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ABSTRACT

Previous simulations of dipole vortices propagating through rotating, stratified fluid have revealed small-

scale inertia–gravity waves that are embedded within the dipole near its leading edge and are approximately

stationary relative to the dipole. The mechanism by which these waves are generated is investigated, be-

ginning from the observation that the dipole can be reasonably approximated by a balanced quasigeostrophic

(QG) solution. The deviations from the QG solution (including the waves) then satisfy linear equations that

come from linearization of the governing equations about the QG dipole and are forced by the residual

tendency of the QG dipole (i.e., the difference between the time tendency of the QG solution and that of the

full primitive equations initialized with the QG fields). The waves do not appear to be generated by an

instability of the balanced dipole, as homogeneous solutions of the linear equations amplify little over the time

scale for which the linear equations are valid. Linear solutions forced by the residual tendency capture the

scale, location, and pattern of the inertia–gravity waves, although they overpredict the wave amplitude by a

factor of 2. There is thus strong evidence that the waves are generated as a forced linear response to the

balanced flow. The relation to and differences from other theories for wave generation by balanced flows,

including those of Lighthill and Ford et al., are discussed.

1. Introduction

Snyder et al. (2007, hereafter SMPZ) performed nu-

merical simulations of a dipole vortex in rotating, strati-

fied fluid having uniform potential vorticity and small

Rossby number R 5 U/fL, where U and L are velocity

and length scales for the dipole and f is twice the rotation

rate. The simulations revealed smaller-scale inertia–

gravity waves embedded within and stationary with re-

spect to the dipole vortex. These waves appear to be an

inherent part of the dipole solution, as they are insen-

sitive to initial conditions and persist in a nearly steady

state for many tens of inertial periods. Similar waves

have also been found in other dipole simulations, which

differ in their numerical techniques and in the details of

the dipole vortex (Viúdez 2007, 2008; Wang et al. 2009).

The present paper investigates the source mechanism

for these inertia–gravity waves.

These waves are of interest as an example of gravity

wave generation by a balanced flow.1 Other simple flows

where wave generation occurs include frontogenesis

(Snyder et al. 1993; Reeder and Griffiths 1996), elliptical

vortices (Ford 1994a), plane waves of potential vorticity

in shear (Vanneste and Yavneh 2004), and evolving

baroclinic waves (Zhang 2004). The dipole is an especially
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1 We define ‘‘balanced flow’’ or ‘‘balanced motion’’ to be the

solution of any approximate governing-equation set for rotating,

stratified fluid that filters inertia–gravity waves, in the sense that the

equation set supports only slow modal solutions when linearized

about a state of rest. Quasigeostrophic flow is an example.
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useful example, since the characteristics of the balanced

flow and the embedded waves are qualitatively similar

to those found near the tropopause in baroclinic waves

in both observations (Guest et al. 2000; Plougonven

et al. 2003) and numerical simulations (Plougonven and

Snyder 2007), while the simplified dynamics and time

evolution of the dipole facilitate analysis of the source

mechanism for the waves.

We consider two possible source mechanisms. The

first is an instability of the balanced dipole that would

involve inertia–gravity waves, perhaps akin to other in-

stabilities that couple balanced motions and gravity

waves (Sakai 1989; Ford 1994a; Plougonven et al. 2005

and references). A second possibility, which we will

discuss in greater detail in section 2, is that the waves are

a linear forced response to the balanced flow.

Alternative proposals for understanding the wave

generation in the dipole include the ‘‘hybrid vortex-

wave structure’’ of McIntyre (2009). This interpretation

emphasizes the nonlinear back reaction of the waves at

finite amplitude on the balanced flow. In addition, Viúdez

(2008) has analyzed the terms contributing to the ver-

tical velocity in simulations of a dipole vortex similar

to those of SMPZ and emphasizes the role of the ma-

terial rate of change of the horizontal ageostrophic

vorticity. This analysis, however, is not a comprehen-

sive dynamical description of the wave generation

because it considers only one of the three scalar evo-

lution equations required to describe anelastic hydro-

static flow.

The possibility that the waves arise as a linear forced

response to the balanced dipole is broadly analogous to

the production by vortical motion of sound (Lighthill

1952) or of gravity waves in shallow water flows (Ford

1994b; Ford et al. 2000). But the inertia–gravity waves

found by SMPZ and others differ in two important as-

pects from the predictions of the Lighthill–Ford theory:

they are of smaller scale than the dipole rather than

larger scale and they are confined within the dipole

rather than appearing in the far field. One goal of the

present paper is to clarify the relationship between the

Lighthill–Ford theory and the waves found by SMPZ.

Many previous studies write the governing equations

in terms of the normal modes for an atmosphere at rest

and distinguish slow balanced flow from inertia–gravity

waves based on the separation of time scales that obtains

when R is small. Wave generation then occurs because

the frequency spectrum of the balanced flow in general

is not compact but has a weak high-frequency tail that

overlaps the frequency range of freely propagating

gravity waves (Errico 1982; Warn 1997; Saujani and

Shepherd 2002). Balanced motion necessarily excites

waves in that frequency range.

The gravity waves generated by the dipole vortex, in

contrast, share the same slow temporal scale as the

balanced flow but have smaller spatial scale. We argue

that both the projection of the balanced dipole onto

small spatial scales and the advection of fluid relative to

the dipole are necessary for the wave generation, as they

allow motions with large intrinsic or Lagrangian fre-

quencies. In essence, the dipole generates waves much

as steady flow over smooth but spatially localized

orography in a rotating stratified fluid will always pro-

duce some steady inertia–gravity waves.

Our approach to the problem begins from the as-

sumption that the flow can be approximated by a bal-

anced solution. Deviations from the balanced solution

are then small over some time interval and simple ma-

nipulations of the governing equations, outlined in sec-

tion 2 and following Snyder et al. (1993), lead to a linear

forced equation for the deviations, whose validity de-

pends only the smallness of the deviations. Scale analysis

of the dispersion relation for inertia–gravity waves pro-

vides qualitative explanations for the characteristics of

the SMPZ waves and emphasizes how they differ from

Lighthill–Ford theory. Section 3 presents a numerical

implementation of the forced linear problem and dis-

cusses the time interval for which it is valid. Homoge-

neous solutions of the linear equations are explored first,

in section 4, in order to detect possible instabilities of the

dipole. Section 5 then investigates the forced linear so-

lution. This solution reproduces reasonably the spatial

pattern of emitted waves in the SMPZ dipole simula-

tions but overestimates their amplitude by roughly a

factor of 2. Our results and conclusions are summarized

in the final section.

2. A linear forced analysis of wave generation

a. The linear equation

Our analysis of inertia–gravity wave generation within

the dipole rests on the observation that the waves are

weak compared with the dipole’s flow. Indeed, the

waves have little noticeable signature in potential tem-

perature or horizontal velocity. We also assume that the

dipole’s evolution can be approximated by the quasi-

geostrophic (QG) equations or another balanced equa-

tion set that filters inertia–gravity waves, at least over a

limited time interval whose length will be assessed in

section 3.

Let s(x, y, z, t) represent the dipole solution from the

unapproximated equations, where the components of s

are the primitive dependent variables for the flow. For the

compressible Boussinesq model used here and in SMPZ,

those variables are the velocity components (u, y, w), the
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potential temperature u, and a scaled Exner function f.

Defining ~s(x, y, z, t) to be the approximate balanced

solution and s9 5 s � ~s, our basic assumption is that s9,

the deviation from the balanced solution, is small.

We write the unapproximated governing equations as

›s

›t
5 N(s), (1)

where N is a nonlinear, partial-differential operator.

When s9 is small, the rhs of (1) can be expanded in a

Taylor series to yield

N(~s 1 s9) 5 N(~s) 1 L(s9; ~s) 1 O(js9j2), (2)

where L(� ; ~s) is the linear, partial-differential operator

obtained by linearizing N about ~s. In general, L has

nonconstant coefficients that vary in both time and space

through their dependence on ~s and its derivatives.

Since ›s9/›t 5 N(s)� ›~s/›t, deviations from the bal-

anced solution then satisfy, to within O(js9j2),

›

›t
� L

� �
s9 5 N(~s)� ›~s

›t
. (3)

Thus, s9 evolves according to a linear partial-differential

equation with nonconstant coefficients that is forced by

a known function of the balanced solution ~s. We will

refer to the forcing as a residual tendency because it is

the difference between N(~s), the instantaneous time

tendency that would be produced if the balanced so-

lution were substituted in the full equations, and ›~s/›t,

the time tendency of the approximate balanced solu-

tion itself.

Equation (3) is clearly valid if s9 is sufficiently small. We

leave open the question of just how small s9 must be in

terms of external parameters such as R. Instead, we use

(3) as motivation for the numerical solutions presented in

sections 3–5 and simply check its validity a posteriori by

comparing against the difference between the full non-

linear solution of (1) and the balanced solution.

Calculating the forcing requires not only the balanced

solution ~s itself, which is provided by most techniques

for potential-vorticity inversion, but also ›~s/›t. Indeed,

strong cancellation will typically occur between Nð~sÞ
and ›~s/›t, since the latter is an approximation of the

former. Balanced solutions whose order of accuracy in

an expansion in R is n will yield residual tendency

N(~s)� ›~s/›t that is O(Rn) compared to either term

individually.

The only approximation required for (3) is neglect of

terms that are nonlinear in s9. As originally emphasized by

Lighthill (1952) and more recently by McIntyre (2009),

this removes any back reaction by the deviations on the

original balanced flow and allows s9 to be considered as a

response forced by the balanced flow. McIntyre (2009)

argues that the wave generation within the dipole is

associated with significant back reaction on the balanced

flow and thus may not be understood by (3).

Forced, linear equations like (3) have been derived

previously. In studies of gravity wave generation by

frontogenesis, Ley and Peltier (1978) and Snyder et al.

(1993) proceed in the same manner as here but develop

equations for the specific case of two-dimensional

frontogenesis, with a balanced solution given by the

semigeostrophic solution. M. Reeder (2004, unpublished

manuscript) has computed the forced solutions numeri-

cally and shown them to be excellent approximations to

the deviations from the semigeostrophic frontogenesis

solution.

An important aspect of equations like (3) is that the

operator L(�; ~s) has nonconstant coefficients, implying

that the gravity wave solutions differ from gravity waves in

a fluid at rest. Plougonven and Zhang (2007) have derived

heuristically, using scale analysis, forced linear equations

governing the small-scale component of the flow. They

show that advection by the balanced flow should be re-

tained in L if the deviations s9 are of much smaller spatial

scale than the balanced motion, as is the case in the dipole

and in other simulated and observed inertia–gravity waves

associated with fronts and jets. Any waves generated then

feel the effects of propagation through a slowly varying

medium. Plougonven and Snyder (2005) give an example

of the importance of such effects.

Another approach is to manipulate (1) as in Lighthill

(1952) or Ford et al. (2000), moving any purely linear

terms to the lhs and evaluating the remaining nonlinear

terms from an approximate balanced solution. The re-

sulting equation would differ from (3) in its neglect of

those terms in the operator L(�, ~s) that arise from the

linearization of nonlinearities such as advection. Reeder

and Griffiths (1996) adopt a similar approach, again in

the context of wave generation by frontogenesis. They

treat nonlinear terms as in Lighthill (1952) and evaluate

them as a forcing using the semigeostrophic solution.

But because they begin with equations for perturbations

to a large-scale frontogenetic flow, the linear operator on

the lhs has variable coefficients arising from the large-

scale flow and captures some aspects of variations of the

medium on the wave propagation.

b. Discussion

Some important inferences follow immediately from

(3). First, unless the rhs of (3) has a very special form, it

will have some projection on temporal frequencies and

spatial scales corresponding to inertia–gravity waves

propagating through a medium defined by the dipole’s
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flow. Thus, s9 should in general include forced waves, as

detailed in Warn (1997) for the generation of fast waves

by slow balanced motion.

Second, (3) also admits wave generation through in-

stabilities that couple balanced motions and gravity

waves, like those already identified for the shallow-

water equations (Ford 1994a) and continuously stratified

rotating flows (Plougonven et al. 2005 and references

therein). Such instabilities are homogeneous solutions

of (3) for steady balanced flows.

Third, s9 will include balanced motions, in the form of

higher-order corrections to ~s, such as might be obtained

by an expansion in Rossby number or Froude number.

These corrections will in general exhibit secular growth

with time and thus will not remain small, as discussed in

Warn et al. (1995). Because of this, (3) will be valid only

for a limited time interval. We estimate the length of this

interval for the dipole in section 3 and show how bal-

anced corrections can grow with time in section 4.

While it is clear that s9 will in general include inertia–

gravity waves, the amplitude of those waves remains an

open and difficult question. The rhs of (3) shares the

spatial and temporal scales of the balanced motion.

Thus, when there is scale separation in time or space

between waves and balanced motions, the projection of

the forcing onto waves will be weak and the wave re-

sponse will be much smaller than order-of-magnitude

consideration of the rhs of (3) would imply. For exam-

ple, Medvedev and Gavrilov (1995) arrive at a forced

linear equation similar to (3) through a multiple time-

scale expansion, yet detailed analysis of the solutions

shows that there is zero projection of the slow forcing

onto fast waves at the order of truncation they con-

sider. Indeed, because of the weak projection of the

forcing onto waves when R is small, the wave response

may be exponentially small in R (Warn 1997; Saujani

and Shepherd 2002; Vanneste 2008), so that asymp-

totic expansion of (1) for R � 1 will not include the

spontaneously generated waves at any algebraic

power of R.

Leaving aside the question of the wave amplitude, scale

analysis provides several constraints on other character-

istics of spontaneously generated waves. Consider the

nondimensional dispersion relation for inertia–gravity

waves in a slowly varying, background flow (u, y, 0):

R2(v� ku� ly)2
5

1 1 B2(k2 1 l2)

m2
. (4)

Here, (k, l, m) and v are the local wave vector and fre-

quency, respectively, B 5 NH/fL is the Burger number,

and the nondimensionalization employs the velocity,

length, and height scales (U, L, and H, respectively) of

the balanced flow together with the advective time scale

L/U. In the absence of a background flow, the wave

frequency is necessarily O(R21) or larger.

For the dipole, R is small and B 5 O(1). At least one

of v and (k, l) must then be O(R21) to satisfy (4). Thus,

two classes of waves are possible, either high frequency

compared to the balanced motion or of much smaller

horizontal scale than the balanced motion. The waves

with small horizontal scale must have small vertical scale

as well to maintain a wave–vector slope that is consistent

with the (near-inertial) intrinsic frequency. The projec-

tion of the residual tendency onto either class of wave

will be weak and determining the wave amplitude be-

comes a subtle question, as already noted.

The dipole is nearly steady in the comoving frame and

so the residual tendency that forces (3) will be almost

steady, with even less excitation of frequencies v ; R21

than a typical QG flow. Thus, the dispersion relation (4)

alone predicts that any waves emitted by the dipole

should have small horizontal and vertical scale, with k,

m ; R21, and should be approximately stationary with

respect to the dipole. Each of these characteristics is

observed in the SMPZ simulations.

The possibility of small-scale waves whose absolute

frequency is comparable to or smaller than that of the

balanced flow [i.e., v 5 O(1)] depends on the presence

of the background flow (u, y, 0). Motions with suffi-

ciently small scales in the direction of the flow can then

have intrinsic frequencies that are large—larger than f

and in the range of inertia–gravity waves. Mathemati-

cally, there may be a nonzero response to steady forcing

through the term L(s9,~s) in (3) even though ›s9/›t is

small or zero. This is analogous to the forcing of steady

waves by fixed topography and a steady background

wind. Methods based purely on a separation of time

scales between balanced motions and waves will over-

look the class of small-scale waves, as will approaches

that, following Lighthill (1952) or Ford et al. (2000),

retain on the lhs of (3) only those terms appropriate for

inertia–gravity waves in a rotating fluid at rest.

The situation is different for rotating shallow-water

flow. In that case, the dispersion relation for inertia–

gravity waves is

R2(v� ku� ly)2
5 1 1 (R2/F2)(k2 1 l2),

where now F 5 U/
ffiffiffiffiffiffiffi
gH
p

and H is the fluid depth. If R�
1 and F ; R, then the dispersion relation requires v 5

O(R21) and k 5 O(l); the waves must be fast compared

to the balanced motion but share the same spatial scale.

Consistent with this, in this regime Kizner et al. (2008)

find steadily propagating dipole solutions for rotating

shallow water that, unlike the continuously stratified
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dipole, do not exhibit embedded copropagating inertia–

gravity waves. When R 5 O(l) and F � 1, then waves

can have v 5 O(1) as long as k, l 5 O(F). This is the

regime of Ford et al. (2000) in which the waves are long

and inherit their Eulerian frequency, which is larger

than f, from the balanced motion. In both regimes, the

background flow makes a negligible contribution to the

intrinsic frequency of the waves and thus our conclu-

sions are the same as those of Saujani and Shepherd

(2002), who consider the shallow-water dispersion re-

lation without a background flow.

3. The forced linear model and its accuracy

In this section, we give the detailed formulation of the

forced linear model and assess the time interval over

which its solutions are useful.

The simulations of SMPZ are based on the Boussinesq,

compressible, nonhydrostatic equations for a uniformly

rotating fluid. The governing equations represented

schematically in (1) thus have the specific form

›v

›t
5�v � $v� f k 3 v� $f 1

gu

u
0

k, (5a)

›f

›t
5�v � $f� c2

s $ � v, and (5b)

›u

›t
5�v � $u, (5c)

where f 5 cpu0(p/p0)R/cp , u0 is a reference potential

temperature, p0 is a reference pressure, cs is the constant

speed of sound, and other notation is conventional. We

will abuse terminology slightly by referring to (5) as the

primitive equations (PEs). Even though prognostic

equations for the vertical velocity w and for f are in-

cluded in (5), the flow is nearly hydrostatic and incom-

pressible for the spatial and temporal scales that

characterize the dipole, including the embedded inertia–

gravity waves.

Given an approximate, balanced solution with fields ~v, ~u,

and ~f, which may vary in space and time, (5) can be lin-

earized about that solution to yield the counterpart of (3):

›

›t
1 ~v � $

� �
v9 1 v9 � $~v 1 f k 3 v9 1 $f9� gu9

u
0

k

5 (F
u
, F

y
, F

w
), (6a)

›

›t
1 ~v � $

� �
f9 1 v9 � $~f 1 c2

s $ � v 5 F
f

, and (6b)

›

›t
1 ~v � $

� �
u9 1 v9 � $~u 5 F

u
. (6c)

The forcing terms (Fu, Fy, Fw), Ff, and Fu, like the rhs of

(3), are functions of the balanced solution and are given

by the difference between the time tendency determined

by substituting the balanced fields in (5) and the actual

time tendency of the balanced solution. For example,

the residual tendency for u is

F
u

5�›~u

›t
� ~v � $~u 1 f~y � ›~f

›x
. (7)

Because the flow is nearly hydrostatic and incompress-

ible, we also make the approximation that Fw 5 Ff 5 0.

Since R is small, ~v can be approximated by the geo-

strophic velocity ~vg on the lhs of (6). We will examine the

effects of this additional approximation in sections 4 and

5 by computing solutions both with ~v 5 ~vg and with
~v 5 ~vg 1 ~va, where ~va is the ageostrophic velocity. Ex-

pressions for ~v
g

and ~v
a

are given in the appendix.

Equations (5) are discretized and solved numerically,

as outlined in SMPZ, using centered fourth-order dif-

ferences for the advective terms and a time-split inte-

gration technique in which the terms associated with

the propagation of linear acoustic waves are updated

with a smaller time step. The linearized Eqs. (6) em-

ploy the same numerics; in fact, the linearized model

is derived through the linearization of the discretized

equations about the specified balanced solution. Both

the nonlinear and linearized models also include fourth-

order horizontal hyperdiffusion in the momentum and

potential temperature equations, as well as damping of

the three-dimensional divergence, as described in SMPZ.

We will take as the balanced solution the QG dipole

vortex of Muraki and Snyder (2007), which was also

used as initial conditions for the simulations of SMPZ. It

has antisymmetric warm and cold anomalies at a hori-

zontal boundary (in this case, the surface) and its purely

geostrophic velocity decays smoothly away from the

boundary owing to the uniform interior potential vor-

ticity. The resulting forcing terms in (6) are specified in

the appendix. As just noted, some experiments will also

include the diagnosed ageostrophic velocity in ~v on the

lhs of (6). Those experiments provide a measure of the

sensitivity of the solution of (6) to the precise choice of

the approximate balanced flow.

The QG dipole translates horizontally at a steady

speed. In what follows, we will work in the frame of

reference moving with the dipole, where the balanced

solution is exactly steady.

Let the maximum wind speed of the QG dipole be

denoted by U and the radius of its region of surface u

anomaly be L. We will take U and L respectively as the

characteristic velocity and length scales of the dipole.

Results presented here will be based on U 5 10 m s21
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and L 5 500 km, the same as the standard case consid-

ered in SMPZ. The dipole’s translation speed is then

approximately 1.1 m s21 and the Rossby number R 5 0.2.

A crucial question is the accuracy of (6) in describing

the evolution of differences between the QG solution

and the full nonlinear solution of (5). The dipole evolves

on the advective time scale L/U or, equivalently, with

time tendencies comparable to U/L. The QG equations

give a leading-order approximation in R to those ten-

dencies. The difference between the PE and QG time

tendencies will then have magnitude RU/L and the rela-

tive error of the QG solution will be O(l) for times Dt such

that RUDt/L 5 1. For U 5 10 m s21 and L 5 500 km,

Dt ’ 3 days.

Thus, the solution of the forced linear solution should

be an accurate approximation to the difference between

the PE and QG solutions only for times less than a few

Dt, or perhaps 10 days.

The time over which solutions of (6) are accurate can

also be assessed through direct comparison with the

difference between the PE and QG solutions. Figure 1

shows this comparison for u at the lowest model level

above the surface and after 1 day, 3 days, and 7 days of

evolution. The u perturbations have scales comparable

to the dipole itself and the associated velocities (not

shown) are approximately geostrophic. The forced lin-

ear solution is a useful approximation after 1 and 3 days

but clearly begins to diverge by 7 days from the differ-

ence between PE and QG, consistent with the scaling

arguments just given.

The difference between the PE and QG solutions at 7

days exhibits a tripolar pattern in u that is tilted relative

to the axis of the dipole. Comparison of the PE and QG

dipoles (Fig. 2) shows that the differences arise from (i) a

spreading of the cold anticyclone across the axis of the

PE dipole, (ii) a slowing of the zonal propagation of the

PE dipole, and (iii) a cyclonic rotation of the PE dipole.

The latter behavior is consistent with the propagation of

the PE dipole along a cyclonically curved path (see Fig. 2

of SMPZ). Together, these differences are an example

of the secular growth of balanced corrections to the QG

solution predicted by Warn et al. (1995).

In what follows, we will generally limit our use of the

solutions to (3) to times less than 3Dt or about 10 days.

The stationary inertia–gravity waves in the PE solution

of SMPZ, in comparison, are clearly present by 10 days,

although some transients also remain at that time. Thus,

there is some overlap between the times at which

FIG. 1. Comparison of (top) the perturbations for u at the lowest level above the surface as predicted by (3) with (bottom) the difference

of the PE and QG dipole solutions. Days 1, 3, and 5 are shown. The contour internal is 0.3 K, with contours beginning at 60.15 K and gray

lines indicating negative values.
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stationary waves are present in the PE solutions and the

time interval over which solutions of (6) are accurate.

4. Homogeneous solutions from random initial
conditions

In this section, we consider solutions of (6) from

random initial conditions and with the forcing terms on

the rhs set to zero. This differs from a classical stability

analysis in that we do not possess a steadily translating

dipole solution for the PE.2 Our approach provides in-

formation about the stability of the QG dipole to small

perturbations under PE dynamics, but in a restricted

sense. Solutions of (6), and thus any inferences about the

dipole’s stability, are valid only for times for which the

QG dipole is a reasonable approximation to the evolu-

tion of the dipole under the PE, perhaps 10 days (for

U 5 10 m s21 and L 5 500 km).

The initial conditions for the perturbations are given

by white noise in u9 with unit variance for 0 , z ,

3.25 km. Initial perturbations for the velocity are zero

for simplicity. Experiments with initial perturbations at

all levels (not shown) exhibit very slow decay of the

perturbations aloft but qualitatively similar behavior in

the neighborhood of the basic-state dipole.

The evolution of the rms of u9 appears in Fig. 3 for two

realizations of the initial perturbations (thick black

lines). In either realization, the perturbation decays over

the first 20 days. Since the decay is clearly partly an ar-

tifact of our choice of initial conditions that are not

balanced and that have substantial power at the small-

est, most heavily damped scales (Snyder et al. 2003), we

extended the integrations to longer times, well beyond

the nominal 10-day limit for the accuracy of the linear

solutions, in order to isolate more rapidly growing dis-

turbances. At later times, the perturbation amplitude

grows slowly or oscillates, showing a net amplification

by a factor of between 10 and 20 over the next 75 days.

The timing of the oscillations in perturbation amplitude

depends on the specific realization of the initial pertur-

bation. The perturbation horizontal velocities behave

similarly but for w9 the initial decay lasts for more than

30 days (not shown).

The perturbation growth is no stronger and its changes

over time are qualitatively similar if the basic-state dipole

includes ageostrophic velocities. The gray lines in Fig. 3

show the evolution of the rms of u9 for the same two

realizations of the initial perturbations but including

ageostrophic velocities in the basic state.

Although nonzero, these long-term amplifications

are so small that we conclude that an instability is of

doubtful relevance to inertia–gravity waves in the SMPZ

simulations. Even an optimistic estimate from Fig. 3

would yield amplifications less than 1.5 over 10 days.

While these growing perturbations are of doubtful

relevance to inertia–gravity waves in the SMPZ simu-

lations, the mechanism by which they grow is of some

FIG. 2. Values of u at the lowest level above the surface at day 7

for the PE dipole (black contours) and the QG dipole (gray).

Contour interval is 1/5 the difference between the maximum and

minimum u for the QG dipole, or roughly 1.1 K.
FIG. 3. Time series of rms u9 (i.e., the square root of the domain

average of u92), normalized to have unit initial value. Results are

shown for two different realizations of random white-noise initial

perturbations in u9 (thick black lines), for the same two realizations

but including va in the basic-state dipole (gray lines), and for two

other initial conditions for u9 (thin lines): an axially symmetric

monopole given by (8) and the meridional derivative of the

monopole (which yields the largest u92 at each time).

2 Steadily translating dipoles (modons) have recently been ob-

tained for the shallow-water equations (Kizner et al. 2008). The

existence of such dipoles in continuously stratified fluid, where the

phase speed of inertia–gravity waves no longer has a finite lower

bound, is an open question.
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interest. We speculate that they are related to the bal-

anced disturbances that grow algebraically on two-

dimensional, barotropic dipoles (Snyder 1999). In that

case, the initial perturbation is a monopolar vortex of

uniform vorticity and the same radius as the basic-state

dipole. The velocity associated with the disturbance

vortex causes the dipole to rotate, leading to a dipolar

difference from the basic-state dipole that grows linearly

with t in the small-amplitude limit, and the velocity as-

sociated with the growing dipolar disturbance in turn

leads to a displacement of the basic-state dipole normal

to its propagation direction, which grows as t2.

To evaluate the relevance of such disturbances to our

results, we have examined the evolution of two large-

scale initial perturbations, the first monopolar and the

second dipolar. The monopolar initial perturbation is

given by

u9(x, y, z) 5 exp
�[(x� x

0
)2

1 (y� y
0
)2

1 N2

f 2

� �
z2]

r2

8<
:

9=
;,

(8)

where x0 5 y0 5 1500 km and the decay scale r 5

165 km. Taking ›/›y of (8) gives the dipolar initial per-

turbation, which is antisymmetric across the x axis.

Again, the initial velocity perturbations are zero and the

initial evolution of the perturbation exhibits consider-

able geostrophic adjustment.

Starting from either initial condition, u9 grows at

roughly the same rate as in the simulations using white-

noise initial conditions, though with little or no initial

decay (Fig. 3). Thus, an initial perturbation similar to

that considered by Snyder (1999), as well as other initial

perturbations with scale similar to the dipole, efficiently

excites the growing disturbance.

The structure of the growing perturbations provides

further evidence. Although they do not converge to a

fixed structure,3 the growing perturbations that emerge

have common qualitative characteristics. They have

horizontal scale of O(1000 km), comparable to that of

the basic-state dipole, and the horizontal velocity is

approximately geostrophic as would be expected for

perturbations of this scale. Like the basic-state dipole,

the perturbations are surface trapped, so that regions of

warm u9 are associated with negative f9 and cyclonic

wind perturbations. These aspects of the perturbations’

structure are illustrated in Fig. 4, which shows the near-

surface structure of a perturbation that has evolved for

55 days from a specific realization of the random initial

conditions. All these aspects of the perturbation struc-

ture are also consistent with what would be expected

from a generalization of the results of Snyder (1999) to

dipoles in stratified, rotating flow.

The details of the perturbation structure depend on

the specific initial conditions. After looking at many

realizations, we have observed cases in which, at some

point in the perturbation’s evolution, u9 is approxi-

mately dipolar (like �u), tripolar (like ›�u/›y, as shown in

Fig. 4), quadrupolar (like ›�u/›x), or some superposition

of these structures.

FIG. 4. Perturbation fields near the surface 55 days after the perturbation was initialized with random noise in u9 as described in the text:

(a) u9 at z 5 125 m (thick contours) overlaid on �u (thin); (b) f9 (thick contours) and v9 (vectors) at the same level; and (c) w9 at z 5 250 m.

Black and gray contours indicate positive and negative values, respectively, of the perturbation fields. Contour intervals are equal to 1/5 of

the maximum magnitude of field, with contours starting at 61/10, except for w9 where the interval is 3/10 starting at 60.15.

3 The variability of the growth in Fig. 3 clearly indicates that the

perturbations have not converged to a single dominant exponential

mode, if one exists, even after 95 days. Consistent with this, the

perturbation structure also does not converge but varies on the

same time scale of 20–30 days, which is typical of the variations in

growth.
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Figure 4c shows the perturbation vertical velocity.

Like w in the nonlinear simulations of SMPZ, w9 ex-

hibits a strong signature of inertia–gravity waves with

horizontal scales of O(100 km). The wave crests form

long curved bands near the leading edge of the basic-

state dipole. This is a clear indication that the noncon-

stant coefficients of the lhs linear operator in (3) play a

significant role in determining the spatial structure of

the wave response.

5. Solutions forced by the residual tendencies

Because an instability of the dipole appears unlikely to

explain the inertia–gravity waves found in the SMPZ

simulations, we turn next to the solution of (6) starting

from zero initial conditions and forced by the residual

tendencies from the QG dipole. This solution approxi-

mates the evolution of the difference between the QG

dipole and the PE solution initialized from the QG dipole.

As discussed in section 3, the approximation is reasonable

for u9 at early times but breaks down after a few advective

time scales, or about 10 days in the present case.

The volume-averaged amplitude of the forced solu-

tion appears in Fig. 5 as a function of time. The vertical

velocity perturbation peaks in the first hour and then

decays steadily until reaching a roughly constant value

between days 10 and 20. The rms of the other variables

(u9, y9, and u9) increases rapidly over the first day and

then varies more slowly until roughly day 10, at which

point the amplitude begins a steady increase at roughly

the rate seen at long times in the unforced simulations

(Fig. 3). The growth at long times (beyond 10 days) is

qualitatively consistent with that found in the homoge-

neous solutions and appears to arise from the excitation

of the growing disturbances by the forcing. As for the

homogeneous solutions, we do not believe that these

long-time growing solutions are relevant to the dipole.

The rapid increase at early times is associated with a

transient adjustment to the forcing. Animations of w9

over the first 1–2 days clearly reveal gravity waves

propagating away from the dipole. This is the linearized

model’s version of the geostrophic adjustment that oc-

curs when the PE are initialized with the QG dipole.

The inertia–gravity waves emitted continuously within

the dipole are also evident in the forced solutions. Figures

6a–c show w9 at the lowest model level for days 3, 5, and

10. Like the difference between the PE and QG dipoles

(Figs. 6d–f), w9 from the forced solution exhibits a pattern

of alternating upward and downward motion whose

horizontal wavelength, at O(100 km), is short compared

to the dipole radius and whose phase lines curve along the

leading edge of dipole. Overall there is striking qualita-

tive agreement in the patterns of vertical motion from the

two solutions, especially near the leading edge of the di-

pole and after day 5. In addition, the spatial structure of

w9, like that of the difference between the PE and QG w,

varies little from day 5 to day 10.

Arguably, the agreement between the upper and

lower panels of Fig. 6 is better at days 5 and 10 than at

day 3. The forced linear simulation thus appears to

capture the steady response better than the transient

waves from the initial adjustment. The reasons for this

are not clear to us, although the transient waves, whose

amplitude is substantially larger (see our Fig. 5, as well

as Fig. 1 of SMPZ), may be more nonlinear and there-

fore subject to larger errors in the linearized simulations.

The qualitative agreement between the forced, linear

w9 and the PE-minus-QG difference can also be seen in

vertical cross sections along the dipole axis (y 5 1500 km),

which appear in Fig. 7 for day 10. The dominant features

of both solutions are a couplet of downward and upward

motion near the center of the dipole (x ’ 1500 km)

followed by an inertia–gravity wave packet near the

leading edge of the dipole that has phase lines tilting

toward the west with height. As discussed in detail in

SMPZ, the phase tilts within the wave packet are con-

sistent with upward group velocity, since the local hor-

izontal flow is to the east (toward the leading edge of the

dipole) and the wave frequency is approximately zero.

Thus, the picture that emerges is that the forcing by

the residual tendencies, which is strongly confined at low

levels (see the appendix), generates waves with upward

group velocity. As with mountain waves, the stationary

forcing together with flow relative to the forcing, which

FIG. 5. Time series of rms u9, u9, y9, and w9 (thin black, thin gray,

thick gray, and thick black, respectively) for the forced solution of

(6) starting from zero initial conditions. Each variable is normal-

ized to have unit rms value at day 1.
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is provided by the jet along the dipole’s axis, produces a

stationary response.

Some disagreements between the two solutions are

also apparent. The dominant features in the forced lin-

ear solution lie about 100 km to the east of their coun-

terparts in the PE solution. This shift is caused, at least in

part, by the comparable westward shift (and cyclonic

rotation) of the PE dipole relative the QG dipole, which

can be seen in Fig. 2. Another disagreement lies in the

relatively stronger variations in w above 1.5 km. Those

variations are largely remnants of the initial geostrophic

adjustment and can be seen propagating slowly upward

in time sequences of vertical cross sections (not shown).

Figure 8 provides a more detailed view of the spatial

structure and time dependence of the vertical velocity,

showing w9(x) from the forced linear solution at the lowest

FIG. 6. As in Fig. 1, but for days 3, 5, and 10 and comparing w9(x, y) at the lowest level above the surface from (a)–(c) the forced, linear

solutions of (6) and from (d)–(f) the difference of the PE and QG dipole solutions. The gray shading varies linearly between white at 0.9

times the maximum jw9j in each panel and black at 20.9 times that maximum. The maximum jw9j is 0.20, 0.17, 0.15, 0.16, 0.08, and

0.08 cm s21 in (a)–(f), respectively.

FIG. 7. Comparison at y 5 1500 km and day 10 of (a) w9(x, z) from the forced, linear solution of (6) and (b) the difference in w(x, z)

between the PE and QG dipole. The gray shading varies linearly between white at 0.9 times the maximum jw9j in each panel and black at

20.9 times that maximum and contours are shown at 60.1 and 60.3 times the maximum jw9j; gray contours indicate negative values.
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model level and along the axis of the dipole (y 5 1500 km)

every 12 h from day 5 to day 10. Toward the leading edge

of the dipole, the wavelength shrinks as one moves east-

ward and, for x . 1700 km, the waves are nearly steady;

both these characteristics are shared with the waves in the

SMPZ simulations. Near the center of the dipole, the

descent–ascent couplet undergoes substantially more time

dependence. Between days 5 and 10, its amplitude de-

creases by more than a factor of 2 and the horizontal ex-

tent of the descending air contracts considerably.

Figure 9 compares w9(x) from the forced, linear so-

lution with the PE-minus-QG difference. At day 5, w9 is

roughly twice as large as the PE-minus-QG difference,

although the agreement is somewhat better by day 10

owing to the decrease of w9. The phase shift between the

two solutions, already noted in Fig. 7, is also obvious and

increases from day 5 to day 10 as the PE dipole lags

farther behind the position of the QG dipole.

Instead of the QG dipole, solutions to any of a number

of other balanced equation sets could also be employed

as approximations to the PE dipole. These other bal-

anced solutions would differ from the QG dipole by

terms of O(R) relative to the leading-order, QG dy-

namics. We next examine the sensitivity of the forced

solution to such O(R) changes in either the balanced

winds ~v or in the forcing itself.

Neglecting the ageostrophic advection of ageo-

strophic wind, which is O(R) compared to the full forc-

ing, in Fu and Fy results in changes of roughly 10% in

their magnitude (see the appendix).

The resulting forced solutions of (6) have correspond-

ingly small changes (not shown); the pattern, magnitude,

and evolution of w9, for example, are quantitatively

close to the solutions shown in Figs. 6–8 based on the full

forcing. Thus, the forced solutions are not sensitive to

those details of the forcing.

The forced solutions are, however, sensitive to in-

cluding ageostrophic velocities in the basic-state dipole

[that is, if ~v on the lhs of (6) includes ageostrophic ve-

locities]. The perturbation vertical velocity w9 for this

solution appears in Fig. 10 at the same times shown in

Fig. 6. The inertia–gravity waves are now much stronger

within the anticyclone than the cyclone and form a spiral

pattern concentrated within the anticyclone rather than

arcs toward the leading edge of the dipole. The pattern

of w9 again becomes nearly steady by day 5 but, unlike

the case with a purely geostrophic basic-state dipole, its

magnitude grows steadily.

The ageostrophic flow has the form of anticyclonic

gyres to either side of the jet along the dipole axis. In-

cluding the ageostrophic velocity in ~v therefore leads to

a shift of jet toward the anticyclone, along with an en-

hancement of the anticyclonic vorticity (from 20.7f

to 20.9f) and a reduction of the cyclonic vorticity (from

0.7f to 0.5f). Both these differences are qualitatively

FIG. 8. Perturbation vertical velocity w9(x) from the forced, lin-

ear solution at the lowest model level and y 5 1500 km at times

beginning at day 5 and extending to day 9.5 every 12 h (days 5 and

5.5, black lines; pairs of lines from subsequent days alternate be-

tween gray and black). In the interval 1200 km , x , 1700 km, the

amplitude of w9 decreases nearly monotonically with time.

FIG. 9. As in Fig. 8, but comparing the forced, linear w9(x) (black

lines) with the difference in w(x) between the PE and QG dipoles

(gray) at days (top) 5 and (bottom) 10.
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consistent with the concentration of waves in the anti-

cyclone. Wang et al. (2009) use ray tracing to demon-

strate a similar effect from shifting the jet toward the

anticyclone and the local enhancements of anticyclonic

vorticity tend to trap small-scale, near-inertial waves by

modifying their dispersion.

As noted above, the ageostrophic velocities are for-

mally an O(R) correction to the QG flow. One might

then expect that including them in ~v on the lhs of (6)

would improve the correspondence between w9 and the

PE-minus-QG differences. In fact, R is not small enough

to insure that additional terms improve the approxi-

mation: including va makes the asymmetry between cy-

clonic and anticyclonic vorticity substantially too large

and drives the absolute vorticity (and PV) in the anti-

cyclone almost to zero. Wave propagation thus becomes

unrealistically enhanced in the anticyclone.

6. Summary and conclusions

This paper has investigated the generation mechanism

for the stationary inertia–gravity waves embedded

within a larger-scale dipole vortex, as seen in the nu-

merical simulations of SMPZ and others.

Because the waves have small amplitude in horizontal

velocity and potential temperature relative to the di-

pole, we consider the numerical simulations to be the

sum of an approximate balanced solution, given by the

QG dipole of Muraki and Snyder (2007), and a small

deviation that may include waves as well as balanced

corrections to the QG dipole. To leading order in their

amplitude, the deviations satisfy linear equations, based

on linearization about the QG dipole and forced by the

residual tendency of the QG dipole (i.e., the difference

between the time tendency of the QG solution and that

of the full primitive equations initialized with the QG

fields). The linear equations accommodate two possible

wave-generation mechanisms: either an instability of the

dipole, which would appear as a growing homogeneous

solution, or forcing of inertia–gravity waves by the re-

sidual tendencies.

We considered, but dismiss based on our results, the

possibility that the waves are associated with an insta-

bility of the balanced dipole. While numerical solutions

of the homogeneous linear equations do reveal growing

disturbances, they are nearly geostrophic, have length

scales comparable to the dipole itself, and grow too

slowly to explain the stationary waves in the full non-

linear simulations of SMPZ. Instead, these growing

disturbances represent balanced corrections to the QG

dipole, which are to be expected since the dipole in the

nonlinear simulations propagates more slowly than the

QG dipole and along a slightly curved path.

The linear solutions forced by the residual tendencies,

in contrast, yield excellent qualitative agreement with

nonlinear simulations for the packet of inertia–gravity

waves at the leading edge of the dipole, correctly pre-

dicting the scale and pattern of the wave crests and the

fact that they are stationary relative to the dipole and

have nearly steady amplitude. Quantitatively, the forced

linear solution overestimates the amplitude of the waves

by roughly a factor of 2.

Scale analysis of the inertia–gravity wave dispersion

relation indicates the characteristics of the waves to be

expected in the forced linear solution. It is crucial to

allow for the presence of the ambient flow associated

with the QG dipole and to consider the intrinsic fre-

quency of the waves. (The QG flow is also important for

the advection and refraction of waves after they are

forced.) Consistent with the wave characteristics in the

SMPZ simulations, the dispersion relation predicts that

the waves should be small scale compared to the balanced

FIG. 10. As in Fig. 6, but showing the forced, linear w9(x, y) when ~v
a

is included in the basic state dipole. [More precisely, the advective

terms in (6) employ ~v 5 ~vg 1 ~va rather than ~v 5 ~vg.] The maximum jw9j is 0.28, 0.38, and 0.54 cm s21 in panels (a)–(c), respectively.
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flow, should be approximately stationary in the frame of

reference moving with the dipole, and should have near-

inertial intrinsic frequency.

Thus, there is strong evidence that inertia–gravity

waves in the SMPZ simulations are, to a first approxi-

mation, a linear forced response to the presence of the

dipole. A more conclusive demonstration will require

better quantitative agreement between the linear solu-

tions and the waves present in the nonlinear simulation.

We believe this can be achieved through the use of a

balanced approximation to the dipole that is more ac-

curate than QG, since the linear solutions presented

here depend significantly on the details of the balanced

solutions. Decreasing R is another possible approach,

but one that will increase the scale separation between

the dipole and the waves and thus increase the compu-

tational demands.

This mechanism for wave generation is analogous to

that of Lighthill (1952) and Ford et al. (2000) in that the

waves can be computed as a linear response to a forcing

that is a known function of the balanced solution. The

waves generated by the dipole, however, are smaller

scale than the dipole and have inverse frequencies

comparable to its advective time scale. Although a rig-

orous theory does not yet exist, extending the Lighthill–

Ford arguments to small R is expected to yield generation

of fast waves with spatial scale comparable to the bal-

anced motion (e.g., Saujani and Shepherd 2002), pre-

cisely the opposite relation of scales between the waves

and balanced flow. The dipole can generate small-scale

waves because fluid parcels within the dipole move rel-

ative to the forcing, which allows a wave response at

those wavenumbers k large enough that the intrinsic

frequency is larger than f. This emphasizes both the role

of a spatially varying flow in wave generation and the

association of this mode of wave generation with the

high-wavenumber tail of the balanced motion’s spatial

spectrum rather than the high-frequency tail of the

temporal spectrum identified in previous studies (Errico

1982; Warn 1997; Saujani and Shepherd 2002; Vanneste

2008). Wave generation in the dipole resembles the

production of stationary waves by flow over orography

rather than by an oscillator in a fluid at rest.

Of course, most balanced flows have nontrivial time

dependence and their wave generation will fit neither

view precisely. Idealized studies of frontogenesis, for

example, exhibit generation of waves that are stationary

relative to the frontal circulation (Snyder et al. 1993) as

well as wave generation through time variation of the

frontogenesis (Reeder and Griffiths 1996). We note,

however, that the most prominent inertia–gravity waves

generated within synoptic-scale baroclinic systems ap-

pear to be generated in a manner similar to that de-

scribed here, as the waves are approximately stationary

with respect to the parent baroclinic system (Plou-

gonven and Snyder 2007).
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APPENDIX

Fu, Fy, and Fu for QG Dipole

The residual tendencies Fu, Fy, and Fu are differences

between the time tendency of the balanced solution and

the tendency that would be obtained by substituting the

balanced solution in the PE, following (3) and as ex-

pressed for Fu in (7). These residuals are easily calcu-

lated for the QG dipole.

FIG. A1. Residual tendencies (left) Fu, (center) Fy, and (right) Fu for the QG dipole of Muraki and Snyder (2007). Black (gray) contours

indicate positive (negative) values. Contour values are 61, 3, 5, and 7 3 1026 m s22 for the momentum forcings Fu and Fy , and 60.2, 0.6, 1,

and 1.4 3 1026 K s21 for Fu.
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Denoting the QG solution by tildes, all fields can be

derived from ~f. Let us define ~v 5 ~v
g

1 ~v
a
, where the

geostrophic velocity is given by ~v
g

5 f�1k 3 $~f and the

ageostrophic velocity ~v
a

can be diagnosed from the QG

momentum and potential-temperature equations,

~u
a

5�f�1 ›

›t
1 ~v

g
� $

� �
~y

g
, (A1a)

~y
a

5 f�1 ›

›t
1 ~v

g
� $

� �
~u

g
, and (A1b)

~w 5� g

u
0

� �
N�2 ›

›t
1 ~v

g
� $

� �
~u. (A1c)

Substituting the QG fields into the formulas for the re-

sidual tendencies [namely (7) and its counterparts for Fy

and Fu] then gives

F
u

5�~v
a
� $~u� ~v

g
� $~u

a
,

F
y
5�~v

a
� $~y � ~v

g
� $~y

a
, and

F
u

5�~v
a
� $~u,

where we have used (A1) and the fact the QG tenden-

cies are zero in the frame moving with the dipole.

Figure A1 illustrates the horizontal structure of each

residual tendency. Both Fy and Fu have maxima near the

center of the dipole and along the axis of the surface jet.

Owing to their dependence on derivatives and products

of the QG fields, the spatial scale of the residual ten-

dencies is 200–300 km, somewhat smaller than that of

the dipole itself.

Because the QG dipole has uniform (pseudo)poten-

tial vorticity, all the fields except w9 decay upward from

the surface. Consistent with this, the residual tendencies

also decay rapidly with height (Fig. A2) and have neg-

ligible magnitude above z 5 2 km. The relative magni-

tudes of the various terms in Fu and Fy are also as would

be expected, given that R is small: ~v
g
� $~v

a
is comparable

to ~v
a
� $~v

g
, while ~v

a
� $~v

a
is small compared to either.
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