Some results on stratospheric dynamics obtained with the pre-VORCORE observations

Albert Hertzog

François Vial, Claude Basdevant, Roberto Mechoso, Philippe Cocquerez Bernard Brioit and colleagues, CNES/BA

Superpressure balloons (global, nice resolution, isopycnic) to get information:

- 1. on stratospheric dynamics over a large range of scales
- 2. to assess temperature fluctuations for microphysical studies
- 3. to quantify how reliable are various (re)analyses
- 4. to study transport and mixing

Framework of studies

3 technological campaigns aimed at preparing the Vorcore campaign:

- Ecuador 1998: 3 LD flights (21, 47, 24 days)
- Kiruna 2001: 3 LD flights (24, 70(?), 19 days)
- Kiruna 2002: 6 LD flights (11, 29, 14, 8, 11, 43 days)

with meteorological gondolas:

- temperature, pressure, wind
- 12/15 minutes

Gravity-wave variability

All waves: [1 h; 24 h[
OLR	$<250\mathrm{Wm^{-2}}$	$>250\mathrm{Wm^{-2}}$				
Flight 1	8.2	7.0				
Flight 2	6.7	8.1				
Short waves: [1 h; 3 h] OLR < 250 W m^{-2} > 250 W m^{-2}						
Flight 1	0.78	0.44				
Flight 1 Flight 2	0.78 0.66	0.44 0.38				

Eliassen-Palm flux

Gravity Waves [1 h; 24 h[

10 ⁻³ J/kg	$\overline{u'w'}^+$	$\overline{u'w'}^{-}$	$\overline{u'w'}$	$\overline{u'w'}^+ - \overline{u'w'}^-$
whole flight	7	- 6	1	12
Pacific Ocean	5	- 5	- 1	10
Indonesia	15	- 10	5	26

Rossby-gravity waves

$$f\overline{v' heta'}/ar{ heta}_z-\overline{u'w'}=$$
1–210⁻³ J/kg

Conclusions

Super-pressure balloons

- global, high accuracy
- wave activity, model validation, microphysical studies
- quasi-lagrangian: transport, mixing (tracer: water vapor, methane)

