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i . ' . Fig. 2: Example of the spatial distribution of relative humidity with
domains of nested non-hydrostatic ~ Daily operational forecasts:

00 and 12 UTC + 174 hours respect to ice in %. The GME is able to predict explicitice
models COSMO-EU and COSMO-DE. « 06 and 18 UTC + 48 hours supersaturation but ibt is presumably depleted too quickly, probably

due to overestimation of ice nucleation and depositional growth.

Fig. 1: Structure of GME grid and model

Prognostic Cloud Ice Microphysics Ice Nucleation Modes

# Includes cloud water, rain, cloud ice and
snow. Currently rain and snow are treated
diagnostically, i.e., advection is neglected.

Homogenous Freezing Heterogeneous nucleation

Prognostic treatment of cloud ice, i.e.,
non-equilibrium growth by deposition. No
a-priori assumption made about liquid/ice
fraction.
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paramete rization Of ice num ber immersion deposition condensation
concentration and homogenous freezing
of cloud water Fig. 4: Processes for ice cloud formation. The operational scheme do

. not include the important homogeneous freezing of liquid
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Fig. 3: lllustration of various micro- n (T) =€ T, =21315K aerosol particles. (Figure from a presention by Thomas Leisner,
physical processes in GME.

with modifications)

T=230[K], n=10 I-1
Parcel Model . :

# Currently only temperature dependent Homogeneous nucleation
parameterizations used for ice dominant

Input Parcel Output nucleation processes
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an(.j.Depo- m— mass following Karcher et al. 2006 takes
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- Heterogeneous parameterization e mmm T
based on Phillips et al. 2008. Depends 1000 2000 3000 4000 5000
Homogeneous and on copcentratlons of dust, soot and _ N time[s] -
Heterogenous Nucleation organic substances in the atmosphere Fig. 5: Competition between the nucleation

processes during cirrus cloud formation.
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