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1. Components
   - solid earth (crust, mantle)

       - fluid envelopes (atmosphere, ocean, snow & ice)
   - living beings on and in them (fauna, flora, people)

2. Complex feedbacks
     - positive and negative
     - nonlinear - small pushes, big effects?

3. Approaches
     - reductionist

         - holistic

4. What to do? - Let’s see!



Earth System Science Overview, NASA Advisory Council, 1986



“Ambitious” diagram

B. Saltzman, Climatic system analysis, Adv. Geophys., 25, 1983

Flow diagram showing
feedback loops contained
in the dynamical system
for ice-mass m and ocean
temperature variations T.

Constants for ODE & PDE
models are poorly known.
Mechanisms and effective
delays are easier to
ascertain.

m

T



Binary systems Examples: Yes/No, True/False (ancient Greeks)

Classical logic (Tertium not datur)
Boolean algebra (19th  cent.)
Propositional calculus (20th cent.)

(syllogisms as trivial examples)
Genes: on/off

Descriptive – Jacob and Monod (1961)
Mathematical genetics – L. Glass, S. Kauffman, M. Sugita (1960s)

Symbolic dynamics of differentiable dynamical systems (DDS): S. Smale (1967)

Switches: on/off, 1/0
Modern computation (EE & CS)
- cellular automata (CAs) J. von Neumann (1940s, 1966), S. Ulam,

                        Conway (the game of life), S. Wolfram (1970s, ‘80s)
- spatial increase of complexity –
    infinite number of channels
- conservative logic Fredkin & Toffoli (1982)
- kinetic logic: importance of distinct delays
    to achieve temporal increase in  complexity (synchronization,
    operating systems & parallel computation), R. Thomas (1973, 1979,…)



M.G.’s immediate motivation:

Climate dynamics – complex interactions 
(reduce to binary), C. Nicolis (1982)

Joint work on developing and applying BDEs to climate dynamics
with D. Dee, A. Mullhaupt & P. Pestiaux (1980s)
& with A. Saunders (late 1990s)

 Work of L. Mysak and associates (early 1990s)

Recent applications to solid-earth geophysics
(earthquake modeling and prediction)
with V. Keilis-Borok and I. Zaliapin

Recent applications to the biosciences
(genetics and micro-arrays)

          Oktem, Pearson & Egiazarian (2003) Chaos
          Gagneur & Casari (2005) FEBS Letters



What for BDEs?
     - life is sometimes too complex for ODEs and PDEs

What are BDEs?
     - formal models of complex feedback webs
     - classification of major results

Applications to climate modeling
     - paleoclimate – Quaternary glaciations
     - interdecadal climate variability in the Arctic
     - ENSO – interannual variability in the Tropics 

Applications to earthquake modeling
     - colliding-cascades model of seismic activity 
     - intermediate-term prediction

Concluding remarks
     - bibliography
     - future work



Short answer: 
Maximum simplification of nonlinear dynamics
(non-differentiable time-continuous dynamical system) 

Longer answer: 
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Increase in complexity!
Evolution: biological, cosmogonic, historical
But how much? Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126



Aperiodic solutions with increasing complexity
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Conservative BDEs with irrational delays have aperiodic
solutions with a power-law increase in complexity.  

N.B. Log-periodic behavior!



http://www.yorku.ca/esse/veo/earth/image/1-2-2.JPG
Density of events log( )t!

Earliest  life

Ice age begins



after A. Mullhaupt (1984)



Definition: A BDE is conservative if its solutions are immediately periodic,
i.e. no transients; otherwise it is dissipative.

Remark: Rational vs. irrational delays.

Example:

1) Conservative ( ) ( 1)x t x t= !

( ) ( 1) ( )x t x t x t != " # "2) Dissipative 

Analogy with ODEs

Conservative – Hamiltonian Dissipative – limit cycle

no transients attractor

M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985



Examples. Convenient shorthand for scalar 2nd order BDEs

( ) ( 1) ( )x y z x t x t x t != " = # #o o

1. Conservative
(mod2)x y z y z y z= ! = " = +

1x y z y z= ! = " "

Remarks: i) Conservative      linear (mod 2)
                ii)     few conservative connections (~ ODEs)

!

!

2. Dissipative
0x y z x= ! " #%

1x y z x= ! " #%

A. Mullhaupt, Ph.D. Thesis, May 1984, CIMS/NYU
M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985

!

!

Conservative        reversible
                             invertible



Structural stability & bifurcations

BDEs with periodic solutions only are structurally stable,and conversely

Remark. They are dissipative. 

Meta-theorems, by example.  

The asymptotic behavior of   
( ) ( ) ( )x t x t x t! "= # $ #

is given by   
( ) ( )x t x t != "

Hence, if 1! "< = then solutions are asymptotically periodic;

if however 1! "< = then solutions tend asymptotically to 0.

Therefore, as θ passes through τ,  one has Hopf bifurcation.



Thermohaline circulation and glaciations

M. Ghil, A. Mullhaupt, & P. Pestiaux, 
Climate Dyn., 2, 1-10, 1987. 

Logical variables
T - global surface temperature;
VN - NH ice volume, VN = V;
VS - SH ice volume, VS = 1;
C - deep-water circulation index





Southern Oscillation:
The seesaw of sea-level pressures ps between
the two branches of the Walker circulation

Southern Oscillation Index (SOI) = normalized difference between
ps at Tahiti (T) and ps at Darwin (Da)

Neelin (2006) Climate Modeling and Climate Change, after Berlage (1957)

The large-scale Southern Oscillation (SO) pattern associated
with El Niño (EN), as originally seen in surface pressures



Time series of atmospheric pressure 
                and sea surface temperature (SST) indices

Data courtesy of NCEP’s Climate Prediction Center 
Neelin (2006) Climate Modeling and Climate Change



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001
    (courtesy of Pascal Yiou)



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001



F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001







1. Hierarchical structure

2. Loading by external forces

3. Elements’ ability to fail & heal

Interaction among elements

A. Gabrielov, V. Keilis-Borok, W. Newman, & I. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.)



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)



I. Zaliapin, V. Keilis-Borok & M. Ghil 
(2003a, J. Stat. Phys.)



Ghil and Robertson (2002, PNAS)
Keilis-Borok (2002, Annu. Rev. Earth Planet. Sci.)



P – set of parameters for precursor Π 
  (e.g. magnitude threshold, time window, etc.)

τ(P) – fractional time covered by alarms

n(P) – fractional number of unpredicted target events

f(P) – fractional number of false alarms

[ ]argmin ( )P f P=

[ ]argmin ( )P n P=

Πt(P) – Boolean alarm process

collective 1 2
...

n
A = ! "! " "!

collective 1 2
...

n
A = ! "! " "!



After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.)

Individual patterns are tuned to eliminate false alarms 
at the cost of having more failures to predict. 

Collectively, errors of both kinds are drastically reduced. 

 -- N out of 6 individual precursors give alarm

N=6

N=5

N=4

N=3

N=2
N=1



After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.)

Individual patterns are tuned to eliminate failures to predict 
at the cost of having more false alarms. 

Collectively, errors of both kinds are drastically reduced. 
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Fig. 13. Solutions of the “partial BDE” (34): (a) for a single nonzero site at t = 0;

and (b) the collision of two “waves,” each originating from such a site. For the

space and time steps θt = θz = 1, this BDE is equivalent to the elementary cellular

automaton (ECA) with rule 150; empty sites (ui(j) = 0) in white and occupied sites

(ui(j) = 1) in black.
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Fig. 14. The solution of the BDE (34) starting from a random initial state of length

N = 100. The qualitative behavior is characterized by “triangles” of empty or

occupied sites but without any recurrent pattern; this behavior does not depend on

the particular random initial state.
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Table 2. Results on partial BDEs

PDE Approx. PBDE ECA ECA Behavior

∂tv = ui(t + θt) = rule class

∂zv 5 (I order) ui−1(t) 170 — conservative

∂zzv ∨ [ui−1(t) ∨ ui+1(t)] 5 ui(t) 54 I dissipative

∂zzv ∧ [ui−1(t) ∧ ui+1(t)] 5 ui(t) 108 II dissipative

∂zzv 5 (I order)
[ui−1(t) 5 ui+1(t)] 5 ui(t) 150 III dissipative

∂zv 5 (II order)

Summary of results on the partial BDEs obtained from the different consid-

ered approximations for the spatial derivative in the parabolic and hyperbolic

PDEs. Temporal derivative is always approximated by the 5 operator. From

top to bottom, these are the equations (29), (35), (36) and (33) discussed in

the text, respectively. Notice that, though all but the first considered PBDEs

are dissipative, only the last one, i.e. Eq. (33), displays chaotic behavior in

the limit of infinite lattice size.
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Ghil & Zaliapin (2005) A novel fractal way: Boolean 
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        Invited for book honoring B.Mandelbrot 80th birthday



1. BDEs have rich behavior:
periodic, quasi-periodic, aperiodic, increasing complexity

2. BDEs are relatively easy to study

3. BDEs are natural in a digital world

4. Two types of applications

- strictly discrete (genes, computers)
- saturated, threshold behavior (nonlinear

oscillations, climate dynamics,
population biology, earthquakes)

5. Can provide insight on a very qualitative level
(~ symbolic dynamics)

6. Generalizations possible
(spatial dependence – “partial” BDEs;
 stochastic delays &/or connectives)




