Determination of cloud properties at the NCO-P site in the Himalayas (27.9°N, 86.8°E) and at Thule (76.5°N, 68.8°W) from ground-based observations of global shortwave irradiance.

C. Di Biagio^{1,2}, A. di Sarra¹, P. Bonasoni³, P. Eriksen⁴, S.E. Ascanius⁴, F. Calzolari³, P. Cristofanelli³, G. Muscari⁵, G.P. Verza⁶, E. Vuillermoz⁶ claudia.dibiagio@enea.it

¹ENEA/ACS, S. Maria di Galeria, Italy; ²University of Siena, Siena, Italy; ³CNR, Bologna, Italy; ⁴Danish Meteorological Institute, Copenhagen, Denmark; ⁵INGV, Roma, Italy; ⁶ EV-K2-CNR Committee, Bergamo, Italy

Instrumentation and data analysis

Measurements of surface shortwave global irradiance, I_{sw} , are carried out at the NCO-P (the Nepal Climate Observatory at Pyramid) GAW-WMO station in the Himalayas, Nepal, (27.9°N,86.8°E, 5079 m a.s.l.) (http://evk2.isac.cnr.it/ncop.html) with a Kipp&Zonen CMP-21 precision pyranometer, and at Thule (76.5°N, 68.8°W, 225 m a.s.l.), Greenland, (http://ndacc.dmi.dk) with a YES Total Solar Pyranometer (TSP). Data corresponding to the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – March 2009 (with an interruption between the period March 2007 – Ma November 2007 and February 2008) for the NCO-P site and February 2007 - June 2009 for Thule are considered in this analysis. A simple algorithm, that uses only measurements of surface shortwave global irradiance, was implemented to detect cloud-free and cloudy periods. The main steps of this algorithm are the following:

WAVACS 2009 International Summer School Cargèse (France) 14-26 September 2009

a cloud-free day, characterized by pristine conditions, is identified; following *Long and Ackerman* [2000], the measured shortwave irradiance is fitted with the expression:

- where θ is the solar zenith angle, and A and B are constants.
- 2. For each day of measurements, the mean, $R_{_{\rm M}}$ and the standard deviation, $\sigma_{_{\rm R}}$ of the ratio R between the observations and the fitting curve is calculated over 10-minute intervals.
- CLEAR and CLOUDY periods are identified following the conditions in Table 1. Cloudy periods are further separated in three classes: thin/moderate, thick and scattered clouds

	Condition on R _M	Condition on or
CLEAR	0.8 < R _M < 1.2	σ _R < 0.005
CLOUDY		
thin/moderate clouds	$0.5 < R_{M} \le 0.8$	
	$0.8 < R_M < 1$	σ _R >0.005
thick clouds	R _M ≤ 0.5	
scattered clouds	R _M ≥ 1.2	
	1.0 < R _M < 1.2	σ _P > 0.005

[2004]. Because this formula is valid only for cases of surface albedo lower than 0.3, τ is calculated only for periods with surface not covered by snow or ice (June - August for the NCO-P site and June – September for Thule).

Results

Results Figures 5 and 6 show the monthly mean frequency of occurrence of clear and cloudy observed at NCO-P and Thule. At Thule, because of the polar day-night annual determinations of sky conditions are possible only in the period March - October. Figure 7 shows, for the NCO-P site, the frequency of occurrence of clear and cloudy versus time of the day for the different seasons during 2007-2008 (pre-monsoon, mc post-monsoon, and winter; see Table 2). At the NCO-P site cloud-free sky is most common, as expected, during winter (with ma: ~50%); the frequency of clear-sky occurrence decreases/increases during the pre-monsoon season and reaches its minima during the monsoon season (<10%). T conditions show different diumal cycles during different seasons. Thick clouds are pre-to 50% of the cases in the afternoon during the pre-monsoon; their occurrence in during the monsoon season, with a frequency of about 80% in the mid afternoon. clouds are less frequent in the post-monsoon, and rare during winter. A disting behaviour appears, with cloud-free conditions occurring mostly during the morning thro the year. Thin/moderate clouds seem to display a smaller daily evolution, particularly pre-monsoon period. The diurnal cycle is large in the pre-monsoon, post-monsoo winter, while it is reduced during the monsoon. At Thule, the frequency of occurrence of clear sky increases during spring and summer maximum of ~50% in May 2008), while decreases towards the winter season (-thin/moderate clouds seem to display a small seasonal evolution. The occurrence of clouds displays a small increase during the summer season, with the exception of year with a maximum of ~70% in March.

on of year 2008

Season	Start – End date
	1 February – 5 June 2007; 19 February – 10 May 2008; 31 January – 31 March 2009
Monsoon	6 June – 12 October 2007; 11 May – 26 September 2008
Post-Monsoon	13 October – 14 November 2007; 27 September – 6 November 2008
	15 November 2007 – 18 February 2008; 7 November 2008 – 30 January 2009

igure 8 shows the frequency of occurrence o une-August 2007 and 2008 at NCO-P, and t Thule. At the NCO-P site, the frequency of Imost constant up to values of 10-20 and t

References

