Air-Sea Interactions and Some Coupled Modeling Effort related to the EUREC4/ATOMIC campaign

Lionel Renault, J.C. McWilliams, P. Sullivan, J. Jouanno, and collaborators

LEGOS

Outline

 Importance and characterization of The Thermal Feedback

Importance and characterization of The Current
Feedback

- Some Modeling effort related to EUREC4

Eddy SST signature on the atmosphere

Wind Response to SST Feedback

Coupling Coefficient between wind/stress and SST

S _{Cstr}	Cross-wind SST and surface stress curl
S _C u	Cross-wind SST and 10-m wind curl
\$Dstr	Down-wind SST and Surface stress divergence
S _{Du}	Down-wind SST and 10-m wind divergence
S _{str}	SST and Surface stress magnitude
s _u	SST and 10-m wind magnitude

- Large impact on heat fluxes
- ✓ Can influence the eddies propagation (*e.g.*, Seo et al., 2016)
- ✓ Ekman pumping velocities

Chelton et al., 2001,2002,2007,2011; O'Neill et al., 2003, 2012, O'Neill 2012; Perlin et al., 2014, etc ..

On the Ocean Response to the TFB

- Large impact on heat fluxes
- ✓ Can influence the eddies propagation (*e.g.*, Seo et al., 2016)
- ✓ Ekman pumping velocities

Gaube et al., 2015

Importance to have a realistic representation and characterization of the Thermal FeedBack

Current Feedback

In a coupled model, when estimating the surface stress:

Bye1985,Rooth1992,Duhaut and Straub 2006; Dewar and Flierl 1987; Dawe and Thompson 2006; Hughes and Wilson 2008; Eden and Dietze 2009; Seo et al., 2015; Renault et al., 2016cd; Renault et al., 2017ab

"Mechanical Damping" or "Eddy Killing"

 Not only reduction of F_eK_e but negative F_eK_e (Deflection of energy ocean→ atmosphere)

 Partial reenergization by the atmospheric response

Renault et al., 2016c

Duhaut and Straub 2006; Dewar and Flierl 1987; Dawe and Thompson 2006; Hughes and Wilson 2008; Eden and Dietze 2009; Seo et al., 2015; Renault et al., 2016cd; Renault et al., 2017ab

"Mechanical Damping" or "Eddy Killing"

 Not only reduction of F_eK_e but negative F_eK_e (Deflection of energy ocean→ atmosphere)

 Partial reenergization by the atmospheric response

Renault et al., 2016c

Duhaut and Straub 2006; Dewar and Flierl 1987; Dawe and Thompson 2006; Hughes and Wilson 2008; Eden and Dietze 2009; Seo et al., 2015; Renault et al., 2016cd; Renault et al., 2017ab

"Mechanical Damping" or "Eddy Killing"

- Not only reduction of F_eK_e but negative F_eK_e (Deflection of energy ocean→ atmosphere)
- Partial reenergization by the atmospheric response

Duhaut and Straub 2006; Dewar and Flierl 1987; Dawe and Thompson 2006; Hughes and Wilson 2008; Eden and Dietze 2009; Seo et al., 2015; Renault et al., 2016cd; Renault et al., 2017ab

CFB Coupling Coefficients: Current and Stress

 Discrepancies between model and satellite

 Large uncertainties in observations

Renault et al., 2019a

CFB Coupling Coefficients: Current and Stress

 ✓ Scatterometers monitor relative wind (ENW) response to the CFB rather than absolute wind → Opposite sign

 Need more observations to characterize wind response and validate model simulations

Renault et al., 2019a

Importance of CFB coupling coefficient: A Large Scale Effect

- Reduction of integrated KE by 27% (NATL), 15% global ...
- Better dynamic (GS separation, Agulhas Retroflection)

Luo et al. 2005; Eden and Dietze 2009; Renault et al., 2016bc

A Mesoscale Effect: "Mechanical Damping" or "Eddy Killing"

Deflection of energy from the Ocean to the Atmosphere But partial re-energization of the Ocean by the Atmosphere Xu et Scott 2008, Scott et Xu 2008, Hugues et Wilson 2016

EKE reduction because of deflection of energy Ocean \rightarrow Atmosphere:

- 44% US West Coast (Renault et al., 2016a)
- 27% North Atlantic (Renault et al., 2016b)
- 25% Agulhas Current (Renault et al., 2017a)
- 40% South East Pacific (Oerder et al. 2017)
- 35% global (Jullien et al., to be submitted)

Submesoscale Reduction but also re-energization

- Sink of energy
- Less APE should induce less submesoscale
- But also Ekman pumping induced by the Current Feeback → More efficient

Longitude

2^{x 10⁻⁴}

10⁻¹

2

Spectral Density $m^2 s$

0

d) *FK*

 $cycle \ km^{-1}$

Some Modeling effort related to EUREC4

Domain of Interest illustrated with Coupling Coefficients

- From Mesoscale to Submesoscale Coupling (See after)
- Large Coupling Coefficients (both CFB and TFB) → Expect important impact on Ocean Dynamic and Heat fluxes
- Need *in situ* Observations to better understand OA coupling (see after)

From Mesoscale to SubMesoscale

- Large domain: Ocean at 1/24° and Atmosphere at 1/12°:
 - Thermal Coupling
 - Mechanical Coupling
 - But also Wave Coupling (need wave observations too)
 - Set of WRF parameterizations already tested
 - Links with SKIM and WaCM

- Submesoscale Domains up to 500m resolution for the Ocean, 2km for the atmosphere:
 - Thermal Coupling
 - Mechanical Coupling

Some "SubMesoscale" Objectives ...

- Submesoscale coupling: TFB and CFB impacts on
 - Stress and wind: so far very few observations or modeling studies (*e.g.*, Renault et al., 2018, Gaube et al., 2019).

- Determination of TFB and CFB coupling coefficients
- Spatial Lag of a few km (at both mesoscale and submesoscale) ?

Spatially-lagged correlation of SST and winds speed

wind leads SST

Some "SubMesoscale" Objectives ...

- Submesoscale coupling: TFB and CFB impacts on
 - Stress and wind: so far very few observations or modeling studies (*e.g.*, Renault et al., 2018, Gaube et al., 2019).
 - Characterization of the clouds response
 - Characterization of the oceanic response: vertical velocities, submesoscale dynamic (generation and dampening)

Some "Mesoscale" Objectives ...

- Mesoscale coupling: TFB, CFB and WFB impacts on
 - Stress and wind coupling coefficients to be compared to satellite and *in situ* data.
 - Modulation of wind, stress, currents, and TFB and CFB by WFB
 - Characterization of the clouds response
 - Characterization of the oceanic response
 - Role of stratification in modulating the TFB (run-off) Sea Surface Salinity from SMOS, September 2011 (West Atlantic) and June 2011 (East)

Jouanno, personal communication

Need of in situ observations to better understand air-sea interactions, satellite observations and to validate coupled model

Thanks for your attention

lionel.renault@ird.fr lrenault@ucla.edu