
Extreme Value Theory
(or how to go beyond of the range data)

Sept 2007, Romania

Philippe Naveau

Laboratoire des Sciences du Climat et l’Environnement (LSCE)
Gif-sur-Yvette, France

Katz et al., Statistics of extremes in hydrology,
Advances in Water Resources 25 (2002) 1287-1304



Motivation Univariate EVT Non-stationary extremes Spatial extremes Conclusions

Extreme quotes

1 “Man can believe the impossible, but man can never believe the
improbable” Oscar Wilde (Intentions, 1891)

2 “Il est impossible que l’improbable n’arrive jamais”
Emil Julius Gumbel (1891-1966)

Extreme events ? ... a probabilistic
concept linked to the tail behavior :
low frequency of occurrence, large
uncertainty and sometimes strong
amplitude.

Region of interest



Motivation Univariate EVT Non-stationary extremes Spatial extremes Conclusions

Important issues in Extreme Value Theory

An asymptotic probabilistic
concept

A statistical modeling approach

Identifying clearly assumptions

Assessing uncertainties

Goodness of fit and model
selection

Applied statistics

Theoritical probability

Non-stationarity

Independence

Univariate

Parametric

Multivariate
Non-parametric
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Why heavy rainfalls are important in geosciences ?

”It is very likely that hot extremes, heat waves, and heavy precipitation events
will continue to become more frequent” and that “precipitation is highly
variable spatially and temporally”

The policymakers summary of the 2007 Intergovernmental Panel on Climate Change
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Random variable types

Climate : maxima or mimina (daily, monthly, annually), dry spells, etc

Hydrology : return levels.

a quantile estimation pb : how to find zp such that P(Z > zp) = p

=⇒ Exceedances
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Return levels and return periods

A return level with a return period of
T = 1/p years is a high threshold zp

whose probability of exceedance is p.
E.g., p = 0.01⇒ T = 100 years.
Return level interpretations

Waiting time : Average waiting
time until next occurrence of
event is T years

Number of events : Average
number of events occurring within
a T -year time period is one
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Our main random variable of interest : precipitation

1 Relevant parameter in meteorology and climatology

2 Highly stochastic nature compared to other meteorological parameters
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Heavy rainfall distributions

The problems at hand

Classical distributions (Gamma, Weibull,
Stretched-exponential, . . .) not satisfying for
extremes

EVT not adequate low and medium
precipitation

Our main question

How to go beyond the univariate
site-per-site modeling and to take into
account the spatial pairwise dependence
among sites ?
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Three applications

Measuring the spatial dependence among maxima (Max-stable
processes) :
Vannitsem & Naveau (2007), Schlather & Tawn (2003), de Haan &
Pereira (2005)

Spatial Interpolation of return levels in Colorado (Hierarchical
Bayesian models) :
Cooley, Nychka and Naveau (2007), Coles & Tawn (1996).

Downscaling extremes over Illinois (latent processes) :
Vrac and Naveau (2007)
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Two toy examples

Annual maximum peak flow Crete ice core
Potomac river (cfs) Greenland (ecm)

(Fig. 4) indicates that the fit is reasonably adequate,
even in the upper tail. In Section 5.2.2, another annual
peak flow time series will be analyzed for which the fit of
the GEV distribution does not appear to be acceptable.

3. Methodological developments

3.1. Theoretical framework

Underlying the POT method is a formal statistical
model, consisting of a Poisson process for the occur-
rence of an exceedance of a high threshold and a gen-
eralized Pareto (GP) distribution for the excess over the
threshold (termed ‘‘Poisson–GP model’’). A basic ref-
erence for the point process representation of extremes is
Leadbetter et al. (Chapter 5 in [59], also see Chapter 7 in
[15]).

3.1.1. Poisson–GP model
Arising as an approximation for the distribution of

excesses above a high threshold, the cumulative distri-
bution and quantile functions for the GP are given by:

F ðx; r"; cÞ ¼ 1% ½1þ cðx=r"Þ(%1=c;

r" > 0; 1þ cðx=r"Þ > 0;

F %1ð1% p; r"; cÞ ¼ ðr"=cÞðp%c % 1Þ; 0 < p < 1:

ð4Þ

Here r" and c are the scale and shape parameters, re-
spectively. The interpretation of the shape parameter c is
equivalent to that for the GEV distribution (e.g., if
c > 0, then the GP distribution is heavy tailed). By
convention, c ¼ 0 refers to the limiting case obtained as
c ! 0 in Eq. (4) of the exponential distribution (i.e., an
unbounded, thin tail).

Let X1;X2; . . . ;Xn, denote a time series (assumed, for
now, to be independent and identically distributed)
whose high extreme values are of interest. The Poisson–
GP model consists of two components (Chapter 4 in
[15,25], Chapter 5 in [77]): (i) the occurrences of ex-
ceedances of some high threshold u (i.e., Xi > u, for some
i) are generated by a Poisson process (with rate parameter
k); and (ii) the excesses over threshold u (i.e., Xi % u, for
some i) have a GP distribution (with scale and shape
parameters, r" and c). The scale parameter r" of the GP
distribution differs from that for the GEV by an amount
depending on the threshold u (see Eq. (A.3) in Appendix
A). As previously mentioned, the assumption of inde-
pendence can be relaxed by dealing with cluster maxima
instead of all exceedances, and one way to relax the as-
sumption of identical distribution is by letting the pa-
rameters of the Poisson–GP model depend on covariates
(e.g., annual or diurnal cycles).

3.1.2. Point process approach
Among others, Smith [85] developed the statistical

theory needed to apply the point process approach to
the statistics of extremes. In essence, this approach in-
volves representing the two components of the Poisson–
GP model (i.e., the occurrence of exceedances and the
excesses over a high threshold) jointly as a two-dimen-
sional nonhomogenous Poisson process (one dimension
is time, the other the excess values). In this way, features
of the GEV distribution for block maxima and the POT
approach can be combined. In particular, the GEV
distribution can be indirectly fitted via the POT method,
but still in terms of the GEV parameterization. In this
way, the scale parameter r is invariant with respect to
the choice of threshold u, the extension to time-depen-
dent parameters (e.g., covariates) is immediate, and even
thresholds that vary with time (e.g., because of annual
cycles or trends) are permissible (Chapter 7 in [15]).

Suppose that it is desired to fit the GEV distribution,
with parameters l, r, and c, for the maximum over some
time period denoted by 1=h. In other words, the time

Fig. 4. Q–Q plot for fit of GEV distribution to annual peak flow of
Potomac River (line of equality indicates perfect fit).

Fig. 3. Annual peak flow of Potomac River at Point of Rocks, MD,
USA, 1895–2000.

1292 R.W. Katz et al. / Advances in Water Resources 25 (2002) 1287–1304
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Maxima DistributionGumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

⇓ ↓ ↑ ⇑ Extrêmes? Mesurer Interpoler Régionaliser 6

Distribution du maximum

Normal density ⇒

Uniform density ⇒

Cauchy density ⇒

⇐ Gumbel density

⇐ Weibull density

⇐ Fréchet density

n = 50 n = 100
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Max-stability

Let Mn = max(X1, . . . ,Xn) with Xi iid with distribution F .

Problem : find an and bn for a given F such that

P
„

Mn − an

bn
< x

«
= F n(anx + bn) = F (x)

Home work A
Unit-Frèchet F (x) = exp(−1/x) for x > 0. Then an = 1 & bn = 0

Gumbel F (x) = exp(− exp(−x)) for all real x . Then an = 1 & bn = − log n

Weibull F (x) = exp(−|x |α) for x < 0 (1 otherwise). Then an = n1/α & bn = 0
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Max-stability

Let Mn = max(X1, . . . ,Xn) with Xi iid with distribution F .

Problem : find an and bn for a given F such that

lim
n→∞

P
„

Mn − an

bn
< x

«
= lim

n→∞
F n(anx + bn) = F (x)

Home work B
Exponential F (x) = 1− exp(−x) for x > 0. Then an = 1 & bn = log n

Uniform F (x) = x for 0 < x < 1. Then an = 1/n & bn = 1
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Generalized Extreme Value (GEV) distribution

P
„

Mn − an

bn
< x

«
∼ GEV(x) = exp


−
h
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Historical perspective

Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

Emil Gumbel was born and trained as a statistician in Germany, forced to move to
France and then the U.S. because of his pacifist and socialist views. He was a
pioneer in the application of extreme value theory, particularly to climate and
hydrology.
Waloddi Weibull was a Swedish engineer famous for his pioneering work on
reliability, providing a statistical treatment of fatigue, strength, and lifetime.
Maurice Frechet was a French mathematician who made major contributions to
pure mathematics as well as probability and statistics. He also collected empirical
examples of heavy-tailed distributions.

Other important names : Fisher and Tippet (1928), Gnedenko (1943), etc
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An active statistical and probabilistic field
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GEV and return levels

GEV(x) = exp

−
h
1 + ξ

“x − µ
σ

”i−1/ξ

+

ff

Computing the return level zp such that GEV(zp) = 1− p

zp = GEV−1(1− p)

Hence, zp = µ+ σ
ξ

`
[− ln(1− p)]−ξ − 1]

´
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GEV and return levels estimation

zp = µ+
σ

ξ

“
[− ln(1− p)]−ξ − 1]

”
Estimating the return level zp

ẑp = µ̂+ σ̂

ξ̂

“
[− ln(1− p)]−ξ̂ − 1]

”

Estimating the GEV parameters estimates (µ̂, σ̂, ξ̂)

Maximum likelihood estimation

Methods of moments type (PWM and GPWM)

Exhaustive tail-index approaches
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GEV and return levels estimation

ẑp = µ̂+
σ̂

ξ̂

“
[− ln(1− p)]−ξ̂ − 1]

”
Maximum likelihood estimates of (µ̂, σ̂, ξ̂)t

Asymptotically distributed as a multivariate Gaussian vector with mean
θ = (µ̂, σ̂, ξ̂)t and covariance matrix that is the inverse of the expected
information matrix whose elements are equal

E
„
−∂

2 log l(θ)

∂θi∂θj

«
where l(θ) is the likelihood function of the GEV distributed sample
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Our first toy example

(Fig. 4) indicates that the fit is reasonably adequate,
even in the upper tail. In Section 5.2.2, another annual
peak flow time series will be analyzed for which the fit of
the GEV distribution does not appear to be acceptable.

3. Methodological developments

3.1. Theoretical framework

Underlying the POT method is a formal statistical
model, consisting of a Poisson process for the occur-
rence of an exceedance of a high threshold and a gen-
eralized Pareto (GP) distribution for the excess over the
threshold (termed ‘‘Poisson–GP model’’). A basic ref-
erence for the point process representation of extremes is
Leadbetter et al. (Chapter 5 in [59], also see Chapter 7 in
[15]).

3.1.1. Poisson–GP model
Arising as an approximation for the distribution of

excesses above a high threshold, the cumulative distri-
bution and quantile functions for the GP are given by:

F ðx; r"; cÞ ¼ 1% ½1þ cðx=r"Þ(%1=c;

r" > 0; 1þ cðx=r"Þ > 0;

F %1ð1% p; r"; cÞ ¼ ðr"=cÞðp%c % 1Þ; 0 < p < 1:

ð4Þ

Here r" and c are the scale and shape parameters, re-
spectively. The interpretation of the shape parameter c is
equivalent to that for the GEV distribution (e.g., if
c > 0, then the GP distribution is heavy tailed). By
convention, c ¼ 0 refers to the limiting case obtained as
c ! 0 in Eq. (4) of the exponential distribution (i.e., an
unbounded, thin tail).

Let X1;X2; . . . ;Xn, denote a time series (assumed, for
now, to be independent and identically distributed)
whose high extreme values are of interest. The Poisson–
GP model consists of two components (Chapter 4 in
[15,25], Chapter 5 in [77]): (i) the occurrences of ex-
ceedances of some high threshold u (i.e., Xi > u, for some
i) are generated by a Poisson process (with rate parameter
k); and (ii) the excesses over threshold u (i.e., Xi % u, for
some i) have a GP distribution (with scale and shape
parameters, r" and c). The scale parameter r" of the GP
distribution differs from that for the GEV by an amount
depending on the threshold u (see Eq. (A.3) in Appendix
A). As previously mentioned, the assumption of inde-
pendence can be relaxed by dealing with cluster maxima
instead of all exceedances, and one way to relax the as-
sumption of identical distribution is by letting the pa-
rameters of the Poisson–GP model depend on covariates
(e.g., annual or diurnal cycles).

3.1.2. Point process approach
Among others, Smith [85] developed the statistical

theory needed to apply the point process approach to
the statistics of extremes. In essence, this approach in-
volves representing the two components of the Poisson–
GP model (i.e., the occurrence of exceedances and the
excesses over a high threshold) jointly as a two-dimen-
sional nonhomogenous Poisson process (one dimension
is time, the other the excess values). In this way, features
of the GEV distribution for block maxima and the POT
approach can be combined. In particular, the GEV
distribution can be indirectly fitted via the POT method,
but still in terms of the GEV parameterization. In this
way, the scale parameter r is invariant with respect to
the choice of threshold u, the extension to time-depen-
dent parameters (e.g., covariates) is immediate, and even
thresholds that vary with time (e.g., because of annual
cycles or trends) are permissible (Chapter 7 in [15]).

Suppose that it is desired to fit the GEV distribution,
with parameters l, r, and c, for the maximum over some
time period denoted by 1=h. In other words, the time

Fig. 4. Q–Q plot for fit of GEV distribution to annual peak flow of
Potomac River (line of equality indicates perfect fit).

Fig. 3. Annual peak flow of Potomac River at Point of Rocks, MD,
USA, 1895–2000.

1292 R.W. Katz et al. / Advances in Water Resources 25 (2002) 1287–1304

(Fig. 4) indicates that the fit is reasonably adequate,
even in the upper tail. In Section 5.2.2, another annual
peak flow time series will be analyzed for which the fit of
the GEV distribution does not appear to be acceptable.

3. Methodological developments

3.1. Theoretical framework

Underlying the POT method is a formal statistical
model, consisting of a Poisson process for the occur-
rence of an exceedance of a high threshold and a gen-
eralized Pareto (GP) distribution for the excess over the
threshold (termed ‘‘Poisson–GP model’’). A basic ref-
erence for the point process representation of extremes is
Leadbetter et al. (Chapter 5 in [59], also see Chapter 7 in
[15]).

3.1.1. Poisson–GP model
Arising as an approximation for the distribution of

excesses above a high threshold, the cumulative distri-
bution and quantile functions for the GP are given by:

F ðx; r"; cÞ ¼ 1% ½1þ cðx=r"Þ(%1=c;

r" > 0; 1þ cðx=r"Þ > 0;

F %1ð1% p; r"; cÞ ¼ ðr"=cÞðp%c % 1Þ; 0 < p < 1:

ð4Þ

Here r" and c are the scale and shape parameters, re-
spectively. The interpretation of the shape parameter c is
equivalent to that for the GEV distribution (e.g., if
c > 0, then the GP distribution is heavy tailed). By
convention, c ¼ 0 refers to the limiting case obtained as
c ! 0 in Eq. (4) of the exponential distribution (i.e., an
unbounded, thin tail).

Let X1;X2; . . . ;Xn, denote a time series (assumed, for
now, to be independent and identically distributed)
whose high extreme values are of interest. The Poisson–
GP model consists of two components (Chapter 4 in
[15,25], Chapter 5 in [77]): (i) the occurrences of ex-
ceedances of some high threshold u (i.e., Xi > u, for some
i) are generated by a Poisson process (with rate parameter
k); and (ii) the excesses over threshold u (i.e., Xi % u, for
some i) have a GP distribution (with scale and shape
parameters, r" and c). The scale parameter r" of the GP
distribution differs from that for the GEV by an amount
depending on the threshold u (see Eq. (A.3) in Appendix
A). As previously mentioned, the assumption of inde-
pendence can be relaxed by dealing with cluster maxima
instead of all exceedances, and one way to relax the as-
sumption of identical distribution is by letting the pa-
rameters of the Poisson–GP model depend on covariates
(e.g., annual or diurnal cycles).

3.1.2. Point process approach
Among others, Smith [85] developed the statistical

theory needed to apply the point process approach to
the statistics of extremes. In essence, this approach in-
volves representing the two components of the Poisson–
GP model (i.e., the occurrence of exceedances and the
excesses over a high threshold) jointly as a two-dimen-
sional nonhomogenous Poisson process (one dimension
is time, the other the excess values). In this way, features
of the GEV distribution for block maxima and the POT
approach can be combined. In particular, the GEV
distribution can be indirectly fitted via the POT method,
but still in terms of the GEV parameterization. In this
way, the scale parameter r is invariant with respect to
the choice of threshold u, the extension to time-depen-
dent parameters (e.g., covariates) is immediate, and even
thresholds that vary with time (e.g., because of annual
cycles or trends) are permissible (Chapter 7 in [15]).

Suppose that it is desired to fit the GEV distribution,
with parameters l, r, and c, for the maximum over some
time period denoted by 1=h. In other words, the time

Fig. 4. Q–Q plot for fit of GEV distribution to annual peak flow of
Potomac River (line of equality indicates perfect fit).

Fig. 3. Annual peak flow of Potomac River at Point of Rocks, MD,
USA, 1895–2000.

1292 R.W. Katz et al. / Advances in Water Resources 25 (2002) 1287–1304

ξ̂ = 0.191 with a P-value of 0.002 for likelihood ratio test of ξ = 0
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Peak over Threshold (POT)

Improve Flood
Quantile Estimates

by
Mathieu Ribatet

Intro

Motivations

Extreme Value Theory

Improve Inferences

Modelling All
Exceedances

Justification

Theory

First (Few) Results

Test for Asymptotic

Dependence

Comparison Between All

Markovian Models

Inference on Flood Duration

Conclusions and
Perspectives

Some References

From a time series to. . .

! Annual Maxima

! POT

! Markovian

! Time series⇒ 1 obs/year

! Time series⇒ λ obs/year

! Time series⇒ all exceedances

11/29
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Thresholding : the Generalized Pareto Distribution (GPD)

P{R−u > y |R > u} =

„
1 +

ξ y
σu

«−1/ξ

+

Vilfredo Pareto : 1848-1923

Born in France and trained as an
engineer in Italy, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or ”Pareto’s Law”), as
a model for how income or wealth
is distributed across society.
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Generalized Pareto Distribution (GPD)

P{R− u > y |R > u} =
“

1 + ξ y
σu

”−1/ξ

Parameters

u = predetermined threshold

σu = scale parameter to be estimated

ξ = shape parameter to be estimated

Advantages & Practical issues

Flexibility to describe three different types of tail behavior

More data are kept for the statistical inference

Problem of threshold selection
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GPD

P{R− u > y |R > u} =

„
1 +

ξ y
σu

«−1/ξ

+

Special cases (home work D)
Unit-Frèchet F (x) = exp(−1/x) for x > 0. Then σu = 1 and ξ = −1/α

Exponential F (x) = 1− exp(−x) for x > 0. Then σu = 1 and ξ = 0

Uniform F (x) = x for 0 < x < 1. Then σu = 1 and ξ = −1

Stability property (home work E)
If the exceedance (R− u|R > u) follows a GPD(σu, ξ) then the higher
exceedance (R− v |R > v) also follows GPD(σu + (v − u)ξ, ξ)
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GPD : “From Bounded to Heavy tails”
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Estimating the GPD parameters estimates (σ̂u, ξ̂)

Maximum likelihood estimation

Methods of moments type (PWM and GPWM)

Exhaustive tail-index approaches

Taking advantages of the stability property

Mean Excess function

E(R− u|R > u) =
σu + uξ
1− ξ

the scale parameter varies linearly in the threshold u

the shape parameter ξ is fixed wrt the threshold u



Motivation Univariate EVT Non-stationary extremes Spatial extremes Conclusions

GPD diagnostics & models selection for our Crete data
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GPD

GPD return level zp

zp = u +
σu

ξ

 »
p

P(R > u)

–−ξ
− 1

!

Estimating the return level zp

ẑp = u +
σ̂u

ξ̂

 »
p × n

Nu

–−ξ̂
− 1

!
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A first summary

So far, we have assumed an idd
model

Asymptotic probability suggests
GEV and GPD

Maximum likelihood approach
provides asymptotic parameters
and return levels uncertainties

Goodness of fit and model
selection

Applied statistics

Theoritical probability

Non-stationarity

Independence

Univariate

Parametric

Multivariate
Non-parametric
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Daily precipitation (April-October, 1948-2001, 56 stations)
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Precipitation in Colorado’s front range

Data

56 weather stations in Colorado (semi-arid and mountainous region)

Daily precipitation for the months April-October

Time span = 1948-2001

Not all stations have the same number of data points

Precision : 1971 from 1/10th of an inche to 1/100

D. Cooley, D. Nychka and P. Naveau, (2007). Bayesian
Spatial Modeling of Extreme Precipitation Return Levels.
Journal of The American Statistical Association (in
press).
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Our main assumptions

Process layer : The scale and shape GPD parameters (ξ(x), σ(x)) are
random fields and result from an unobservable latent spatial process

Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

σ(x) = exp(φ(x))
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Hierarchical Bayesian Model with three levels

P(process, parameters|data) ∝ P(data|process, parameters)

×P(process|parameters)

×P(parameters)

Process level : the scale and shape GPD parameters (ξ(x), σ(x)) are hidden
random fields
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Our three levels

A) Data layer := P(data|process, parameters) =

Pθ{R(xi)− u > y |R(xi) > u} =

„
1 +

ξi y
expφi

«−1/ξi

B) Process layer := P(process|parameters) :

e.g. φi = α0 + α1 × elevationi + MVN (0, β0 exp(−β1||xk − x j ||))

and ξi =


ξmoutains, if x i ∈ mountains
ξplains, if x i ∈ plains

C) Parameters layer (priors) := P(parameters) :
e.g. (ξmoutains, ξplains) Gaussian distribution with non-informative mean and
variance
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Bayesian hierarchical modelingNotre modèle Bayesien hiérarchique

⇓ ↓ ↑ ⇑ Extrêmes? Mesurer Interpoler Régionaliser 16
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Model selection

JASA jasa v.2004/12/09 Prn:12/10/2006; 18:07 F:jasaap05380r.tex; (R) p. 10

10 Journal of the American Statistical Association, ???? 0

1 60

2 61

3 62

4 63

5 64

6 65

7 66

8 67

9 68

10 69

11 70

12 71

13 72

14 73

15 74

16 75

17 76

18 77

19 78

20 79

21 80

22 81

23 82

24 83

25 84

26 85

27 86

28 87

29 88

30 89

31 90

32 91

33 92

34 93

35 94

36 95

37 96

38 97

39 98

40 99

41 100

42 101

43 102

44 103

45 104

46 105

47 106

48 107

49 108

50 109

51 110

52 111

53 112

54 113

55 114

56 115

57 116

58 117

59 118

the same manner as φ when modeled spatially. The exceedance
rate model is handled analogously.

We ran three parallel chains for each model. Each simula-
tion consisted of 20,000 iterations, the first 2,000 iterations
were considered to be burn-in time. Of the remaining itera-
tions, every 10th iteration was kept to reduce dependence. We
used the criterion R̂ as suggested by Gelman (1996) to test for
convergence and assumed that values below the suggested crit-
ical value of 1.1 imply convergence. For all parameters of all
models, the value of R̂ is below 1.05 unless otherwise noted in
Section 4.1.

3.4 Spatial Interpolation and Inference

Our goal is to estimate the posterior distribution for the return
level for every location in the study region. From (3), zr(x) is a
function of the GPD parameters φ(x), ξ(x), and the (indepen-
dent) exceedance rate parameter ζ(x); thus, it is sufficient to
estimate the posteriors of these processes. Our method allows
us to draw samples from these distributions, which in turn can
be used to produce draws from zr(x).

To illustrate our interpolation method, consider the log-
transformed GPD scale parameter of the exceedance model. We
begin with values for φ, αφ , and βφ from which we need to
interpolate the value of φ(x). We have assumed that the para-
meters αφ and βφ , respectively, determine the mean and co-
variance structure of the Gaussian process for φ(x). Using the
values of αφ and βφ , we are able to draw from the conditional
distribution for φ(x) given the current values of φ. Doing this
for each iteration of the MCMC algorithm provides draws from
the posterior distribution of φ(x).

We do the same for the exceedance rate parameter ζ(x) and
for the GPD shape parameter ξ(x) if it is modeled spatially.
Pointwise means are used as point estimates for each of the pa-
rameters (Fig. 7). The entire collection of draws from the pos-
terior distributions of φ(x), ξ(x), and ζ(x) are used to produce
draws from the return level posterior distribution. The point-
wise quantiles and pointwise means of the posterior draws are
used for the return level maps (Figs. 8 and 9).

4. RESULTS

4.1 Model Selection and Map Results

As in a regression study, we test both the threshold ex-
ceedance and the exceedance rate models with different covari-
ates. To assess model quality, we use the deviance information
criterion (DIC) (Spiegelhalter, Best, Carlin, and van der Linde
2002) as a guide. The DIC produces a measure of model fit D̄
and a measure of model complexity pD and sums them to get
an overall score (lower is better). As the DIC scores result from
the realizations of an MCMC run, there is some randomness
in them, and, therefore, nested models do not always have im-
proved fits. We do not solely rely on the DIC to choose the most
appropriate model. Because our project is product oriented (i.e.,
we want to produce a map), we also considered the statistical
and climatological characteristics of each model’s map, as well
as their uncertainty measures.

We first discuss the model for threshold exceedances. Ta-
ble 1 shows the models tested and their corresponding DIC
scores. We begin developing models in the traditional lat-
itude/longitude space and start with simple models where

Table 1. Several of the Different GPD Hierarchical Models Tested and
Their Corresponding DIC Scores

Baseline model D̄ pD DIC

Model 0: φ = φ 73,595.5 2.0 73,597.2
ξ = ξ

Models in latitude/longitude space D̄ pD DIC

Model 1: φ = α0 + εφ 73,442.0 40.9 73,482.9
ξ = ξ

Model 2: φ = α0 + α1(msp) + εφ 73,441.6 40.8 73,482.4
ξ = ξ

Model 3: φ = α0 + α1(elev) + εφ 73,443.0 35.5 73,478.5
ξ = ξ

Model 4: φ = α0 +α1(elev)+α2(msp)+εφ 73,443.7 35.0 73,478.6
ξ = ξ

Models in climate space D̄ pD DIC

Model 5: φ = α0 + εφ 73,437.1 30.4 73,467.5
ξ = ξ

Model 6: φ = α0 + α1(elev) + εφ 73,438.8 28.3 73,467.1
ξ = ξ

Model 7: φ = α0 + εφ 73,437.5 28.8 73,466.3
ξ = ξmtn,ξplains

Model 8: φ = α0 + α1(elev) + εφ 73,436.7 30.3 73,467.0
ξ = ξmtn,ξplains

Model 9: φ = α0 + εφ 73,433.9 54.6 73,488.5
ξ = ξ + εξ

NOTE: Models in the climate space had better scores than models in the longitude/latitude
space. ε· ∼ MVN(0, &), where [σ ]i, j = β·, 0 exp(−β·, 1‖xi − xj ‖).

φ(x) is modeled as in Section 3.1 and ξ(x) is modeled as a
single value throughout the region. We allow the mean of the
scale parameter to be a linear function of elevation and/or MSP
(Models 2, 3, and 4). To our surprise, we find that elevation
outperforms MSP as a covariate and, in fact, adding MSP does
not improve the model over including elevation alone. Unfor-
tunately, the maps produced by these simple models in the
traditional space seem to inadequately describe the extreme
precipitation. For example, the point estimate maps for φ(x)

show relatively high values around the cities of Boulder and
Fort Collins but do not show similar values for the stationless
region between the cities despite that it has a similar climate
and geography.

When we perform the analysis for the climate space, we ob-
tain better results. Both the model fit score and the effective
number of parameters are lower in the climate space, yield-
ing lower DIC scores for corresponding models (e.g., Models
1 and 5 or Models 3 and 6). However, in the climate space,
adding elevation (or MSP) as a covariate does not seem to im-
prove the model as these covariates are already integrated into
the analysis as the locations’ coordinates. Most important, when
the points are translated back to the original space, we obtain
parameter estimate maps that seem to better agree with the ge-
ography.

We then begin to add complexity to the shape parameter ξ(x).
Allowing the mountain stations and plains stations to have
separate shape parameter values slightly improves model fit
(Model 7), but a fully spatial model for ξ(x) does not improve
model fit enough to warrant the added complexity (Model 9).
Model 7 is chosen as the most appropriate model tested based
not only on its DIC score but also on the posteriors for the
parameters ξmtn and ξplains. Selected posterior densities from
Model 7 are plotted in Figure 6. The left plot in Figure 7 shows
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Return levels posterior mean
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Posterior quantiles of return levels (.025, .975)
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Downscaling of rainfalls

Vrac and Naveau, (2007). Stochastic downscaling of

precipitation : From dry events to heavy rainfalls. Water

Resource Research (in press)
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Our data

Local scale : Rt = Daily precipitation recorded at 37 stations 1980-1999
(DJF)

Large scale : X t = NCEP geopotential height, Q and DT at 850mb

Weather regimes : St = Four regimes of precipitation

Our objective :
What is the precipitation probability distribution of Rt given the large and
regional scale characteristics, X t and St ?

Subsidiary questions :

What is the precipitation distribution at a given site ?

What are meaningful regional patterns ?

How to connect the different scales ?

Our strategy
A GPD latent process (hidden markov process + logistic model) that depends
on X t et de St
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Illinois rainfall patterns
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How to switch from one precipitation pattern to the other ?

Markov chains

P(St = j |St−1 = i) ∝ γij

..., but these transition probabilities are independent of the atmospheric
variables X t like Q

Non-homogeneous Markov chains

P(St = j |St−1 = i ,X t ) ∝ γij exp
»
−1

2
(X t − µij )Σ−1(X t − µij )

′
–

where

Σ = atmospheric variables covariance

µij = atmospheric variables means
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Precipitation density : non-homogeneous Mixture Model
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Mixture Distribution
GPD and Gamma (Weibull after Frigessi et al. (2003))

fmix(r) =
1
Z

“`
1− wµ,τ (r)| {z }
Gamma weight

´
· fΓ(α,β)(r)| {z }

Gamma pdf

+ wµ,τ (r)| {z }
GPD weight

· fG(σ,ξ)(r , u = 0)| {z }
GPD

”
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Weight Function
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Dynamic mixture model for unsupervised tail estimation without threshold
selection (Frigessi et al., 2002)
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QQ plots for the Spartan station

(a) (b)

(c) (d)

Figure 5: QQplots of precipitation patterns 2 and 3 for station “Sparta”, for function hβ in

(11) as a gamma distribution in (a) and (b) and hβ as a mixture (5) in (c) and (d). Units

are cm.

43
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Model selection

(0) gamma + GPD : parameters vary with location and precipitation pattern,

(i) only gamma : parameters vary with location and precipitation pattern,

(ii) gamma + GPD with one ξ parameter per pattern

(iii) same as (ii) with τ set to be equal to 0,

(iv) gamma + GPD with one common ξ for all stations and all patterns,

(v) same as (iv) with τ set to be equal to 0.

(iii)∗ same as model (iii) but only gamma distributions for pattern 1.
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Model selection

Station Model (0) Model (i) Model (ii) Model (iii) Model (iv) Model (v) Model (iii)∗

p = 24n p = 8n p = 20n + 4 p = 16n + 4 p = 20n + 1 p = 16n + 1 p = 12n + 5

Aledo AIC=-796.52 AIC=-816.58 AIC=-795.76 AIC=-809.79 AIC=-819.46 AIC=-816.18 AIC=-816.79

Aurora AIC=-1137.47 AIC=-1149.99 AIC=-1256.53 AIC=-1293.89 AIC=-1358.48 AIC=-1152.51 AIC=-1299.89

Fairfield AIC=14.36 AIC=103.07 AIC=22.45 AIC=22.37 AIC=-76.81 AIC=-10.21 AIC=16.37

Sparta AIC=277.10 AIC=372.92 AIC=235.65 AIC=228.35 AIC=231.91 AIC=251.44 AIC=222.35

Windsor AIC=-1014.80 AIC=-920.68 AIC=-1016.25 AIC=-1017.59 AIC=-1069.99 AIC=-1028.91 AIC=-1023.59

All five stations AIC=-4433.18 AIC=-4422.27 AIC=-4479.50 AIC=-4515.13 AIC=-4425.06 AIC=-4423.78 AIC=-4553.13

Table 3: Akaike Information Criterion (AIC) values obtained for our five selected weather stations and for our seven models.

The bold values correspond to the optimal criterion per row. Below each model’s name, the number p of parameters for n

stations is provided.

37
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Spatial Statistics for Maxima
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Spatial Statistics for Maxima
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Spatial Statistics for Maxima

A few Approaches for modeling spatial extremes

Max-stable processes : Adapting asymptotic results for multivariate
extremes
Schlather & Tawn (2003), Naveau et al. (2007), de Haan & Pereira
(2005)

Bayesian or latent models : spatial structure indirectly modeled via
the EVT parameters distribution
Coles & Tawn (1996), Cooley et al. (2005)

Linear filtering : Auto-Regressive spatio-temporal heavy tailed
processes,
Davis and Mikosch (2007)

Gaussian anamorphosis : Transforming the field into a Gaussian one
Wackernagel (2003)
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Max-stable processes

Max-stability in the univariate case with an unit-Fréchet margin

F t (tx) = F (x), for F (x) = exp(−1/x)

Max-stability in the multivariate case with unit-Fréchet margins

F t (tx1, . . . , txm) = F (x1, . . . , txm), for Fi (xi ) = exp(−1/xi )
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A central question

P [M(x) < u,M(x + h) < v ] =??
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Bivariate case for Maxima from an asymptotic point of view

If one assumes unit Fréchet margins then the distribution of the vector
(M(x),M(x + h)) goes to

F (u, v) = exp [−Vh(u, v)]

where

Vh(u, v) = 2
Z 1

0
max

„
w
u
,

1− w
v

«
dHh(w)

with Hh(.) a distribution function on [0, 1] such that
R 1

0 w dHh(w) = 0.5.

Home work : check that F (u, v) is bivariate max-stable
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Bivariate case (M(x),M(x + h))

Complex non-parametric structure

Vh(u, v) = 2
∫ 1

0
max

(
w
u
,
1− w

v

)
dHh(w)

How to estimate Vh(u, v) ?
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Geostatistics : Variograms
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A madogram type

νh =
1
2

E |F (M(x + h))− F (M(x))|

Properties

Defined for light & heavy tails

nice link with EVT but only gives Vh(1, 1)
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νh = 1
2 E |F (M(x + h))− F (M(x))|

simulated fields Madogram
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The λ−madogram

νh(λ) =
1
2

E
∣∣∣Fλ(M(x + h))− F 1−λ(M(x))

∣∣∣
Properties

Defined for light & heavy tails

Called a λ-Madogram

Nice links with extreme value theory

νh(0) = νh(1) = 0.25
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A fundamental relationship

Home work

νh(λ) =
Vh(λ, 1− λ)

1 + Vh(λ, 1− λ)
− c(λ), with c(λ) =

3
2(1 + λ)(2− λ)

Conversely,

Vh(λ, 1− λ) =
c(λ) + νh(λ)

1− c(λ)− νh(λ)
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The λ−madogram
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30-year maxima of daily precipitation in Bourgogne

146 stations of maxima of daily precipitation over 1970-1999 in Bourgogne
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54-year maxima of daily precipitation in Belgium

Pairwise spatial dependences of precipitation extremes over Belgium
Stéphane Vannitsem and Philippe Naveau

Institut Royal Météorologique de Belgique, Laboratoire des Sciences du Climat et de l’Environnement, IPSL-CNRS, France

(Contact: svn@oma.be)

1 Aim
The practical use of the extreme value theory is usually based on the univariate asymptotic distri-

butions known as the Generalized Extreme Value distributions (GEV). Although this information

could be very useful when interested in the occurrence of extremes at the local level, it does

not provide the complete information on the joint occurrence of extremes in space, except in the

case of independence between extremes. This type of information can however be of crucial im-

portance when the occurrence of a specific event (e.g. a river flood) depends on extreme events

(e.g. precipitation) that have occurred concommitantly at different places. The importance of the

spatial features on the estimate of return times of extreme events over specific regions has been

also extensively discussed in Buishand (1984) and Coles and Tawn (1990).

Multivariate as well as spatial approaches have been developped in order to model the joint

occurrence of extreme events. The specific choice of a model depends however on the depen-

dence between the extremes. Several techniques have been developed in order to evaluate this

dependence, two of which are compared in the present work to evaluate the spatial dependence

of precipitation extremes. To this aim, an ensemble of stations forming two different networks

covering the Belgian territory are used.

2 The Observational networks
In the climatological network the precipitation accumulated daily from 8 AM up to 8 AM of the next

day is recorded. It is now composed of 269 stations. This network has of course experienced

a lot of changes such as displacement or withdrawal of stations. To get a quite homogeneous

network, we focus here on a subset of stations which have not experienced such displacements

and covering the same period of time from 1951 to 2005. We end up with 55 stations covering

the whole belgian territory. The stars in Fig.1 indicate the locations of these stations.

The hydrometeorological network is composed of 19 stations, of which 18 have been installed in

1968. It records the amount of precipitation at a very high frequency (every 10 minutes). Clearly

this network is less dense than the climatological network and some stations display long periods

without data. Despite the less good coverage and maintenance of the stations, this network can

provide useful information on the spatial properties of the extremes for smaller durations of the

precipitation. These stations are marked by a plus in Figure 1.

For both networks, the annual maxima have been selected for different period of accumulation of

the precipitations (the duration) and the spatial properties of the extremes have been explored.

Before exploring these properties, a statistical test for a change in the mean of the time series

composing the network has been applied in order to partially check their stationarity. The ex-

tremes for durations from 10 minutes up to about 1 day, display a change in the mean at the 5

confidence level for the time series located close to the coastal zone. For longer durations, the

change in the mean affects the other zones of the country.

The analysis of the spatial dependences has been performed on the set of stationary, as well as

on the ensemble of stations of the networks. In both cases (tested for small durations), the results

are close. We will therefore present the statistics of the spatial dependences for the ensemble of

stations.

Figure 1: The two precipitation networks used in this study

3 Spatial dependences: theoretical aspects
Several techniques have been developed to handle the spatial dependence between extremes,

two of which will be discussed here in the context of the analysis of precipitation. The first

approach is based on the notion of copula (see Coles, 2001), which relates the marginal distribu-

tions and the multivariate distribution as

If the marginal distributions are continuous, this function C is unique. It can be

obtained through a change of variables from to the new variables

. C is the multivariate distribution of the variables, . Note that the new variables

are uniformly distributed between 0 and 1. In the present paper we focus on the bivariate

distributions since they already provide important information on the spatial dependences. In-

stead of looking at the properties of the original variables, one analyzes the properties of the new

variables defined by the empirical marginal distributions as

(1)

where the indices and indicate the position of the two series. To evaluate the dependence for

this bivariate process, Coles et al (1999) propose a measure of the form

(2)

For independent variables, , and for full dependence, . The extremal

coefficient is defined as

(3)

The second approach consists to evaluate the extremal dependence by using the madogram

that was found to provide a direct estimate of the extremal coefficient under the assumption of

max-stability. In this case the extremal coeeficient is given by

(4)

where

(5)

is the estimator of the normalized madogram, which converges asymptotically to a gaussian dis-

tribution with mean and variance with (see

Cooley, 2005).

An extension of the previous approach has been recently developed by Naveau et al (2007)

in which the extremes corresponding to different quantiles are compared. It is based on the

-madogram whose relation is

(6)

which allows to evaluate for different quantile values,

. This measure will also be briefly discussed in the following.

4 Application to the Belgian networks
Figure 3 displays the value of as a function of u for pairs whose distances fall into the

interval 50-70 km. The quantile value interval has been divided into 10 bins for which

is evaluated. Clearly, this function (symbols) decrease slowly as a function of u up to a plateau

beyond about a quantile of . Note that the two curves refer to the 95 confidence interval

as obtained with the delta method (Coles et al 1999).
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Figure 2:

For an extremal process falling into the class of bivariate extreme value distribution (Coles, 2001),

the value of is constant as a function of . In the present case, the decrease as a func-

tion of the quantile value suggests that the annual maxima do not fall into this category, except

for large quantile values for which an apparent convergence toward a plateau is found. We can

therefore only expect that the asymptotic theory is only valid for very large extreme values. To

check this point, an analysis of the behavior of for extremes selected on longer time

windows (2, 3, ... years) would be necessary. Unfortunately, this approach will increase sub-

stantially the uncertainty with which the evaluation of is made, since it depends on the

number of extremal events used.
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Figure 3:
If one assumes that reaches a plateau for large, this plateau provide an estimate of

the extremal coefficient. One can therefore look at the variations of this estimate as a function

of the distance between pairs. This is what is shown on the right panel of Fig. 2. The function

crosses the 0 line corresponding to the absence of dependences around 200 km. However one

of the difficulty with this quantity is again the large uncertainty on the estimator of .
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Figure 4:
The second measure presented in Section 3 displays a smaller uncertainty on the extremal co-

efficient estimate. Note that when using this approach, one assumes implicitely that the process

is falling into the class of bivariate extreme value distributions. In view of the discussion above,

some caution should be kept in mind. Figure 3 displays the madogram as well as the con-

fidence interval for the stations of the climatological network. The value associated with the

independence is 1/6. The result suggests that some dependences are present up to 200 km

in quite good agreement with the estimate base on . Figure 4 displays the results ob-

tained with the hydrometeorological network for durations of 1 hour (left panel) and 6 hours (right

panel). The spatial dependence is considerably reduced in this case (up to 50 km for a duration

of 1 hour).

Let us now turn to the . Figure 5 displays the -madogram as a function of for

different distances h. The continuous line corresponds to the case for which the extremes are

independent, while the dashed line to the full dependence. The empirical evaluations are falling

between these two asymptotic solutions and progressively converge to the independent solution

for increasing distances.
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