropic configuration,
with the anticyclonic shear spread out over a wider region
(right column in Fig. 6) so that the flow is stabilized (the
width of this region in the final state is discussed in Sec. V).

B. Weakly diffusive simulations

The strongly diffusive simulations reveal a clear and
simple picture of the nonlinear development of the instabil-
ity. For simulations with weaker diffusion, small-scale insta-
bilities come into play and make the structures more compli-
cated (Fig. 8). No special parametrization is used in the
model to deal with KH instabilities, and it is numerical dif-
fusion which takes care of them, in contrast to the simula-
tions in Ref. 16.

Nevertheless, two of the main features outlined above
persist and appear to be generic: the horizontal spreading and
the increase in the minimum relative vorticity are found sys-
tematically in the simulations. The nonlinear spreading is
found in all simulations regardless of diffusion and reso-
Iution and will be explained by the tendency of the fluid
toward a neutrally stable end state in Sec. V. The evolution of
the minimum of the relative vorticity is quantitatively com-
parable in all the high-resolution simulations of the strongly
unstable shear (R=3, middle panel of Fig. 9). However, at
lower resolutions the localized enhancement of relative vor-
ticity nearly disappears, emphasizing the importance of res-
olution for this effect. This sensitivity to resolution is not
surprising for a quantity that is a spatial derivative. When the
shear is weakly unstable (R=1.5 or R=2 with strong diffu-
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Minimum relative vorticity in the Ro=2 simulations
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FIG. 9. Minimum of the relative vorticity —d,u in the domain —-10<y
<10 and 17<z<21 for R=2 (upper panel) and for R=3 (middle panel)
and percentage of points for which the absolute vorticity R~ —dyu is nega-
tive (lower panel) as a function of time. Results are shown for simulations at
resolution 4 (black lines) for 0 (thick line), 1 (thick dashed line), y2 (thin
line), and 3 (thin dashed line). Also shown are the results for Y0 at reso-
lutions 3 (gray thick line) and 2 (gray thin line).

sion) the enhancement of anticyclonic vorticity is reduced
because the horizontal spreading becomes too slow relative
to diffusion (upper panel of Fig. 9).

Yet, there are significant differences between weakly and
strongly diffusive simulations. First, some regions of the
flow become susceptible to small-scale KH instabilities (at
small Richardson numbers), as well as static (convective)
instability when R =3, see Fig. 10. In consequence, the flow
becomes more complex, and the evolution of the region with
PV <0 differs. The initially unstable region is broken up into
smaller and smaller pockets of negative PV (see Fig. 8), and

Ri<0.25 in the Ro=2 simulations
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FIG. 10. Percentage of the volume of fluid in the domain —10<y <10 and
17 <z<21 for which the Richardson number is lower than 1/4 (upper panel,
for simulations with R =2 and middle panel, for simulations with R =3) and
for which there is static instability (lower panel, for R=3). Lines are as in
Fig. 9.
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regions with negative anticyclonic vorticity persist for much
longer time than in the diffusive simulations (lower panel of
Fig. 9). Hence, in strong contrast to the more diffusive simu-
lations, well-identifiable small-scale structures persist even
once the barotropic component of the flow has reached a
stable state, with remaining patches of negative PV and
negative absolute vorticity, as described in Ref. 23 (Fig. 8
and the lower panel of Fig. 9). Long-lasting small-scale
structures are further discussed in Sec. V.

A few remarks are in order regarding the behavior of the
model when no explicit diffusion is included, i.e., when 7y
=0. First, simulations with y=0 and y=3.10 X 1073 are quite
comparable for the development and saturation of the insta-
bility, which gives us an indication regarding the level of
numerical diffusion in the model. It is also found that the
simulations are much more sensitive to R than to vy, and in
consequence that the use of these two parameters separately
has advantages relative to the use of the Reynolds number
Re=R/+y. Second, we calculated the evolution of the total
energy of the flow for simulations with y=0, as conservation
of energy is not expected for flows involving instabilities
down to the grid scale. From theoretical arguments we can
predict what portion of kinetic energy AEy is expected to be
removed from the barotropic component of the flow by the
instability (see Sec. V). In simulations with y=0, we found
that the kinetic energy loss agreed very well with this pre-
diction, and that the loss of total energy was comparable to
or smaller than AEy. For example, for y=0 and R=3 the
total energy loss was equal to 80% of AEj, i.e., that 20% of
the kinetic energy loss had been converted to potential en-
ergy (see Sec. V B 1). Hence, although we do not control the
numerical diffusion, simulations with y=0 exhibit satisfac-
tory energetics and are hence useful to provide insights re-
garding the instability and its signature in weakly diffusive
flows (the disadvantage of simulations with y=3.10X 1073
being that the vertical diffusion, although weak, affects the
vertical stratification and damps the small-scale features that
persist after the instability has saturated).

C. Sensitivity to other effects

To investigate the sensitivity of the simulations to other
effects, numerical experiments were carried out with the hy-
drostatic approximation, with a third dimension and with
higher resolution. For all simulations described above, the
model was used in nonhydrostatic mode. The importance of
nonhydrostatic effects was tested by switching on the hydro-
static option in WRF and revealed only a little difference as
could be expected for the parameter regime considered (&
=1072). The linear growth rates of the modes were barely
changed. The end states were very similar: in strongly diffu-
sive simulations the differences in velocities were typically
smaller than 1%. In weakly diffusive simulations, final states
were comparable, with small-scale fluctuations having simi-
lar amplitudes, length scales, and overall structure, though
individual details did not match.

As a crude preliminary investigation of the potential
modifications arising from three-dimensional (3D) effects,
simulations were also carried out in a 3D setting, with 20
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points in the x direction, at resolution r3. The initial state
was perturbed with random noise in the potential tempera-
ture. It turns out that the resolution used is insufficient to
observe any changes in the development of the instability.
The rms of fluctuations in the x direction remains stationary
during the simulation, and differences in the end states are
minor and small scale (e.g., for u, less than 4% for 40) and
decreases further as diffusion increases (less than 2% for yl,
less than 0.4% for 2). These simulations indicate that if 3D
effects modify the development of the instability as sug-
gested in Ref. 16, higher resolution is necessary to capture
them. In fact, in order to investigate these 3D effects and to
describe the cascade of instabilities involved would require
not only multiplying the size of our domains by the number
of points in the third dimension, e.g., 20, but also increasing
the resolution so that KH instabilities, which are nonhydro-
static, can be described. A dramatic increase in resolution
(factor of 1/6) and hence of computing resources or a dif-
ferent strategy (smaller values of &) will be necessary to
investigate rigorously these 3D effects.

Finally, two simulations (R=3, 0 and yl) were also
carried out at a higher resolution (r5) to investigate further
the sensitivity to resolution. The results were similar to the
corresponding simulations at resolution 4, yet with some ad-
ditional small-scale details (see Sec. V B).

V. THE FINAL STATE

The previous sections have focused on the development
of inertial instability in its linear (Sec. III) and nonlinear
phases (Sec. IV). The next question is to examine the end
state toward which the fluid is evolving.

Two preliminary remarks need to be made at this stage:
first, the flows considered are constrained to be two dimen-
sional. Geostrophically balanced flows are then stationary
solutions of the full equations and, if stable, are the most
natural candidates for the final adjusted state. Stability of
such states is guaranteed if PV is everywhere positive. Sec-
ond, the problem is reminiscent of the geostrophic adjust-
ment problem for a two-dimensional jet or front.>'** The
final adjusted state for an arbitrary initial condition with ev-
erywhere positive PV can be determined unambiguously, be-
ing entirely defined by the conservation of M and 6.> The
flows with strong (but stable) anticyclonic shears may con-
tain subinertial waves™>*’ trapped in the anticyclonic region,
and hence modifying the standard geostrophic adjustment
scenario.”

The present problem may be viewed in this context as an
adjustment toward an unstable state. Naturally, this latter
cannot be achieved because the instability drives the system
to another, stable, adjusted state which cannot be predicted
uniquely from the conservation laws, as nonlinear saturation
of the instability requires dissipation (cf. Ref. 36 for a similar
situation but with another type of instability).

Predictions for the barotropic component of the final
state were given in Ref. 20 (in the case of rectilinear flows)
and Ref. 19 (in the case of axisymmetric flow). They are
based on conservation of total linear or angular momentum,
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respectively. In particular, in Ref. 20 the instability of a mix-
ing layer similar to the flows we consider is described but
with U(y) «erf(y).

Hence two questions arise considering the development
of inertial instability as an adjustment problem:

(I) How close does the barotropic component of the flow
come to the adjusted state predicted in Ref. 20 at the end
of our simulations?

(2) What are, if any, the baroclinic fluctuations around this
adjusted state?

Obviously, the sensitivity to the model parameters (reso-
lution, diffusivity) should be investigated while answering
both questions.

A. Predictions for the final state

We first recall the prediction of the final state, as given
by Kloosterziel et al."® Tt is natural to assume that the insta-
bility suppresses the regions of negative PV. For a barotropic
jet, the instability may be inferred from the plots of the ver-
tically —averaged geostrophic ~momentum M(y)=(z,
—z)7'f E?Mdy: unstable regions are those where M increases
with y, and marginally stable regions are those where M is
constant in y.

As explained in Ref. 19, a tentative final state can be
obtained from a Maxwell rule applied to the plots of M (Fig.
1). The initial state, M,(y)=M,(y)=U(y)-R"y, is unstable
where M,/ dy>0. Let A7[f(y) describe the vertically aver-
aged final state. It is natural to assume marginal stability
oM +/ dy=0 everywhere and M f(y):ll71 :(y) far from the ini-
tially unstable zone. Graphically, this means that the region

of increasing M, in Fig. 1 is replaced by constant A71 ;ina
larger region y;<y<y,, such that M,»(yl):]VIf(yl) and
M i(y2)=1l7l_ Ay2). In general one more constraint is needed to
determine the region of uniform M + This additional con-
straint is the conservation of momentum: [ ;?M Ay)dy
= [2H,(y)d.

In the antisymmetric configurations considered here, the
final state is given by

]l71f(y):0 for —Y<y<Y,
(14)

_ Y
MAy)=My) for |y[>Y with %=tanh Y,

where Y is the positive, nonzero root of M(Y)=0 (see
Fig. 1).

The barotropic component of the simulated flows at late
times was compared with this simple prediction. The agree-
ment is remarkable, as shown in plots of zonal velocity (Fig.
11), and there is surprisingly small sensitivity to resolution
and diffusion. Some sensitivity does appear on the plots of
the geostrophic momentum in Fig. 12, showing a better
agreement as resolution is increased. In particular, in weakly
diffusive simulations and at high enough resolution, the flow
is modified beyond [-Y, Y], which is consistent with “over-
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FIG. 11. Vertically averaged zonal velocity, between z=17 and z=23, in the
final states [averaged for one inertial period (27r) around r=31]. The initial
velocity U(y) (thick gray line) and the bounds of the unstable region (thin
vertical lines) are shown for reference. Left column shows results from
simulations with R=2 and right column for simulations with R =3. Upper
panels show four curves corresponding to the different values of y used,
while the lower panels show four curves corresponding to resolutions 1-4.
Lines correspond to increasing vy (or decreasing resolution) in the following
order: thick, thick dashed, thin, and thin dashed.

shoots” occurring during the nonlinear spreading of the un-
stable motions.”® Yet, this sensitivity is less important than in
Ref. 20 possibly because the simulations in Ref. 20 had
higher Reynolds numbers and included horizontal diffusion.
In order to illustrate the adjustment to the final state, we

show in Fig. 13 the profiles of M(y) at different times for
simulation R2-90-r4. The adjustment is very rapid (of the
order of an inertial period) and, interestingly, after the initial

adjustment stage M(y) hardly fluctuates at all.

The availability of a simple and efficient prediction of
the final state allows to calculate analytically the excess ki-
netic energy to be removed from the barotropic component
of the flow by the developing instability. This possibility was
discussed for vortices'” and for barotropic shear proﬁles.zo
There are good reasons to believe that the final state con-
structed with the method above always has less energy than
the initial state.”” In the present case, the energy loss can be
obtained from the profiles of initial and final velocities, u;
=U [Eq. (5)], and iy deduced from Eq. (14):

AEg= J (i; = ip)dy

—o0

Y 2 2

y 1 Y
= | [tann2() - = |ay=2v[1-— - ).
Jy<an 0) Rz)y ( R 3R2)

(15)

where we have used the facts that fl_/ytanhz(y)dy=2(Y
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FIG. 12. Same as the lower panels in Fig. 11 but for the vertically averaged
geostrophic momentum.
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FIG. 13. Vertically averaged geostrophic momentum between z=17
and z=23 for the simulation with R2-90-r4, as in Fig. 14, left
panel, with the addition of intermediate states (thin lines for ¢
=0.25,0.5,0.75,1,2,3,...,8).

—tanh Y) and tanh Y=YR™!. For large R, Y~R and the
latter expression is readily approximated as

AEg~3R-2. (16)

Kloosterziel et al.* compared the energy loss according to
their prediction and in numerical simulations for four baro-
tropic shear profiles and found reasonable agreement. As dis-
cussed below, our simulations confirm the relevance of this
prediction for the energy loss by the mean barotropic flow
for moderate and high Reynolds numbers.

Thus, our simulations suggest that the barotropic, geo-
strophically balanced part of the final state is well predicted
from simple arguments, and that the adjustment toward this
state is achieved, basically, regardless of resolution or dissi-
pation. Two final remarks are in order. First, this conclusion
applies to flows that are indeed unstable (strong enough dif-
fusion may inhibit the instability altogether), and one may
expect a somewhat different scenario for the flows just over
the stability threshold:" diffusion can inhibit instability for
regions with weakly negative PV. Hence, in such a case the
equilibration of the instability does not necessarily lead the
fluid to a state with zero PV but rather a state with a weak,
negative PV. Second, in the present case (barotropic state,
away from boundaries), the equilibration of the flow neces-
sarily involved lateral mixing with fluid having positive PV.
In cases where the unstable region has a small vertical extent
or when the domain boundaries are close to the unstable
region, equilibration may also involve entrainment of fluid
with positive PV from above and below'” or fluxes from the
boundaries.*

B. Small-scale fluctuations in the final state

Whereas the barotropic component of the flow has a
simple and robust behavior, the baroclinic component of the
end state will be much more sensitive to resolution and dis-
sipation. Yet, for large enough Rossby numbers this compo-
nent is essential. It has hitherto attracted little attention and
will be analyzed below.

The baroclinic fluctuations are small scale and fall into
three categories: permanent layering in stratification, result-
ing from the mixing during the nonlinear stage of the insta-
bility (Sec. V B 1), subinertial oscillations remaining in the
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FIG. 14. Instantaneous intensity of the stratification d.x at late times (r
=39) of simulations with resolution 4, y=0, and R=1.5 (top), R=2
(middle), and R=3 (bottom). Also shown are several isolines of the same
field, averaged over 8.6 time units. Vertical lines indicate the bounds [-Y
and Y, cf. Eq. (15)] of the modified region in the predicted adjusted state,
and maximum values of |d.x| are indicated in the upper left of each panel.

anticyclonic region (Sec. V B 2), and gravity waves freely
propagating away from the unstable region (Sec. V B 3).

1. Modifications of the stratification: Layering

In the simulations with weak diffusion, stabilization of
the flow involves small-scale mixing. Necessarily, in regions
where the fluid is mixed, its stratification weakens. In adja-
cent regions, stronger stratification will be found, and as a
result a “staircase” vertical profile of potential temperature
may be expected. To check this we are looking below for
persistent features in stratification d,x.

Figure 14 shows vertical cross sections of stratification
d.x at a late time of weakly diffusive simulations (y=0).
Persistent layers of alternating stronger and weaker stratifi-
cation are clearly found in the adjusted region (between —Y
and Y). In addition, a reflectional asymmetry with respect to
the central axis y=0 of the shear region clearly appears in the
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FIG. 15. Hovmoller diagrams of the meridional velocity at y=0. Left col-
umn: R=2; right column: R=3. First row: y=3.1X 1073, resolution 4. Sec-
ond row: y=0, resolution 4. Third row: y=0, resolution 3.

case of the simulation with R=1.5, reminiscent of the anti-
symmetry of the stratification anomalies in the normal mode
(Fig. 6).

As the Rossby number increases, the layering becomes
less regular, but homogenization of layers becomes more in-
tense, leading to distinct staircase patterns. Also, one can
note that at large Rossby numbers the flow becomes modi-
fied outside the theoretically predicted range [-Y,Y], as was
already mentioned above. Similar indications of layering can
also be found in the simulations of inertial instability at the
equator (Fig. 7 of Ref. 16), which included a parametrization
for KH instability.

Small-scale structures can also be found in the final PV
field of the weakly diffusive simulations. Although PV and
stratification anomalies are evidently related, the PV field is
more irregular and does not exhibit the same layered struc-
tures. This can be explained by considering, for example, a
region of strong stratification, with only vertical vorticity:
depending on the sign of the absolute vorticity, this can yield
either a positive or a negative PV anomaly.

2. Subinertial oscillations

A notable feature of the final state is that it retains a wide
region (of nondimensional width ~2R for large enough R)
of strong anticyclonic vorticity. Trapping of subinertial
waves is possible in such regions. They introduce significant
local fluctuations as displayed by Hovmoller plots in Figs. 15
and 16 and are at the origin of a significant portion of the
signal. The fact that those are indeed subinertial trapped
waves is confirmed using Fourier transform in time of the
meridional velocity at y=0 (Fig. 17), showing fluctuations
dominating at frequencies around a third of the inertial fre-
quency. This is consistent with the oscillations seen in Fig.
15, with typical nondimensional periods of about 20, i.e.,
close to 3 X 2.
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FIG. 16. Hovmoller diagram of meridional velocity for a simulation with
y=0 and R =3, as in the right, middle panel of Fig. 11 but for resolution 5.

The importance of subinertial waves can be quantified
relative to the prediction of AEg [Eq. (15)]. Figure 18 shows
the time evolution of the kinetic energy of the flow. First, the
curves confirm that the energy loss in the simulations is fully
consistent with the theoretical prediction: for all but strongly
diffusive simulations, where energy is continuously dissi-
pated, the ratio of the simulated energy loss to the theoreti-
cally predicted |AEg| tends to —1. Second, they show fluc-
tuations around the final value, indicative of the presence of
subinertial oscillations for which kinetic energy is periodi-
cally converted to potential energy and vice versa. To quan-
tify more precisely the energy that remains trapped in subin-
ertial oscillations, Fig. 19 shows the time evolution of the
baroclinic part of kinetic energy. In the weakly diffusive
simulations (10 and yl1) for strongly unstable flow (R=3)
the baroclinic part of kinetic energy (mainly due to the sub-
inertial oscillations) represents about 5%—10% of the kinetic
energy loss two inertial periods after the saturation of the
instability. This portion then slowly decays as the waves leak
energy to freely propagating waves and are dissipated.

The trapped waves are sensitive to the Rossby number,
to resolution, and to diffusion (Figs. 15 and 19). The sensi-
tivity to diffusion is most important. Indeed, as the Rossby
number increases, both the excess energy and the width of
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FIG. 17. Fourier transform in time of the meridional velocity at y=0, Fig.
15, for 10<z<<30 and for #>15. Results are shown for simulations with
R=3 (black lines) and R=2 (gray lines), for resolution 4 and 90 (thick
lines), for lower resolution (y0-r3 thin lines), and for moderate diffusion
(y1-r4 thick dashed lines).
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FIG. 18. Time evolution of kinetic energy anomaly relative to the initial
state in the region 15<z<<25, scaled using the prediction for the final ad-
justed state [Eq. (15)]. Simulations shown correspond to resolution 4 (black
lines), to R=2 (upper panel) and R=3 (lower panel), and to y0 (thick
lines), 1 (thick dashed lines), y2 (thin lines), and 93 (thin dashed lines).
Also shown are simulations at resolution 3 (gray lines) for y0 (thick lines)
and y1 (thin lines).

the anticyclonic region in the final state increase. For large
enough Rossby numbers the excess energy by unit length of
the anticyclonic region tends to a constant. The effect of the
vertical diffusion is to damp the waves, and they unavoidably
decay in time. Resolution primarily restricts the vertical scale
of these waves (compare the second and the last lines in Fig.
15), yet higher resolution does not lead to appearance of finer
and finer waves (Fig. 16). Subinertial waves are virtually
nonexistent in the strongly diffusive simulations (not shown).
This is due in part to the dissipation of any oscillation but
also to the slower development of the instability. As pre-
dicted by the linear theory (see Fig. 2), the growth rates are
much smaller and hence the time scales are much larger,
leading to a negligible excitation of inertia-gravity waves,
trapped or not.
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FIG. 19. Time evolution of the baroclinic part of the kinetic energy in the
region 15<z<<25, scaled by the predicted kinetic energy loss relative to the
initial state, for simulations with R=3. Line coding is the same as in
Fig. 18.
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FIG. 20. Hovmoller diagram of the meridional velocity for R2-yl-r4, y
=7.5. Note that the vertical axis spans the whole domain, contrary to Fig.
15. Patterns of outward propagating waves are clearly seen between times
10 and 20. Beyond that time, reflections from the boundaries lead to inter-
ferences and more complex patterns.

3. Generation of free gravity waves

As mentioned above, the initial conditions are in geo-
strophic equilibrium. Hence, gravity waves produced during
the evolution of the flow are not the result of a geostrophic
adjustment of the initial condition but necessarily a product
of the inertial instability. The possibility of gravity wave ra-
diation by inertial instability was briefly discussed for axi-
symmetric vortices in Ref. 19, for which the radiation was
found to be very small (at most 1/100 of the energy loss).

To illustrate the generation of these waves, Fig. 20
shows a Hovmdoller plot similar to those in Fig. 11 but for a
position far outside the unstable region. Two clear wavepack-
ets are seen propagating away from the center of the domain
(downward phase propagation for the top wave packet indi-
cates upward propagation of energy and vice versa for the
lower wave packet) several time units after the instability has
saturated. The Fourier transform of these motions (Fig. 21)
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FIG. 21. Same as in Fig. 17 but for y=7.5.
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confirms that, in contrast to the motions described in
Sec. VB2, they are freely propagating low-frequency
inertia-gravity waves. Their amplitudes are found to be
weaker than those of the subinertial trapped modes roughly
by a factor of 4.

There are several possible generation mechanisms of
freely propagating gravity waves: the nonlinear evolution of
the instability on time scales comparable to or faster than the
inertial time scale is the major culprit for the generation of
waves up to the saturation of the instability. After that, non-
linear interactions between subinertial trapped waves provide
a weak but persistent source of low-frequency inertia-gravity
waves.

This secondary production is again very sensitive to res-
olution and dissipation, making its quantification a difficult
issue. Moreover, in the present setting the emitted waves are
reflected from the boundaries and come back into the anticy-
clonic region. A more quantitative study of the excited waves
is beyond the scope of the present paper and would require a
different experimental setup, e.g., with a larger domain and
sponge layers near the top, bottom, and lateral boundaries.
Our emphasis here is merely to highlight the secondary gen-
eration in course of evolution of inertial instability as a
source of gravity waves.

VI. SUMMARY AND DISCUSSION

The inertial instability of a barotropic shear in a continu-
ously stratified and rotating fluid was investigated analyti-
cally and numerically, with a focus on two fundamental is-
sues: the nonlinear stage of the instability and the end state
of the flow evolution. A simple basic configuration was cho-
sen: a flow on the f-plane, symmetric in x, thus excluding
competition with barotropic instability (e.g., Ref. 10), with
Prandtl number of 1, and the unstable shear chosen to be
barotropic (purely inertial instability?).

The linear stability problem was solved analytically for
the case of a barotropic shear U(y)=tanh y and explicit ex-
pressions were obtained for the dispersion relation and mode
structure (Sec. IT). As in the previous studies (e.g., Refs. 4
and 28), the largest growth rate is achieved in the inviscid
limit, op,,,=VR~-1, with R=U/fL the Rossby number, and
is approached as the vertical wavenumber m — . The most
unstable growing mode consists of overturning cells stacked
in the column of negative PV.

The evolution of the instability was simulated numeri-
cally with the WRF model.*® This choice allows for further
investigation of the instability in more realistic flows with
the same model. A breeding procedure was used to isolate
the most unstable growing mode, which then served for the
initialization of the simulations. The simulations ranged from
strongly diffusive (Ekman number of 0.08), which were well
resolved, to weakly diffusive (only numerical diffusion),
which display the instabilities developing close to the grid
scale. Yet the latter are more relevant to the atmosphere and
ocean. A good agreement was found between the simulations
and the analytical results at the linear instability stage (see
Figs. 3 and 5), thus validating the numerical model.
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Regarding the nonlinear development of the instability,
the simulations revealed two generic features: horizontal
spreading of the unstable mode beyond the region of initially
negative PV and local intensification of the anticyclonic vor-
ticity. Both can be easily understood in strongly diffusive
simulations (Fig. 6): after an initial stage of self-similar
growth, the unstable mode spreads laterally. Hence the ini-
tially barotropic band of negative PV is distorted by alternat-
ing transverse jets of increasing width. Sharp meanders form
and are quickly diffused, yielding a new barotropic state. In
the course of this saturation process, the horizontal spreading
of the unstable motions leads to localized substantial inten-
sification of the anticyclonic vorticity (Fig. 7). This effect is
unexpected as it is precisely a strong anticyclonic vorticity
which is at the origin of inertial instability. Note, however,
that this increase in negative vorticity is compensated for by
the decrease in stratification, leaving PV unaffected, which
emphasizes that PV is indeed the appropriate quantity to ana-
lyze stability of stratified, rotating flows.

These generic features persist in the weakly diffusive
simulations, although arising small-scale motions and insta-
bilities significantly increase the complexity of the flow.

First, nonlinearity still leads to the horizontal spreading
of the unstable mode (Fig. 8). In fact, the horizontal spread-
ing occurs essentially regardless of resolution and diffusion,
because the fluid tends to evolve toward a neutrally stable
end state. This implies mixing of geostrophic momentum
over a wider region than the initially unstable one, similar to
the mixing of angular momentum by horizontally propagat-
ing dipole structures observed in simulations of inertially
unstable barotropic vortices.”” Tt is also, more remotely,
reminiscent of the distortion experienced by a columnar vor-
tex pair in the zigzag instability.37 The horizontal spreading
of transverse jets seen in the present simulations, however,
always has a finite extent.

Second, the enhancement of anticyclonic vorticity in lo-
calized regions of the flow is again present, the minima of
relative vorticity following comparable evolution regardless
of diffusion (Fig. 9). Yet, this effect was observed to be very
sensitive to resolution.

The weakly diffusive evolution of the instability con-
trasts with the strongly diffusive one in what concerns the
small-scale instabilities (shear and convective ones) which
provide necessary mixing of geostrophic momentum. In con-
trast to Ref. 16 no specific parametrization was set up to deal
with KH instabilities. As a consequence of these small-scale
instabilities, the region of negative PV is fragmented into
smaller-scale patches23 rather than smoothly diffused.

Regarding the end state of the flow evolution, we con-
firmed the prediction for the barotropic component based on
conservation of momentum?’ and advanced by analyzing the
baroclinic ones.

A prediction for a tentative final barotropic state®® can be
constructed graphically from the plots of geostrophic mo-
mentum M (Figs. 1 and 12): the initially unstable region
(with M/ dy>0) is replaced by a wider region of marginal
stability (dM/dy=0), the bounds of this region being defined
following a Maxwell rule for the momentum. This prediction
shows the necessity of the nonlinear spreading of the normal
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mode in order to mix geostrophic momentum over a region
wider than the originally unstable one. In our simulations of
unstable flows, the prediction was always fulfilled with little
sensitivity to resolution and diffusion (Fig. 11). We thus con-
firm in a totally different model the findings in Ref. 20. Fur-
thermore, as discussed previously for barotropic vortices'
and for planar flows,” this construction provides an estimate
of the energy lost by the flow due to the instability. Our
simulations confirm the relevance of this analytic estimate of
the excess kinetic energy to be removed by the instability.

The final state also contains baroclinic structures which
are substantial for the weakly diffusive simulations and have
not hitherto been analyzed in detail. For flows with weak
diffusivity, apart from the straightforward dissipation the ex-
cess kinetic energy is transferred to three types of baroclinic
perturbations:

(1) Permanent layers of stronger or weaker stratification.
For strongly unstable flows (R =3), this leads to a char-
acteristic staircase signature in vertical profiles of poten-
tial temperature.

(2) Trapped, subinertial gravity waves (o<1, Ref. 27) in
the marginally stable region (—dit/ dy=—1). These waves
can slowly propagate vertically in the anticyclonic re-
gion but cannot escape from it.

(3) Freely propagating inertia-gravity waves, which are ex-
cited by the development of the instability and propagate
away from the unstable region.

Our results show that inertial instability is a source of
inertia-gravity waves,”® which had only been mentioned once
previously19 to our knowledge. They also allow for interpre-
tation of layered structures observed in velocity profiles of
air advected from one hemisphere to the other.™® Marginal
stability, layering, and subinertial waves give a distinctive
signature of a region that has undergone inertial instability.
As all of the small-scale features detected in our simulations
are sensitive to diffusion, quantification of their relative im-
portance is still uncertain. Nevertheless, weakly diffusive
simulations suggest that, right after the saturation of the in-
stability, the excited inertia-gravity waves (trapped and free)
could represent from 5% to 10% of the excess energy, the
rest being removed by dissipation.

In the present study we considered only highly idealized
flow configurations. The work with more realistic flows is in
progress, with an emphasis on nonhydrostatic effects with
weaker N/f (relevant for laboratory experiments), fully 3D
simulations (cf. Ref. 16) and the role of a finite vertical ex-
tent of the unstable region (cf. Refs. 6, 17, and 39).
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