INTERACTION OF THE LOWER ATMOSPHERE AND UPPER OCEAN: LES PROCESS STUDIES

Peter P. Sullivan¹, James C. McWilliams², Lionel Renault²

¹National Center for Atmospheric Research ²University of California Los Angeles

IMPACTS OF HETEROGENEITY ON THE ABL AND OBL

Motivation:

• Ocean eddies, fronts, filaments (mesoscale/submesoscale turbulence) \rightarrow strong heterogeneous horizontal buoyancy gradients and currents at varying scales

. .

LES APPLICATIONS AND PROCESS STUDIES

Atmospheric BLs:

- Spatially homogeneous BLs
- Coupling with a spectrum of moving water waves
- Passive scalars
- Dispersion/diffusion with Lagrangian particles
- Boundary layer clouds

Oceanic BLs:

- Wave effects using Craik-Leibovich asymptotics
- Submesoscale density filaments + BLs
- Coupling with measured winds, fluxes, and WW3
- Stochastic breakers, bubbles, ...
- Idealized hurricane boundary layers

Meshes:

 \rightarrow 10⁹ to 10¹⁰ gridpoints

LES 2D MPI decomposition Core count $N_{tot} = N_z \times N_{xy}$ Parallelization of $\nabla^2 p = s$

U Contours in yz-plane, Ug = 10 m/s, Q_{*} = 0.01 K m/s Shear-convective rolls, homogeneous SST

Wavy boundary: Hs ~ 6 m

Grid mesh: dx~3 m, dz~1 m

ABL PLANS FOR ATOMIC/EUREC⁴A

LES process studies:

- At what scale(s) does the marine ABL "feel" ocean SST?
- Impact of SST variability on:
 - Entrainment
 - Top-down and bottom-up scalar transport
 - Horizontal variation of vertical fluxes
 - Surface fluxes
 - Momentum and scalar budgets
- Role of wind magnitude and direction
- Role of boundary-layer depth z_i and stability z_i/L
- Role of currents?
- Role of surface waves?
- Site simulations using measured forcing(s)?

LES OF A SPATIALLY EVOLVING ABL: FRINGE METHOD

Developers:

Spalart & Watmuff (JFM, 1993), Nordström et al (SIAM, 1999), Inoue et al (MWR, 2014), + others

Fringe method basics:

• Run two LES in different size periodic domains and *artfully* blend the solutions!

$\begin{array}{l} \text{VERTICAL VELOCITY DOWNSTREAM OF AN SST JUMP (WHITE LINE), Z = 41 m} \\ \text{MESHES} \quad (768^2 \times 384), \quad (5376 \times 768 \times 384) \end{array}$

CROSSFRONT EVOLUTION OF SCALAR FLUX

 $U_g = 10\,\mathrm{m\,s^{-1}}$, $riangle heta = 2\,\mathrm{K}$, SST width $\ell = 100\,\mathrm{m}$

Runs have $\nabla\times\tau$, $\nabla\cdot\tau$

Momentum flux

Impact of front width

 $\frac{\bigtriangleup \theta}{\ell} = \frac{2K}{3000\,m}$

DOWNFRONT WINDS V_G AND SECONDARY CIRCULATIONS

Frontogenesis and frontal arrest in the OBL with winds and surface waves

Sullivan & McWilliams (JFM, 2018; to be submitted 2019)

OBL PLANS FOR ATOMIC/EUREC⁴**A**

LES process studies:

- Lifecycle of cold filament submesoscale frontogenesis:
 - Role of turbulence
 - Role of winds, cross-front versus down-front
 - Role of surface waves
 - Impact of background turbulence strength (weak, moderate, strong)
 - Variation in filament strength
 - Variation in mixed layer depth
- Lifecycle of single-sided fronts
- Time varying surface forcing?
- Coupled ABL-OBL?

FRONTOGENESIS AND ARREST OF DENSE FILAMENTS IN A WAVY OBL

Cold filamentary intensification, McWilliams *et al*, (GRL, 2009)

LES OF FILAMENT FRONTOGENESIS DRIVEN BY SURFACE COOLING: VERTICAL VELOCITY

FULLY DEVELOPED TURBULENCE, z = -3 m

TIME HISTORY OF VERTICAL VORTICITY AND TKE

NORTH (DOWN-FRONT) SURFACE WINDS, PEAK FRONTOGENESIS

IMPACT OF DOWN-FRONT WAVES ON FRONTOGENESIS: WAVE EFFECTED CURRENTS

Spatial evolution of downwelling velocity w at z = -10 m: Surface forcing by down-front winds and waves

Spatial evolution of downwelling velocity w at z = -10 m: Surface forcing by cross-front winds and waves

LES-OBSERVATIONAL DISCUSSION TOPICS

ABL results for isolated fronts:

- Impressive evolution distance
- Distance to equilibrium depends on $(U, \pm \bigtriangleup \theta, \ell)$
- Differences for crossfront versus downfront winds
- Non-monotonic variation of vertical fluxes with \boldsymbol{x}
- Response time of surface fluxes, Q_* versus u_*^2
- Modifies Ekman transport, surface stress, mean budgets
- Dynamics and scalar transport at ABL top, role of surface currents?

OBL results for filaments:

- Impressive impact of surface waves on filament frontogenesis
- Down-front spectra measurements
- Wavefield measurements
- Variance measurements (u', v', w')
- Dynamics for single-sided fronts?
- Scalar transport?

Fringe method:

 $\bullet\,$ Template for coupled LES of the ABL and OBL

Down front winds and waves Currents (w, v) in y-z plane at x = 1200 m

FLOW STRUCTURES AT LATE TIME t ~ 9 hr

POWER SPECTRA OF (U, V, W) FOR NORTH WINDS

NORTH WINDS PLUS WAVES: VERTICAL VELOCITY

SECONDARY CIRCULATIONS WITH DOWN FRONT WINDS

CROSSFRONT EVOLUTION OF SCALAR FLUX

 $U_g = 10 \, m \, s^{-1}, \quad \triangle \theta = -1.5 \, K, \quad \ell = 100 \, m$

ABL AND OBL COUPLING

Motivation:

• Ocean eddies, fronts, filaments of varying scale \rightarrow strong heterogeneous horizontal buoyancy gradients and currents

Objective:

 How does ocean submesoscale turbulence impact the OBL and ABL in MISO-BoB regimes?

Approach:

- LES process studies in the OBL and ABL
- Longer term develop a coupled ABL-OBL LES model

(ABL, OBL) = (Atmospheric, Oceanic) Boundary Layer

FRINGE METHOD DETAILS

LES OF THE ABL WITH SST GRADIENTS

P-domain:

- $(L_x, L_y, L_z) = (3375, 3375, 1400) m$
- Grid mesh $(N_x, N_y, N_z) = (768, 768, 384)$

H-domain:

•
$$(7L_x, L_y, L_z) = (23625, 3375, 1400) m$$

• Grid mesh
$$(N_x, N_y, N_z) = (5376, 768, 384)$$

Experiments:

$$U_g = (5, 10, 15) \text{m s}^{-1}, \quad V_g = 5 \text{m s}^{-1}$$

 $\triangle \theta = (2, -1.5) \text{ K}, \quad \ell = (100, 1000, 3000) \text{ m}, \quad z_i \sim 450 \text{ m}$

FRONTOGENESIS AND ARREST OF DENSE FILAMENTS IN A WAVY OBL

Idealized cold filamentary intensification, McWilliams *etal*, 2009

LES:

- Surface forcing: cross-front winds E, down-front winds N, cooling
- Wave effects, $La_t = 0.32$ (wind-wave equilibrium)
- $(L_x, L_y, L_z) = (12000, 4500, -250) \,\mathrm{m}$
- $(N_x, N_y, N_z) = (8192, 3072, 256) \sim 6.4 \cdot 10^9$ gridpoints
- $(\triangle x, \triangle y, \triangle z) = (1.46, 1.46, [0.5 1.58]) m$

ATMOSPHERIC BL RESPONSE TO SST GRADIENTS

LES results:

- Impressive evolution distance
- Distance to equilibrium depends on wind speed
- Asymmetrical response, $+ \triangle \theta$ changes $\neq \triangle \theta$ changes
- Scalar flux profile has an intermediate maximum, not monotonic
- Front "width" $\ell = [100 3000]\,\mathrm{m}$ shifts results downstream
- Surface scalar flux, fast response $Q_* \sim riangle heta(x-x_o)/\ell$
- Momentum fluxes, slow response because of pressure (?)
- Differences for crossfront versus downfront winds
 - Modifies Ekman transport and surface stress
- Mean θ budget: horizontal advection = vertical flux divergence
- Mean u budget:
 - crossfront winds horizontal advection \sim vertical flux divergence
 - downfront winds horizontal pressure gradient \sim vertical flux divergence

MPI Fringe algorithm:

- Works well for heterogeneous ocean surfaces
- Template for coupled LES of the ABL and OBL

SUMMARY

- Marine boundary-layers and the connecting wavy interface remain in a state of discovery
- Observational challenges are (very) high because of the broadband dynamics
- LES and DNS process studies are providing insights and observational targets, *e.g.*, role of Langmuir turbulence, wave driven winds, drag of steep waves, ...
- Mechanics of sea surface drag? non-separated sheltering, critical layers, separation, wave unsteadiness, micro-breaking, ...
- Advance the understanding of drag using targeted simulations and observed time varying spatial maps of the sea surface
- Simulations of loose and tightly coupled air-water boundary layers are feasible on large parallel machines
- Role of submesoscale ocean turbulence in marine boundary layer dynamics is largely unknown and needs to be explored