
Observations, lecture 9
Data Assimilation of Research Satellite Data

William Lahoz, wal@nilu.no

www.nilu.nowww.nilu.no

William Lahoz, wal@nilu.no

WAVACS Summer School, ”Water vapour in the climate 
system”
Cargese, Corsica, France, 14-26 September 2009



Outline

•Information

•Data assimilation: adding value

•Data assimilation of research satellite data: ozone, water vapour

www.nilu.nowww.nilu.no

•Data assimilation of research satellite data: ozone, water vapour

•Evaluation of observations and models using data assimilation

•Overview

•Bibliography



Information:

Need for information:

Main challenges to society require information for an intelligent response, including
making choices on future action - examples:

•Climate change
•Impact of extreme weather
•Environmental degradation
•Ozone loss

We can take action according to information obtained:

•Future behaviour of system of interest, future events – prediction
•Test understanding of system & adjust understanding – hypothesis testing
•Understand cause of events, change, mitigate, adjust –
attribute cause & effect



Chain of information processing:

•Gather information
•Test hypotheses based on this information
•Build methods to use information – attribute cause & effect
•Use methods to make predictions

Need two ingredients:

•Means of gathering information – observations (different types)•Means of gathering information – observations (different types)
•Methods to build on information gathered, organize information gathered
– models (conceptual, numerical...)

Observations: roughly direct link with system of interest via measurements

Models: roughly indirect link with system of interest – embody information
received from measurements, experience & theory

Models & observations are sources of information



Sources of information:
Measurements: observations – different time & spatial scales

Understanding: embodied in models. Can be:

Qualitative: e.g. higher velocity, higher KE; quantitative: e.g. KE = (1/2) mv2

© Met Office 



Characteristics of information:
Observational errors:

•Random - precision
•Systematic – bias
•Representativeness – e.g. different spatial scales: sonde, satellite

Models also have errors
•Construction of models – incomplete models
•Imperfect simulation of ”real world”

Information (observations/models) has errors – need to take this into account

Observations (measurements) are discrete
in space and time - information provided by
observations has gaps

We would like to fill in gaps

UARS MLS ozone 10 hPa, 1 Feb 1997



Objective ways of filling in information gaps:
Algorithm attributes:

•Consistent (mathematically, physically,...) rules
•Objective (impartial principles) rules: max/min of a function,...

Algorithm: Model (propagates information in space and time)

•Linear interpolation
•Navier-Stokes equations
•Chemistry equations

Can build a hierarchy of models
•Chemistry equations
•Parametrizations

Mathematics: “What combination of the observation and model information is
optimal?” & estimate of the errors of the “optimal” or “best” estimate ->

“Data assimilation” (Earth Observation data/model fusion): has strong links to
several mathematical disciplines, including control theory & Bayesian statistics



Mathematics:
Combine information from a model & observations plus errors

3D-Variational method (variational, minimize penalty function, J):

Kalman filter method (sequential):

Model information
Observational information

Add time:

4D-Var

Kalman filter method (sequential):

Forecast step

Analysis step

Run model

Combine model and

observational information

Also ensemble methods, e.g., Ensemble Kalman Filter



Analyses

Ozone 10hPa, 12Z 23 Sep 2002

DA adds value to both
observations and model

Geer et al., QJRMS ,2006
Lahoz et al.,ACP, 2007

Red: high ozone
Blue: low ozone

Data assimilation - adding value:

MIPAS observations 6 day forecast

DA

Errors



Data assimilation and Numerical Weather Prediction, NWP:

Key idea: Confronting models with observations

Progress in NWP has been a combination of:

•Better models: higher resolution, better processes

•Better observations: satellites

•Better use of observations: bias correction, quality-control, radiances

•Better computing power

•Data assimilation: better use of observations and models; use of 4d-variational (4d-
var) approach

This has allowed observations and models to be evaluated and improved

This has allowed improvement in NWP forecasts (e.g. European Centre for
Medium-Range Weather Forecasts, ECMWF)



NWP: success for data assimilation

AC coeffs, 3-, 5-, 7- & 10-day ECMWF 500 hPa ht forecasts for extra-tropical NH & SH,
plotted as annual running means of archived monthly-mean scores for Jan 1980 - Nov 2006.
Values plotted for a particular month are averages over that month & 11 preceding months.
Colour shadings show differences in scores between two hemispheres at the forecast ranges
indicated (After Simmons & Hollingsworth, QJRMS, 2002)

Impact of satellite observations, impact of data assimilation

Towards end of 1999: a more advanced 4D-Var developed & significant changes in the

GOS mainly due to launch of 1st ATOVS instrument onboard NOAA satellites



Evaluation of observations and models:

•Observations: Do they have Gaussian errors? Are they biased?

Self-consistency
Data assimilation as a transfer standard: estimate bias

We can apply NWP ideas to evaluating observations & models
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•Models:

•Chemistry models: Chemistry-transport models (CTMs)

•Climate models: General circulation models (GCMs)

•Climate-chemistry models (CCMs)

Can extend ideas to other models: Earth System models (ESMs)



Statistics: 14-28 Sep 2002

Obs (MIPAS) minus short-range Forecast (model), OmF

DA: Self-consistency of MIPAS ozone data

Standard Deviation

Skewness

Kurtosis - 3

Obs quality:

Geer et al. QJRMS (2006); Struthers et al. JGR (2002)

Bias

Kurtosis - 3

OmF ~ 0 in stratosphere
Consistent with Gaussian

errors in stratosphere



OmF:

Observation minus forecast

Self-consistency &

added value

Evaluation of analyses using histograms of OmF differences (normalized by observation error) 
averaged for stratosphere, globe & August 2003 for six stratospheric constituents: O3 (top left), 
H2O (top right), CH4 (middle left), N2O (middle right), HNO3 (bottom left) and NO2 (bottom right). 
Constituent observations rom ESA MIPAS off-line retrievals. Frequency of histograms normalized to 
lie between 0 and 1. Black line is Gaussian fit to histograms; red line is Gaussian fit from model run 
without assimilation.

Results support assumption of Gaussian errors in observations & forecast, & show analyses are closer 
to observations than simulations from model run without assimilation. Experiments performed at 
BIRA-IASB. With permission from Lahoz et al., ACP, 2007



DA: Evaluation of MIPAS ozone using independent data

BASCOE used as “interpolating” analysis

Statistics: 18 Aug – 30 Nov, (Obs1-Analysis) – (Obs2-Analysis):

Geer et al. ACP (2006); Lahoz et al. ACP (2007), QJRMS (2006, 2007)

v HALOE

Obs bias:

Bias in MIPAS ozone generally positive: ~5% - ~10% -> feedback to MIPAS team

v Sonde   



Mid latitude Upper Trop/Lower Strat: Payerne ozonesonde profiles
(Geer et al., ACP, 2006)

Take account of different resolution of matched datasets

Black line: sonde at
full resolution

Triangles: Sonde atTriangles: Sonde at
analyses resolution



Accuracy of combined ozone
information (obs/model)

ASSET project

Geer et al., ACP, 2007
Lahoz et al., ACP, 2007a, b

Good performance
in stratosphere:

Model set-up:

in stratosphere:
Within 5-10% of
HALOE instrument

Complexity of chemistry:
Parametrization v comprehensive
(e.g. ECMWF v BASCOE)



Impact on chemical model:
Improvement in BASCOE model

Sondes

Ozone time series (ppmm) at 68 hPa, South Pole

Geer et al. ACP, 2006,2007
Lahoz et al. ACP, 2007a, b

Impact of new chemical observations:
Operational ECMWF assimilates MIPAS ozone



Accuracy of combined water vapour (WV)
information (obs/model)

ASSET project

Lahoz et al., ACP, 2007a, b
Thornton et al., ACP, 2009

Main features of stratospheric WV captured:
• Tropical WV minimum,• Tropical WV minimum,
• SH polar vortex WV minimum
• Brewer-Dobson circulation
• Mesosphere: analyses wetter than UARS clim

& reflect wet bias of MIPAS obs

Monthly zonal mean specific humidity analyses, Sep 2003:
(a) ECMWF, (b) BASCOE, (c) MIMOSA; (d) UARS clim
MIPAS WV profiles assimilated in ECMWF, BASCOE &
MIMOSA analyses.
Blue: relatively low specific humidity values
Red: relatively high specific humidity values. Units: ppmv.



Water vapour analysed fields, 68 hPa, 21 Sep 2003, 1200 UT
Various data assimilation systems

ECMWF BASCOE

MIMOSA Climatology



Comparison with independent data:

HALOE (black triangles)

(1) ECMWF & Met Office (GCM)
ECMWF (Red): humidity control variable
Normalized RH, reducing to normalized
specific humidity in strat
Met Office (Light blue): normalized
specific humidity

Cal-val of water vapour analyses

specific humidity

(2) BASCOE (Green) & MIMOSA (Dark blue)
(CTM)

Specific humidity control variable



Water vapour analyses

Analyses minus Obs (AmO)
diagnostics

Obs:

MIPAS (self-consistency)

HALOE, SAGE II, POAMIII
(independent)

MIPAS:MIPAS:
AmO within 5% (10-1 hPa)

HALOE:
AmO within 20% (10-1 hPa)

Positive bias in analyses



SAGE II:
AmO within 20% (10-1 hPa)

Positive bias in analysesPositive bias in analyses

POAM III:
AmO within 20% (10-1 hPa)

Negative bias in analyses



Water vapour control variable

Choice:

• Relative humidity, RH
• Normalized RH
• Normalized specific humidity

Aim:
Control variable with desirable properties:

• Usable in troposphere & stratosphere• Usable in troposphere & stratosphere
• Approx Gaussian background errors (B)
• Temp & humidity increments decoupled
• Realistic vertical correlations

Tests at Met Office



Water Vapour control variable: details of Met Office work

(1) What is the control variable (why choice?)
(2) How to calculate background error covariance



Climate models:

Recent NWP-based ideas to evaluate climate models:

• CAPT initiative – improve parametrizations in GCMs (Phillips et al.
2004) – requires accurate NWP analyses; systematic error can be
largely attributed to parametrization deficiencies

• Seamless prediction – fundamental physical/dynamical processes
common to both weather & seasonal forecasts, & climate-change
timescales (Palmer et al. , BAMS, 2008)

� Proposal: probabilistic validation of models at timescales where
validation data exist (e.g. daily, seasonal,...) can be used to
calibrate climate-change probabilities at longer timescales.

� Need for calibration reflects a need for model improvement

• Estimating climate model parameters (e.g. gravity wave drag; early
days)

• Uncertainty analyses & ensemble experiments (early days)

Observations must constrain parameters of interest



•Helpful to regard observations & models as sources of information

•Data assimilation invaluable for studying polar stratosphere:

•Fills gaps between observations (need a model)

•Allows use of heterogeneous measurements

•Makes sense of observations (multiple, heterogeneous)

•Data assimilation can add value to observations & models, compared to

Overview

•Data assimilation can add value to observations & models, compared to
information that each can supply on their own

•Data assimilation allows evaluation of models/observations

•Data assimilation underpins evaluation of impact of current observation
types using OSEs (observing system experiments), and the future global
observing system using OSSEs (observing system simulation
experiments)

Crucial for setting up Global Observing System (GOS)

– see observations lecture 14
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