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1. Components
- solid earth (crust, mantle)
- fluid envelopes (atmosphere, ocean, snow & ice)
- living beings on and in them (fauna, flora, people)

2. Complex feedbacks
- and
- - small pushes, big effects?

3. Approaches

4. What to do? - Let's see!




CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Earth System Science Overview, NASA Advisory Council, 1986



“‘Ambitious” diagram
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Flow diagram showing
feedback loops contained
in the dynamical system
for ice-mass /77 and ocean
temperature variations
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Constants for ODE & PDE
models are poorly known.
Mechanisms and effective
delays are easier to
ascertain.
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B. Saltzman, Climatic system analysis, Adv. Geophys., 25, 1983




Binary systems Examples: (ancient Greeks)

Classical logic (Tertium not datur)
Boolean algebra (19t cent.)
Propositional calculus (20t cent.)
(syllogisms as trivial examples)

Genes: on/
Descriptive — Jacob and Monod (1961)
Mathematical genetics — L. Glass, S. Kauffman, M. Sugita (1960s)

Symbolic dynamics of differentiable dynamical systems (DDS): S. Smale (1967)

Switches: on/ 1/
Modern computation (EE & CS)

- cellular automata (CAS) J. von Neumann (1940s, 1966), S. Ulam,
Conway (the game of life), S. Wolfram (1970s, ‘80s)

- spatial increase of complexity —
infinite number of channels

- conservative logic Fredkin & Toffoli (1982)

- kinetic logic: importance of distinct delays
to achieve temporal increase in complexity (synchronization,
operating systems & parallel computation), R. Thomas (1973, 1979,...)




M.G.’s immediate motivation:

— complex interactions
(reduce to binary), C. Nicolis (1982)

Joint work on developing and applying BDEs to climate dynamics
with D. Dee, A. Mullhaupt & P. Pestiaux (1980s)
& with A. Saunders (late 1990s)

Work of L. Mysak and associates (early 1990s)

Recent applications to solid-earth geophysics

( )
with V. Keilis-Borok and |. Zaliapin

Recent applications to the biosciences
( )
Oktem, Pearson & Egiazarian (2003) Chaos
Gagneur & Casari (2005) FEBS Letters




What for BDEs?
- life is sometimes too complex for ODEs and PDEs

What are BDEs?
- formal models of complex feedback webs

- classification of major results

Applications to climate modeling
- paleoclimate — Quaternary glaciations
- Interdecadal climate variability in the Arctic
- ENSO - interannual variability in the Tropics

Applications to earthquake modeling
- colliding-cascades model of seismic activity
- iIntermediate-term prediction

Concluding remarks
- bibliography
- future work




Short answer:
Maximum simplification of nonlinear dynamics
(non-differentiable time-continuous dynamical system)

Longer answer:

1) x&€B =1{0,1}
x(t)=x(-1)
(simplest EBM: x = T)

2) x(1)=Xx(—-1)

3) x,x,EB=1{0,1};0<0 =1

x, () =x,(t—6),0 =1/2
{xz(t) =X, (-1
Eventually periodic with

a period = 2(1+60)

(simplest OCM: x,=m, x,=T)




x,(1) = x,(t-0)
x,(t)=x,(t-1)Vx,(t-0) 6 Is Irrational

Increase in complexity!
Evolution: biological, cosmogonic, historical
But how much?

Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126



Aperiodic solutions with increasing complexity
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x(t)=x(t-1)Vx(t-0), 0 = "golden ratio"
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Conservative BDEs with irrational delays have aperiodic
solutions with a

N.B. Log-periodic behavior!
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Flows after A. Mullhaupt (1984)

X continuous, f continuous
(vector fields, ODEs, PDEs,
FDEs/DDEs, SDEs)

BDES, kinetic logic

x discrete, ¢ continuous

X continuous, £ discrete
(diffeomorphisms,
OAEs, PAEs)

Automata

x discrete, ¢ discrete
(Turing machines, real computers,
CAs, conservative logic)




Definition: A BDE is conservative if its solutions are immediately periodic,
i.e. no transients; otherwise it is dissipative.

Remark: Rational vs. irrational delays.

Example:
1) Conservative x(2) =X —-1)
2) Dissipative x()=x(t—-1)Ax(t—6)

Analogy with ODEs

Conservative — Hamiltonian Dissipative — limit cycle

no transients attractor

M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985




Examples. Convenient shorthand for scalar 2" order BDEs
x=pyoz<=x(t)=x(t—-1)ox(t—-0)

1. Conservative

xX=yVz=y®@z=y+z(mod?2)
X=yAz=10yDz

Remarks: i) Conservative =dinear (mod 2)
i) =Jew conservative connections (~ ODEs)

2. Dissipative

x=yAz=x—0

xX=yvz=x—1

Conservative ——seversible
—vertible

A. Mullhaupt, Ph.D. Thesis, May 1984, CIMS/NYU
M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985




Structural stability & bifurcations

BDEs with periodic solutions only are structurally stable,and conversely

Remark. They are dissipative.

Meta-theorems, by example.

The asymptotic behavior of
x(1))=x(t—-0)AX(t—7T)
is given by
x(t) =x(t—-0)

Hence, if T <0 =1 then solutions are asymptotically periodic;

if however O <t =1 then solutions tend asymptotically to O.

Therefore, as 6 passes through t, one has Hopf bifurcation.




Thermohaline circulation and glaciations

NH Ice Sheet Ice Flow

NH Continent

Pev Prain Rout Rin Antarctic Ice Sheet

Subpolar Sea

Logical variables

T - global surface temperature;
V- NH ice volume, V=V,

Vs - SH ice volume, V¢ = 1;

C - deep-water circulation index

M. Ghil, A. Mullhaupt, & P. Pestiaux,
Climate Dyn., 2, 1-10, 1987.
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The large-scale Southern Oscillation (SO) pattern associated
with El Nifio (EN), as originally seen in surface pressures

30°'W  0°  30°E  60° 120" 150°E 180" 150°W 120°

Neelin (2006) Climate Modeling and Climate Change, after Berlage (1957)

Southern Oscillation:
The seesaw of sea-level pressures p, between
the two branches of the Walker circulation

Southern Oscillation Index (SOI) = normalized difference between
p at Tahiti (T) and p at Darwin (Da)




Time series of atmospheric pressure
and sea surface temperature (SST) indices

0.5 1.0 1.5
Frequency (cycles/year)

Data courtesy of NCEP’s Climate Prediction Center
Neelin (2006) Climate Modeling and Climate Change




SOl = SLP,,,, - SLP

Darwin
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1940 1950 1960 1970 1980 1990 0 20 40 60 80 100
Time Count

A. Saunders & M. Ghil, Physica D, 160, 54—78, 2001
(courtesy of Pascal Yiou)




Atmosphere Wmd anomalles

Ocean: Nino-3 anomalies

Delays

T- wave adjustments
B - local feedbacks

A. Saunders & M. Ghil, Physica D, 160, 54-78, 2001




Devil's Bleachers'in‘a 1:-D ENSO Model

Ratio of ENSO frequency to annual cycle

F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996
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Fractal sunburst

© Simple period
) Complex period
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Wave delay z (yrs)
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1. Hierarchical structure
2. Loading by external forces

3. Elements’ ability to fail & heal

®

’\r Interaction among elements
/7\\.//1\

N\

Failures

A. Gabrielov, V. Keilis-Borok, W. Newman, & |. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.)




I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)
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I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)
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Healing time, A,
I. Zaliapin, V. Keilis-Borok & M. Ghil

(2003a, J. Stat. Phys.)
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Forecasting algorithms for natural and social systems:
Can we beat statistics-based approach?

Possible outcomes of prediction

Successful prediction Failure to predict

®
False alarm

B Correct alarm I Predicted event
B False alarm I Failure to predict

"~ Function depicting precursor
Threshold for declaring an alarm

Ghil and Robertson (2002, PNAS)
Keilis-Borok (2002, Annu. Rev. Earth Planet. Sci.)




P — set of parameters for precursor I1
(e.g. magnitude threshold, time window, efc.)

I1,(P) — Boolean alarm process

n(P

)

t(P) — fractional time covered by alarms
) — fractional number of unpredicted target events
)

AP) — fractional number of false alarms

P = argmin[f(P)]
=II, vII,v..vIL

A

collective

P =argmin [n(P)]

A4 =II, AL, AL ATT

collective




b Ind.ivid.ual preéursors
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After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.)




Minimax prediction strategy in BDE model:
voting of individual premonitory patterns.

Individual alarms

Rise of correlation range

Rise of intensity

Rise of clustering

Transformation of GR law

(All 6) >
(At least 5) > | |

Sk NS (Il [ mE W ]

3100 3200 3300 3400 3500 3600 3700
Time, “years”

I False alarm I Correct alarm *Large earthquake

Collective

After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.)
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Fig. 13. Solutions of the “partial BDE” (34): (a) for a single nonzero site at ¢t = 0;
and (b) the collision of two “waves,” each originating from such a site. For the
space and time steps 0; = 0, = 1, this BDE is equivalent to the elementary cellular
automaton (ECA) with rule 150; empty sites (u;(j) = 0) in white and occupied sites

(ui(j) = 1) in black.

0 20 40 60 80 100

Fig. 14. The solution of the BDE (34) starting from a random initial state of length
N = 100. The qualitative behavior is characterized by “triangles” of empty or
occupied sites but without any recurrent pattern; this behavior does not depend on

the particular random initial state.
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Table 2. Results on partial BDEs

PDE Approx. PBDE ECA | ECA | Behavior
0w = wi(t+6;) = rule | class

d.v | v (I order) w;—1(t) 170 | — | conservative
0,,v V [wi—1(t) Vw1 ()] 7 wi(t) | 54 I dissipative
0.,V A [wi—1(t) A wipr ()] 7 wi(t) | 108 I1 dissipative
%:: vv ((111 erii?) (i () 7 wiss ()] v wa() | 150 | T | dissipative

Summary of results on the partial BDEs obtained from the different consid-
ered approximations for the spatial derivative in the parabolic and hyperbolic
PDEs. Temporal derivative is always approximated by the 57 operator. From
top to bottom, these are the equations (29), (35), (36) and (33) discussed in
the text, respectively. Notice that, though all but the first considered PBDEs
are dissipative, only the last one, i.e. Eq. (33), displays chaotic behavior in

the limit of infinite lattice size.
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Theory

Dee & Ghil (1984, SIAM J. Appl. Math.)
Ghil & Mullhaupt (1985, J. Stat. Phys.)

Applications to climate

Ghil et al. (1987, Climate Dyn.)
Mysak et al. (1990, Climate Dyn.),
Darby & Mysak (1993, Climate Dyn.),
Saunders & Ghil (2001, Physica D)

Applications to solid-earth problems
Zaliapin, Keilis-Borok & Ghil (2003a, b, J. Stat. Phys.)

Applications to genetics
Oktem, Pearson & Egiazarian (2003, Chaos)
Gagneur & Casari (2005, FEBS Letters)

Applications to the socio-economic
and computer sciences?

Review paper
Ghil & Zaliapin (2005) A novel fractal way: Boolean

delay equations and their applications to the Geosciences,
Invited for book honoring B.Mandelbrot 80" birthday




1. BDEs have rich behavior:
periodic, quasi-periodic, aperiodic, increasing complexity

2. BDEs are relatively easy to study
3. BDEs are natural in a digital world

4. Two types of applications

- strictly discrete (genes, computers)

- saturated, threshold behavior (nonlinear
oscillations, climate dynamics,
population biology, earthquakes)

5. Can provide insight on a very qualitative level
(~ symbolic dynamics)

6. Generalizations possible
(spatial dependence — “partial” BDEs;
stochastic delays &/or connectives)




Hmmm, this is interesting! a

Q But what does it all mean?

Needs more work!!!




