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Abstract

Existence of finite-amplitude inertia—gravity waves propagating without change of form is proved in the two-layer rotating
shallow water model. We find exact solutions of the full equations of motion corresponding to such waves. The form of the
nonlinear waves depends on the parameters of the model (density and height ratios of the layers) and on the phase speed. Thre

distinct families of waves having different forms and responding differently to the increase of amplitude are identified.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

The inviscid hydrostatic rotating shallow-water mo-
del (RSW) is widely used in geophysical fluid dynam-
ics (GFD), cf., e.g., [1]. In the pioneering papers [5,6]
V. Shrira has found specific exact solutions in this
model in the form of finite-amplitude periodic plane-
parallel waves (see also a recent review [2]). This
fact is rather surprising if one recalls that RSW is a
hyperbolic system of gas-dynamics type and exhibits
wave-breaking and shock formation (cf. [3,7]). In the
limit of small amplitudes the nonlinear waves tend
to the well-known infinitesimal surface inertia—gravity
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waves. The amplitude of the fully nonlinear waves is
limited from above and the waves tend to form cusps
at their crests while approaching the limiting ampli-
tude. Thus, although weak, the dispersion introduced
by rotation at the long-wave end of the spectrumis suf-
ficient to counter-balance the nonlinearity and to lead
to the formation of stationary waves in the periodic
geometry (there are no solitary waves in the model).
Besides rotation, the second fundamental phenom-
ena in GFD is stratification. It is absent in the baro-
tropic one-layer RSW model but may be introduced, in
the simplest way, by superimposing several RSW lay-
ers of different densities. Such multi-layer models are
of frequent use in GFD [1,4] (e.g., in the oceanic ther-
mocline context), in particular the two-layer one. In
order to pinpoint the purely baroclinic phenomena the
rigid lid upper boundary condition may be used, thus
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reducing dynamics to the interface between the two Hence, the value of the integration constaniis=

layers. Below we show that nonlinear periodic waves
also exist in the two-layer RSW but depending on the

parameters of the model and on the phase velocity,

their form varies falling into three distinct families.

2. Stationary waves of finite amplitudein the
one-layer RSW

We first remind the derivation of the nonlinear wave

—cH, where H is the mean elevation (or the rest
height) of the fluid, yielding for:

)

Note that solutions we are looking for bear no potential
vorticity anomaly, just as linear inertia—gravity waves.
Indeed, potential vorticity (PV) which is a material
invariant of the system (1) defined as

4

; , f+0xv
solutions in the one-layer case. The same standardq = h ()
method will be used afterward in the two-layer case. . .
The equations of the RSW model reduced to the by virtue of (2b) and (4) is equal to
plane-parallel solutions (i.e., those independent on f+v f
one spatial coordinatey) consist of the horizontal 9=~ = g (6)

momentum conservation equations in the presence

of the Coriolis force and the hydrostatic pressure
force (the centrifugal force, as usual in the GFD

i.e., the background PV of the unperturbed fluid layer.
We introduce the dimensionless elevatipn =
Hy, define the Mach (or Froude) numbed =

applications, is neglected) and the mass conservationc/\/g—H and from (4) and (2), obtain the following

equation:

Ou +udcu — fv+goyh=0, (1a)
0;v +udyv+ fu=0, (1b)
dh + 3y (uh) =0. (1c)

Here f is the Coriolis parameter (the double of the an-
gular velocity of rotation)g is the acceleration due to
gravity, u, v are the two components of the horizon-
tal fluid velocity, i is the free surface elevation. We
look for stationary propagating solutions depending on
& = x — ct only; the prime will denote the derivative
with respect ta:. Therefore,

—cu' +uu' — fv+gh' =0, (2a)
—cv +u(f+v)=0, (2b)
—ch’ + (uh) =0. (2c)

Integration of (2c) givea = ¢ + K/ h, wherekK is an
integration constant. As we look for spatially periodic
solutions with a (yet unknown) wavelengttand with
no overall mass-flux in the direction, integratingc/
over one wavelength gives zero:

A

/(K+ch)dg=o.
0

3

equation fory:

M? 1 "f?
|:7—2+X:| -=kx-D=0. )
X Co
From this equation we get
M?  f2y-1
BRI 8)
X g X

At the wave-crest we havg — 1> 0, x” <0, and
hence the r.h.s. of the expression above is negative.
Therefore, 1< x3 < M? and necessarily/ > 1.

After multiplication by[MT2 X—lz +x] Eg. (7) may be
integrated once, and reduced to a “particle-in-a-well”
equation at zero energy level of the “particle”:

2
’2 f

X' “+=V(;: M, A)=0. (9)

2
o
Note that only strictly positive values of are physi-
cally meaningful. The expression for the potential en-
ergy is:
N(x; M, A)
(D(x; M, A))?
2
x—D*(%7-1)-A

(% -1’

V(x; M, A)=

(10)
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Here A is an integration constant. Inserting, e.g., the 021% \ /‘/‘\‘&&
valuey = 1, it can be easily seen thdtis necessarily 0.05 \
non-negative (it is zero for the fluid at rest, strictly ~0,05 0.5 L 1.5 \2
positive otherwise, and increases with the amplitude @ —gffg
of the wave solutions to be obtained).

Stationary waves of finite amplitude correspond to 0.2 .
the oscillations of the particle around the rest position goéé ‘\ / \
x = 1. They exist if the potential has a zone of values o
which are negative an% bounded from below, and 9593 0.3 N“r’ Y\Z
if this zone is situated between two strictly positive () 6.3 N A
zeros! x; andy,, with 1 in between: O< y; < 1 < x,.
Such zone will be called a well below. An elementary T \
analysis shows that: the denominat®)? is always 0%et \
positive; thus the sign of the potential is determined by _0.05 05\ T 2
the numeratorD has a unique zero foro = M%/3 > 1 et ?>§ \\

(cf. the gray curve in Fig. 1(a), (b), (c)). The numerator  (© -0.2
N tends to+oco as y — 0; for x =1, it is equal
to —.A and, hence, is strictly negative for positive
Therefore, there is a zero of in the intervall0, 1].

For x — +oo, NV = oo, and A/ has a single
maximum in]1, +oo[. This maximum occurs for the
same value ofy as the zero of the denominator:
xo = M?/3 > 1. Therefore, itN (xo; M, A) is strictly
positive, the numerator has one zero in the interval Fig. 1. (a), (b), and (c): The numerataf (dashed), the denominator
11, xol: the potential then has a well and stationary (D)? (gray, dotted) of the potentia and the potential itself (plain)
vaes ot Ford dose 10 20, i 18 casy to b MRS ME A B0
check that the numerator h.as two zeros (.:Iose 0 ?ln +E;)[, hencé tHe potential has n(;well and there are no stationary
1, and waves of small amplitude always exist. FOr aves (d) wave profiles ford = 0.05 (dashed) andt = 0.18
small deviations from the rest-state, (9) becomes the (plain).
harmonic oscillator equation with (spatial) frequency

&\’Q-—/ZO

(d)

) 1 develop cusps ag — A, (cf. Fig. 1). However, as it
=—m— (11)  was shownin [7] atrue cusp is an asymptotic envelope
of the solutions and is not attainable.
This expression is equivalent to the well-known dis-  symmarizing, stationary waves exist if the equation

pzersion relation 2for linear surface inertia—gravity waves

c2=gH1+k™?). As A increases, the graph #f is M?

transzl’)ated downward (cf. the dashed cugrvepin Fig. 1(a), NOGM, A = (x = DZ(? - 1) —A=0 (12
(b), (c)) and there exists a critical valug. for which
the maximum of the numerator ifl, +oc[ is zero:
N(xo0; M, A) = 0. Asymptotic analysis in the vicin-
ity of xo = M?/3 then shows that the potential itself is Cres A :
continuous and has no well: hence, waves exist only € limiting value 3, The difference between the
for 0 < A < A.. Note that as4 increases, the poten- _roots of the numerator gives the amplitude of the wave;
tial becomes more and more asymmetric. Correspond-'ts wavelength depends on the value of the parameter

2
ingly, the wave-crests sharpen, and the waves tend tof /<o ) )
The obtained nonlinear waves are thus the plane-

parallel surface inertia—gravity waves of finite ampli-
1 A zero value oft is unacceptable as it leads to infinitecf. (4). tude. Note that they are not strictly one-dimensional as

has two distinct roots in the intervall, +oo[ or,
equivalently, if N'(M?/3; M, A) > 0. The height of
the crests of the waves is bounded from above by
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the cross-propagation velocityis nonzero and varies
periodically (cf. Eq. (2b)).

3. Stationary waves of finite amplitudein the
2-layer model

We show below that the two-layer RSW model also
admits propagating waves of finite amplitude as exact
periodic solutions of the equations of motion. In some

regimes of parameters they are analogous to those

found in the one-layer model. However, other regimes
exhibiting different behavior specific to the two-layer
model exist. Three different families of waves will be
identified below.

Following the same standard approach as in the
one-layer case, a governing equation for stationary
waves will be derived. The waves will be again
identified with the oscillations of a particle in a
well; the corresponding potential will be studied and
the bifurcations between the wave-families in the
parameter space will be described.

3.1. General equation for the stationary waves

The equations of the two-layer rotating shallow
water model with no variations in thedirection are:
dur +urdeus — fvr+ pp tdew =0, (13a)
dv1 +ua(f +9xv1) =0, (13b)
druo +u2d 2 — fvo + pglaxn +g'9.h=0, (13c)

0v2 + u2(f + 0yv2) =0, (13d)
0;(H —h) 4+ 0x((H — h)uy) =0, (13e)
9h + 9, (huz) =0 (13f)

whereu;, v;, i = 1,2, are the velocities in the upper
and the lower layer, respectively; is the barotropic
pressure imposed by the rigid lidj(x,t) is the
elevation of the interface between the layet, and
H»> are the heights of the two layers at re¢f &
Hi1 + H» is the total height andt may vary within
the limits [0, H]); ¢’ is the so-called reduced gravity:
g = g(p2 — p1)/p2.

We look for stationary wave solutions which are
functions of ¢ = x — ¢t and obtain the following
system of ODEs (the prime denotes thelerivative,

143
as usual):

—cuy +utu) — fur+ pl_lrr’ =0, (14a)
—cv)+ui(f +vy) =0, (14b)
—cul + ugu’y — fvo + p{ln’ +g'h =0, (14c)
—cvy+ua(f +vp) =0, (14d)
—c(H —h) + (u1(H — h)) =0, (14e)
—ch’ + (u2h) =0. (141)
The last two equations can be directly integrated:
u1=c+HC_lh, u2=6+%, (15)

where C; and Cz are the integration constants. The
zero-flux conditione1(H — h) + uzh = 0 yields:

C1+ Cy2=—cH. (16)
The expressions (15) are then inserted into (14a) and

(14c),v] andv, are eliminated using (14b) and (14d)
and the following single equation farfollows:

2 2 "
S5 5 o]
+ cfz(i + L)h
C, (C1

2 CH
1y —pr—
—I—f( r rC1>

wherer = p1/p2 is the ratio of the densities of the
layers. We are looking for periodic solutions with a
certain period.. By integrating (17) over one period
and using the fact that the integral of the interface
positions over the period id> by definition, we get
the following constraint:

cH> cHy
1 P
( - Cl)

1+ —-
Co d

which, together with (16), allows to fix the values

of C1 and C2: C1 = —cH1, C2 = —cH>, and to

determinas1 anduy:

r

2

C1
H-—h

0, (17)

0, (18)

_ —(h—Hp) _ h—H
ui=c 7 Up=c P (19)
Eq. (17) then becomes:
2 % 2 H 2 Vi
[g((f) _r(_H_lh) )+g,h}
f2
— —(h— H2) =0, (20)

H,
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where we introduced the equivalent depth —= is the potential, playing the same role)as the one-
Hfi% . As in the one-layer case, the PV-anomaly in layer case. Only values of between 0 and 1 are
each fayer is zero, as may be easily seen by usingphysically meaningful. As in the one-layer cade- 0
(14b), (14d), and (19). We thus get andM > 1.
g1= i g2 = i (21) 3.2. Analysis of the potential 1V
Hy H>
Introducing the nondimensional variabje= h/H, The structure of the potential is similar to that of the
and the notation potentialV in the one-layer case. However, there are
Hy c c two additional parameters, the ratios of the heights and
y = T M= — = —, densities of the two layers, respectivelyandr, and
V§'He Ce the numerator and denominator now diverge at two
o(r.y) = He _ A-y)y points: x — 0 andy — 1. In order to have stationary
’ H (y+1-y) waves, a well in the potential is needed around the
we rewrite (20) as: rest statey = y. The structure of the potential is as
follows:
M2p(r,y) (2 (1—y)? " The denominato¢Dy)? is always positive; the sign
[ 2 (? -r 1- X)Z) T ] of the potential is given by the sign of the numerator.
2 The numeratonV> tends to+oo for x — 0 and for

- _2(X —y)=0. (22) x — 1. Furthermore, foiy — y
C

2( 12
This equation is similar to (7), but the first term here NG M Acry) ~ (e =y)*(M° = 1) = A (26)
diverges both agy — 0 andy — 1, i.e., when the in-  with A > 0. Hence,\ has at least one zero in each
terface approaches either of the horizontal boundaries.interval 0, y[ and ]y, 1[. Only the zeros closest to
Itis easy to check that in the limf; — oo, Eq. (20) ¥, xi andx,, respectively, matter. The possibility of
takes the form of the equation for nonlinear waves in having waves in the system depends on the behavior

the one-layer model with the replacemefts—> H, of the denominator: in order to have wave solutions it
g — ¢’. It can also be seen that the linearization of is sufficient that the denominator does not have zeros
(20) for x close toy, n=x —y — 0 gives in the interval[x;, x-1. Note that the derivative of/>

with respect toy is equal to 2y — y)D». Therefore,
(§'He — )" — f2n =0, (23) once again, local extrema of the numerator other than

x =y coincide with the zeros db,.
The square root of the denominatdp, tends
to +o0 at x — 0 and x — 1, and has a single
dminimum in between. Elementary analysis shows that
the minimum corresponds to

1

with the dispersion relation for linear internal inertia-
gravity waves which followsz2 = g’ H,(1+ k~2).

After multiplication by the first derivative of the ex-
pression in the square brackets, (22) may be integrate
once and gives:

2 r, = - 27
X2+ L Vot M. ry, A =0, ey T T &7
where ‘ Note that the location of this minimum is a function
of parameters andy only. If Da(x;,; M,r,y) > 0,
Vo(x: M, 1, v, A) the denominator never vanishes]m 1[, and hence
No wave solutions always exist, whatever the value of
= (Dy)? A. If Da(xm; M, r,y) =0, the denominator vanishes

only at the pointy,,, while if Dy(x,; M,r,y) <0
(x - 7)2[¢M2(% +V(1l:;)z) —-1]-A4 it has two zeros, one on each side )gf. It is then
= (<pM2(V—2 p (1_),)3) B 1)2 . (29 necessary to investigate thg location of the numerator’s
x3 -3 roots relative to the denominator’s ones.
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Fig. 2. Minimum of Dy, i.e., xu(r,y), as a function ofy, for
various values of-: 0.9 (plain), 0.5 (dot-dashed), 0.1 (dashed).
y is also plotted (straight line) in order to determine solutions to

xm (r, y0) = yo- The solution to this equation tends to 0.5-at 1,
andto 1 at — O.

The existence (or nonexistence) of wave solutions
follows from the existence (or nonexistence) of zeros
in the denominator. The following observation on the
position of zeros of the denominator with respect to
the rest positiony = y is crucial. Fory = y the
denominator is equal tg¥/2 — 1)2 > 0. Two properties
of the denominator then follow:

e For any given value of-, there always exists
a value ofy such that the denominator never
vanishes: this valugg(r) is given by, (r, yo) =

0. In this case stationary wave solutions exist for
any A. For example, for layers of close densities
(the plain curve in Fig. 2), waves exist for aply

at least for a value aof close to 0.5.

If D, has two zeros, both are situated either in
the interval]0, [ or in the intervally, 1[.2 The
location of zeros oD, determines the orientation
of the cusp-like features. Foy greater than
yo(r) (or equivalentlyy,, (r, y) < y), cusps are
downward-oriented, fory below yo(r), cusps
are upward-oriented. For example, as seen from
Fig. 2, if cusps form in the case < 0.5, they are
oriented upward.

3.3. Wave families

As a result we have three families of waves.

Family A. Do(xm(r,y); M,r,y) <0 and y <
yo(r).

2 More precisely, ify < yo(r), both are inJy,1[, and if y >
yo(r), both are injo, y[.
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Fig. 3. Typical potential and wave profile for family A: (&y>
(dashed)D>, (gray, dotted), and potentiad, for M = 1.35,r = 0.9,

y =0.2 and A = 0.00105. A4 is chosen near the critical value. The
denominator has two zeros; as can be seen, they are also zeros of the
derivative of the numerator, (b) profile of the corresponding wave

(plain).

The corresponding waves behave qualitatively in
the same manner as waves of the one-layer RSW:
there exists a limiting amplitude, the wave profiles
tend to develop cusps at their crests as the amplitude
approaches the critical one. An example of the poten-
tial and of the corresponding wave profile is shown in
Fig. 3. The response of the waves of this family to the
increase of amplitude is shown in Fig. 4. The cusp is
an asymptotic limit and, in fact, no discontinuity is re-
alized, for the same reasons as in the one-layer case
(cf. [7D).

Qualitatively, waves of the family A arise when the
depth of the upper level is considerably larger than
the depth of the lower layer (what “considerably” pre-
cisely means depends on the values of other parame-
ters).

Family B. Da(xu(r, y); M,r,y) > 0.

In the absence of zeros in the denominator, the
potential always has a well around= y, whatever
the value ofA. Hence, formally, there is no limiting
amplitude for the waves other than that imposed by
the boundaries. Profiles of the waves of this family for
given values of\f andr, and for various amplitudes
are shown in Fig. 5.
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Fig. 4. Response of the waves of the family A to the increase of amplitude (from top to bottom). Panel (d) shows a wave approaching the
limiting amplitude. Parameter values &g = 1, H, =2.8,r = 0.1 andM = 2.
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Fig. 5. Waves of the family B: these waves ‘feel’ the presence of the rigid lid and are bounded only by the lower and upper boundaries.
Parameters ardfy =1, Ho =1,r =0.9 andM =2.
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0-002 Vo e Family C. Da(u(r.y): M.r.y) <0 andy >
0.002 0.2 0.4 6| 078 1 yo(r).
~0.004 Qualitatively, these waves are the upside-down
~0.006 version of the waves of the family A, as shown in
-0.008 Fig. 6. They are limited by a critical amplitude and
@ tend to form cusps at the troughs as their amplitude

increases. They correspond to the situation when the
depth of the lower layer is considerably larger than the
depth of the upper one.

3.4. Bifurcationsin the parameter space

For a given value of, the domains corresponding
to the families A, B, and C in the parameter space
(M, y) may be obtained by plotting the curve cor-
Fig. 6. Potential and wave profile for a wave of family C, represented respon(_jmg_to the ZGfO_ level_ dDZ(Xm; M,r,y) as
in the same way as in Fig. 3. The values of the parameters are ShOWN in Fig. 7. Crossing this curve corresponds to
M =13,r=009, y =0.8 and A = 0.00075. As.A approaches a bifurcation. For instance, for given valuesjyofand
the limiting value, the profile tends to develop cusps at the troughs.  one can switch from the family A to the family B

(b)

1 T T T I T

0.8

0.6

0.4

0.2

@)

0.8 i

O 15 2 25 3 35 4

Fig. 7. Separation iiM, y) space between parameter regimes corresponding to the waves of family A (bottom region), B (center) and C (top
region), for (a)r = 0.9 and (b)r = 0.1. As the difference between the densities of the two layers increases, the domain in parameter space
corresponding to family C shrinks.
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1. /\_/vv\
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(a) 10 20 30 40
3.
2.
L M
0. ) ) ) )
(b) 10 20 30 40
3.
2.
L. Uw
0.5 - - ‘ ‘
(d) 10 20 30 40
3.
2.
1.
0. . ) - -
(e) 10 20 30 40

Fig. 8. Nonlinear waves of family B for the same values of the model parameters as in Fig. 4, except for a slightly higher phase-=sizéd (
instead ofM = 2), which corresponds to a longer wavelength. The amplitude of the wave on panel (a) is deliberately chosen close to that of
Fig. 4(c). The response of the wave to the increase of amplitude, panels (b)—(e), differs significantly from that on Fig. 4. In particular, there is
no cusp formation anymore.

0.002 | L7 Analogously, the family B waves can be obtained
Z0.002 277 p.4 0.6 0.8 1 for the same parameter values as those used in Fig. 6,
~0.004 by increasing’l/l.

-0.006
-0.008
(@) 4. Discussion
083§ We have demonstrated that waves of finite ampli-
0,25 tude may propagate at the interface in a two-layer
ogi% rotating shallow water model. In the limit of small
0(.)0% amplitudes they correspond to the classical internal
2 4 6 8 10 inertia—gravity waves and, therefore, are the finite-
() amplitude counterparts of these latter. Although the

waves are plane-parallel, they are not strictly one-

dimensional as they are accompanied by a system of
Fig. 9. Same as in Fig. 3, but for a wave of family B. The values  alternating currents in the cross-propagation direction.
of the parameters defining the systdm r) are the same. The The two-layer RSW models Iong—wave perturbations

displayed wave has a little higher phase velocity= 1.44; the . . . . .
denominator no longer vanishes, and hence there is no critical of the sharp denSIty gradlent regions in the continu-

amplitude anymore. For the wave showt= 0.03. ously stratified fluid. So it would be interesting to look
for manifestations of these waves in the oceanic ther-
by increasing the phase speed, i.e., the valu¥ ptf. mocline.

Fig. 9 and Fig. 3. Similarly, Fig. 8 should be compared The question of stability of the nonlinear wave
with Fig. 4. solutions remains open. It is notoriously difficult
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