Ice Supersaturation in the Operational Global Model GME

Carmen Köhler and Axel Seifert Deutscher Wetterdienst, Germany

Fig. 1: Structure of GME grid and model domains of nested non-hydrostatic models COSMO-EU and COSMO-DE.

- Operational hydrostatic global model

- Icosahedral-hexagonal grid (Majewski et al. 2002)
 - Mesh size ~ 40 km, 368642 grid points/layer
 - 40 layers hybrid sigma/pressure coordinates
 - top layer at 10 hPa
 - Increased resolution of 30 km mesh size and 60 layers planned
 - Time step ∆t = 133 s
- 3D-Var Data Assimilation
- Physical Parameterizations:
 - Tiedtke (1989) convection scheme
 - Ritter and Geleyn (1992) radiation
 Prognostic ice microphysics with explicit supersaturation

- Daily operational forecasts:

- 00 and 12 UTC + 174 hours
 - 06 and 18 UTC + 48 hours

Prognostic Cloud Ice Microphysics

Fig. 3: Illustration of various microphysical processes in GME.

Includes cloud water, rain, cloud ice and snow. Currently rain and snow are treated diagnostically, i.e., advection is neglected. Prognostic treatment of cloud ice, i.e., non-equilibrium growth by deposition. No a-priori assumption made about liquid/ice fraction.

Empirical temperature dependent parameterization of ice number concentration and homogenous freezing of cloud water.

$$n_i(T) = e^{(0.2(T_{max} - T))}$$
, $T_{melt} = 273.15 \text{ K}$

Global RHi Distribution

Fig. 2: Example of the spatial distribution of relative humidity with respect to ice in %. The GME is able to predict explicit ice supersaturation but ibt is presumably depleted too quickly, probably due to overestimation of ice nucleation and depositional growth.

Ice Nucleation Modes

Fig. 4: Processes for ice cloud formation. The operational scheme do not include the important homogeneous freezing of liquid aerosol particles. (Figure from a presention by Thomas Leisner, with modifications)

Conclusions and Future Work

- Approach needed in order to capture mesoscale fluctuations in temperature and vertical velocity to trigger homogeneous nucleation.
- Link aerosol climatology to heterogenous nucleation.
- Implementation of new ice nucleation schemes into GME, COSMO-EU and COSMO-DE Models and analyze scale dependencies.
- Perform validation with in-situ and satellite data.

References

Kärcher, B., J. Hendricks, U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models, *J. Geophys. Res.*, **111**

Phillips, V., P. DeMott, C.Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. *J. Atmos. Sci.*, **65**, 2757-2783

Majewski, D., and co-authors, 2002: The Operational Global Icosahedral–Hexagonal Gridpoint Model GME: Description and High-Resolution Tests, *Monthly Weather Review*, **130**, 319–338